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Preface

There is an increasing demand for various tree products as the world population
continues to grow rapidly, leading to slow down in woody plant product supplies
worldwide. To meet demand of every growing human population, there is a need to
maintain continuous supply of woody products by increasing productivity of trees.
This can be achieved by improving breeding of trees with better traits; however,
conventional breeding methods are slow due to long life cycle of trees.

A basic strategy in tree improvement is to capture genetic gain through clonal
propagation. Clonal propagation via organogenesis is being used for the production
of selected elite individual trees. However, the methods are labour intensive, costly,
and produce low volumes. Genetic gain can now be captured through somatic
embryogenesis. Formation of embryos from somatic cells by a process resembling
zygotic embryogenesis is one of the most important features of plants. It offers a
potentially large-scale propagation system for superior clones. It has several addi-
tional advantages such as the ability to produce large numbers of plants, the
potential for automation, the opportunities for synthetic seed, long-term storage,
packaging, direct delivery systems and genetic manipulation.

Earlier, we edited a series on “Somatic Embryogenesis of Woody Plants”,
volumes 1–6, which provided reviews on somatic embryogenesis of important
angiosperm and gymnosperm tree species. This series has become an excellent
source of information for the researchers and students and did not provide “detailed
protocols” for inducing somatic embryogenesis. Therefore, researchers may face
difficulties in the initiation of somatic embryogenic cultures. The choice of explant
is crucial for the initiation of embryogenic cultures.

This book is the second edition of previously published book entitled “Protocol
for Somatic Embryogenesis in Woody Plants”, 2005, and divided in two volumes.
Both volumes include chapters on stepwise protocols of somatic embryogenesis of
selected woody plants. This would enable both researchers and students to start
somatic embryogenic cultures without too much alteration.

In Volume 1, each chapter provides information on initiation and maintenance of
embryogenic cultures; somatic embryo development, maturation and germination;
acclimatization and field transfer of somatic seedlings. Some chapters include
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applications of somatic embryogenic cultures, e.g. SE Fluidics System, anther
culture, manufactured seeds, cryopreservation and liquid cultures.

The invited authors are well known in somatic embryogenesis research, and they
belong to industry, universities and research institutes. Each chapter has been
extensively reviewed by other expertise before publication. We are grateful to all
authors for their contribution to this book; and all reviewers reviewed chapters that
have maintained high quality of the book.

Helsinki, Finland Shri Mohan Jain
Federal Way, USA Pramod Gupta
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Pinus radiata (D. Don) Somatic
Embryogenesis

Itziar A. Montalbán and Paloma Moncaleán

1 Introduction

Radiata pine (Pinus radiata D. Don) is one of the most widely planted exotic pine
species in rainfall environments of the Southern hemisphere (Yan et al. 2006). Its
fast growth has stimulated an exhaustive study of wood production, and the
development of breeding programs (Espinel et al. 1995; Codesido and
Fernández-López 2009). Although utility of in vitro organogenesis has been proven
for clonal propagation of this species (Aitken-Christie et al. 1985), a limitation of
this method is the high cost of the process for mass production commercially. Other
systems to achieve in vitro propagation of Pinus radiata adult trees have been
developed (Montalbán et al. 2013), but changes in the attributes of resulting plants
have sometimes been observed and rejuvenation of the material has been transitory
under in vitro conditions. Somatic embryogenesis (SE) has been the most important
development for plant tissue culture, not only for mass propagation but also for
enabling the implementation of biotechnological tools that can be used to increase
the productivity and wood quality of plantation forestry. Therefore, many efforts
have been made in the last years to develop and optimize SE systems that can be
used in the breeding programs.

Somatic embryogenesis in P. radiata was first described by Smith et al. (1994)
followed by improved protocols of different aspects of SE such as initiation
(Hargreaves et al. 2009; Montalbán et al. 2012), maturation (Montalbán et al.
2010), cryopreservation (Hargreaves et al. 2002) and expression of genes (Aquea
and Arce-Johnson 2008; García-Mendiguren et al. 2015). Modifications of the
tissue culture media are likely to influence the success of SE initiation (Montalbán
et al. 2012). However, few studies have focused on the impact of temperature
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(Kvaalen and Johnsen 2007). It is known that modifications in water availability,
either by solute-imposed water stress or by physical restriction, will impact the
development of embryonal masses (EMs) (Klimaszewska et al. 2000). Although the
effect of different concentrations of gellan gum at maturation has been studied
(Teyssier et al. 2011; Morel et al. 2014), the combination of different temperatures
and water availability has not been previously tested at the initial stages of SE in
conifers. As reviewed by Von Aderkas and Bonga (2000) and Neilson et al. (2010),
it is clear that stress has the potential to induce or improve embryogenesis in species
that have been considered recalcitrant.

Long periods of proliferation of the EMs can produce losses by contamination,
somaclonal variation, or a decrease in their ability to generate embryos together
with the high maintenance costs (Breton et al. 2006). One way to overcome this
bottleneck is the cryopreservation of EMs; EMs are kept in liquid nitrogen because
these low temperatures induce the synthesis of proteins that favours the conser-
vation and subsequent viability of the EMs (Kong and von Aderkas 2011).
However, this method presents some drawbacks such as: it is a complex technique
comprising several stages (Gale et al. 2007); – it is an expensive process from the
economic and technical point of view (Bomal and Tremblay 2000); it is necessary
the presence of cryoprotectants that prevent the formation of ice crystals (Salaj et al.
2012); the most popular cryoprotectant is DMSO but is toxic (Arakawa et al. 1990)
and may be the cause of genetic and epigenetic changes in tissues (Krajnakova et al.
2011). Nowadays, efficient and reproducible protocols for EMs cryopreservation
have been described in Pinaceae (Lelu-Walter et al. 2008). However, cryopreser-
vation of somatic embryos (Se) has been achieved for periods less than one month
(Barra-Jiménez et al. 2015) in Quercus species, which does not guarantee long-term
storage. Preliminary studies on P. radiata and other conifers (Hargreaves et al.
2004; Kong and Von Aderkas 2011), suggest that it is possible to develop simple
alternative cryopreservation of Se at low temperatures maintaining their viability in
the future.

An improved protocol for initiation of EMs, proliferation, somatic embryo
maturation and germination as well as low temperature Se storage are presented in
this chapter. Furthermore, recent studies focused on SE optimization in Pinus ra-
diata are shown.

2 Initiation of Embryogenic Tissue

Cone collection and embryo stage assessment One-year-old green female cones,
enclosing immature zygotic embryos of Pinus radiata at the precotyledonary stage
(Montalbán et al. 2012), are collected and stored at 4 °C until processing. Cones are
usually processed within one week, although they can be stored for more than one
month with no detriment in SE initiation rates (Montalbán et al. 2015).
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Seed sterilization Intact cones are sprayed with 70% (v/v) ethanol, split into
quarters and all immature seeds dissected. Then, immature seeds are surface ster-
ilized in H2O2 10% (v/v) plus two drops of Tween 20® for 8 min and then rinsed
three times under sterile distilled H2O in sterile conditions in the laminar flow unit.
Seed coats are removed and whole megagametophytes containing immature
embryos are excised out aseptically and placed horizontally onto the medium
(Fig. 1).

Basal medium preparation Initiation of embryogenic tissue is usually carried out
on EDM basal medium (Walter et al. 2005, Table 1) at 23 °C. The initiation
medium contains 30 g L−1 sucrose, 4.5 µM 2,4-dichlorophenoxyacetic acid
(2,4-D), 2.7 µM benzyladenine (BA) and 3 g L−1 gelrite®. The pH is adjusted to
5.7, and the medium is sterilized at 121 °C for 20 min. After autoclaving,

Fig. 1 Initiation of
embryonal masses from Pinus
radiata megagametophytes
cultured at 23 °C on EDM
(Walter et al. 2005), bar
0.2 cm

Table 1 Constituents of
Pinus radiata in vitro culture
medium including salt
components and organic
additives. Note that hormonal
supplements, carbohydrate
source, activated charcoal or
agar concentrations are
specified in the text according
to culture stage

Component EDM LP m

Inorganic salts Concentration mg L−1

KNO3 1431 1800

MgSO4 � 7H2O 400 440

KH2PO4 675

CaCL2 � 2H2O 25

Ca(NO3)2 � 4H2O 835

NH4NO3 400

NaNO3 310

NH4H2PO4 225

KCl

MnSO4 � 4H2O 3.6 1
(continued)
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filter-sterilized solutions (pH 5.7) of the following amino acids are added to par-
tially cooled medium prior to dispensing into Petri dishes (90 � 9 � 20 mm):
550 mg L−1 L-glutamine, 525 mg L−1 asparagine, 175 mg L−1 arginine, 19.75 mg
L−1 L-citrulline, 19 mg L−1 L-ornithine, 13.75 mg L−1 L-lysine, 10 mg L−1

L-alanine and 8.75 mg L−1 L-proline.

Culture conditions and incubations period
Cultures were maintained in the dark at 22 ± 1 °C for 4–8 weeks.

3 Embryonal Masses Evaluation

After 4–8 weeks on initiation medium, the number of initiated embryonal masses
(3–5 mm in diameter) per Petri dish are evaluated.

4 Embryogenic Tissue Proliferation

Proliferating tissues are separated from the megagametophytes and subcultured to
proliferation medium every 2 weeks. Initiation and proliferation medium only differ
in the concentration of Gelrite®, being 3 g L−1 for the first and 4.5 g L−1 for the
second. Following four periods of subculturing, actively growing embryogenic
tissues are recorded as established cell lines (ECLs). Proliferation is carried out in
darkness.

Table 1 (continued) Component EDM LP m

H3BO3 8 6.2

ZnSO4 � 7H2O 25 8.6

KI 1 0.08

CuSO4 � 5H2O 2.4 0.025

Na2MoO4 � H2O 0.2 0.25

CoCl2 � 6H2O 0.2 0.025

FeSO4 � 7H2O 30 30

Na2EDTA � 2H2O 40 40

Vitamins

Thiamine � HCl 5 0.1

Nicotinic acid 5 0.5

Pyridoxine � HCl 0.5 0.5

Myo-inositol 1000 100
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5 Somatic Embryo Maturation

The EMs are suspended in EDM (Table 1) broth (lacking growth regulators) and
shaken vigorously by hand for several seconds. A 5 mL aliquot containing 80–
90 mg of embryonal fresh mass is transferred to filter paper (Whatman no.2) in a
Büchner funnel. A vacuum is applied for 10 s, and the filter paper with the attached
tissue is transferred to maturation medium (Montalbán et al. 2010). The maturation
medium contained the salt formulation of EDM (Table 1), 9 g L−1 gellan gum,
60 µM abscisic acid, 60 g L−1 sucrose and the amino acid mixture used for the
initiation and maintenance of the EMs. Maturation is carried out in darkness.

6 Somatic Embryo Germination

After 15 weeks, Se (Fig. 2) are transferred to germination medium. This medium
contains half-strength macronutrients LPm (Quoirin and Lepoivre 1977, as modi-
fied by Aitken-Christie et al. 1988) (Table 1) with 2 g L−1 of activated charcoal and
9.5 Difco agar. Petri dishes are tilted at a 45º angle with embryonic root caps
pointing downwards and incubated under dim light for 7 days. Cultures are then
maintained at a 16-h photoperiod at 100 µmol m−2 s−1 using cool white fluorescent
tubes (TFL 58 W/33; Philips, France). Plantlets (Fig. 3) are subcultured onto fresh
germination medium every 6 weeks. The whole in vitro SE process is carried out at
23 °C.

Fig. 2 Maturation of Pinus radiata somatic embryos cultured at 23 °C on EDM (Walter et al.
2005), bar 1.1 cm
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7 Somatic Plantlet Acclimatization

After 14–16 weeks on the germination medium, the plantlets are transferred to
sterile peat:perlite (2:1) and acclimatized in a greenhouse where the humidity is
progressively decreased from 99 to 70% during the first month.

8 Abiotic Stress: A Way to Improve the Somatic
Embryogenesis Process

In order to evaluate the effect of different physical and chemical conditions on
radiata pine SE and to identify what initial stage of SE has the greatest impact on
the success of embryogenesis, initiation was carried out in following the same
methodology described in Sect. 2. Different concentrations of gellan gum were
added prior to autoclaving to increase or reduce water availability in the medium (2,
3 or 4 g L−1 Gelrite®), and the explants were stored at 18, 23 or 28 °C (Fig. 4). In
summary, nine different treatments were applied.

Fig. 3 Germination of Pinus radiata somatic embryos cultured at 23 °C on half-strength
macronutrients LP (Quoirin and Lepoivre 1977, as modified by Aitken-Christie et al. 1988), bar
1.4 cm

6 I. A. Montalbán and P. Moncaleán



Statistically significant differences in the percentage of initiation among tem-
peratures and gellan gum concentrations were found (García-Mendiguren et al.
2016).

When considering temperature alone, initiation percentages in explants induced
at 28 °C were significantly lower (4%) than those induced at 18 or 23 °C (17–13%,
respectively). With respect to gellan gum, megagametophytes cultured on medium
containing 4 g L−1 gellan gum showed significantly higher initiation (16%) in
comparison to those cultured at 2 and 3 g L−1), which showed initiation values of
9% and 10%, respectively.

At the proliferation stage, statistically significant differences were identified only
between temperatures (28 °C resulted in a significantly higher proliferation per-
centage (65%) when compared to explants initiated at 18 and 23 °C (35%).
Regarding the number of Se per gram of EM, statistically significant differences
were observed among initiation temperatures. ECLs initiated at 28 °C produced a
significantly higher number of Se (486 Se g−1 EM) than those initiated at 23 °C
(319 Se g−1 EM) (García-Mendiguren et al. 2016). Our results suggest that the
initial conditions of the process positively impact the number of embryos produced
several months later. Temperature presumably exerts a selective pressure in the
early stages of embryogenesis and results in lower initiation rates but higher rates of
proliferation and maturation (Fehér 2015). Although the different gellan gum
concentrations tested show significant differences in water availability, this did not
induce significant differences in the number of Se produced.

In summary, we observe a marked effect of initiation conditions on Se pro-
duction, showing differences when that conditions are applied several months
before. In light of the conclusions obtained in this study, initiation at 18 °C and 4 g
L−1 gellan gum can be used to enhance the number of ECLs and thus enhance
diversity within clonal plantations. On the other hand, incubation at 28 °C and the

INITIATION PROLIFERATION MATURATION

2 gL
-1

3 gL
-1

4 gL
-1

2 gL
-1

3 gL-1

4 gL-1

2 gL-1

3 gL
-1

4 gL
-1

4.5 gL
-1

9 gL
-1

Fig. 4 Scheme of the experimental design, cultures were stored at initiation at three different
temperatures: 18 °C (circle), 23 °C (square) or 28 °C (hexagon) and at three different agar
concentrations (inside circles, squares and hexagons). The rest of the process was carried out under
standard conditions
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addition of 2 g L−1 gellan gum at initiation increase the efficiency of the process
and result in a larger number of clones from a selected cross in a genetic
improvement program.

9 New Methods for Storing Pinus radiata Genetic
Resources

P. radiata Se are placed onto a sterile Whatman filter (nº 2) and the filter laid on
Petri dishes containing EDM (Table 1) (Walter et al. 2005) supplemented with
60 g L−1 sucrose and 9 g L−1 Gelrite®; after autoclaving the amino acid mixture of

Fig. 5 Pinus radiata somatic embryos after 12 months of storage at 4 °C, bar 0.4 cm

Fig. 6 Germination of Pinus radiata somatic embryos after 12 months of storage at 4 °C, bar
0.8 cm
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the EDM medium (Table 1) is added. The Petri dishes are sealed with parafilm and
can be stored at 4 °C for 1 year (Fig. 5). The percentage of germination is not
affected by storage, improving the rates obtained in Se not conserved in cold (85%)
(Fig. 6).

10 Research Prospects

Forestry productivity can be increased via the planting of high-value trees. Clonal
propagation by somatic embryogenesis has the ability to enhance this amplification
process and capture the benefits of breeding programs (Pullman et al. 2005) and it
should be implemented with other technologies as cryopreservation of the em-
bryonal masses (Park 2002) and/or somatic embryos. Our future researches activ-
ities are focused on corroborate the following hypotheses:

– Extreme environmental conditions during the early stages of somatic embryo-
genesis in Pinus spp. determine the adaptative characteristics of the somatic
plants produced.

– The adaptive characteristics of the somatic plants of P. radiata are translated
into differences in biochemical, molecular and physiological quantifiable char-
acteristics, which could be used as early indicators of stress tolerance.

– The EMs and Se of P. radiata can be stored at 4, −20 and −80 °C minimizing
the costs and use of cryoprotectans.
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Embryogenic Tissue Initiation
in Loblolly Pine (Pinus Taeda L.)

Gerald S. Pullman

1 Introduction

Somatic embryogenesis (SE) technology has the potential to be the lowest-cost
method to rapidly produce large numbers of high-value seedlings with desired
characteristics for plantation forestry. SE is expected to play an important role in the
future to increase forest productivity, sustainability and uniformity. SE technology
has the advantages of: (1) shortening time to produce desired planting stock,
(2) allowing control of genetic variation, (3) permitting commercial production of
hybrids, and (4) facilitating genetic engineering efforts for desirable traits.

Since the first reports of somatic embryogenesis in Picea abies and Larix
decidua in 1985 (Chalupa 1985; Hackman and von Arnold 1985; Nagmani and
Bonga 1985), many different coniferous species have shown the ability to produce
embryogenic tissue. At least 27 Pinus species are reported to go through SE
(Pullman and Bucalo 2011). However, it should be emphasized that SE only works
well with a few species. Often, even for the most responsive species, initiation
frequency is low, many desired seed sources are recalcitrant, culture survival is low
and/or embryo maturation often stops prematurely resulting in slow initial growth
and low germination percentages. These difficulties raise the costs of somatic
seedlings produced from successfully initiated genotypes.

Loblolly pine (Pinus taeda L.) is the most commercially important tree species
in the Southeastern US and the second most common species in the US (Nix 2013).
One to 1.5 billion trees are planted annually across the Southern USA
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(Schultz 1999). Since pine plantations in the South are expected to increase both in
total area and silvicultural intensity, methods to provide the best planting stock will
become increasingly important (Fox et al. 2007; Huggett et al. 2013).

Conifer SE proceeds through four steps: initiation, multiplication, maturation
and germination and cryopreservation when storage of cultures is desired (Pullman
et al. 2003a). This report will focus on the initiation step. The first report of SE in
loblolly pine occurred in 1987 (Gupta and Durzan 1987). Since then many reports
and patents on loblolly pine initiation have been published (Pullman and Webb
1994; Becwar and Pullman 1995; Pullman and Johnson 2002; Pullman et al. 2003a,
c, d, 2005b, c, 2006, 2008, 2009, 2015; Pullman and Bucalo 2011; Pullman and
Bucalo 2014).

As ET grows and somatic embryos develop in vitro, hormonal, nutritional and
environmental conditions must be provided by the medium. Therefore, duplication
of the seed hormonal, nutritional and environmental conditions found in vivo is
likely to improve ET initiation or somatic embryo growth and development.

2 Natural and Somatic Embryogenesis

Natural zygotic embryogenesis starts with a fertilized egg and ends with a germi-
nated plant (Gifford and Foster 1989). Conifer embryos arise from a single fertil-
ization, creating a diploid embryo that develops in a haploid megagametophyte
(Dogra 1967; Singh 1978; Nagmani et al. 1995). Conifer embryos grow and
develop inside a megagametophyte ‘corrosion cavity’, a space that enlarges as the
suspensor lengthens and pushes the embryo deeper into the seed. Programmed
death of cells adjacent to the embryo provides nutrients for growth (Durzan 2012).

Multiple zygotic embryos usually occur in early-stage seeds of conifers and may
form through two processes. In ‘simple embryony’ egg cells in different archegonia
are fertilized by different pollen grains forming different genotypes. A process
called ‘cleavage polyembryony’ usually follows in Pinus, where the immature
embryos are multiplied. Loblolly pine seeds have 1–4 archegonia, each containing
an egg cell (Fig. 1a). Fertilization can occur in one or more archegonia (simple
polyembryony). Fertilized embryos in the seed divide into four embryos (cleavage
polyembryony) so that up to 16 embryos may form within each seed (Fig. 1b).
After simple or both types of embryony, one embryo becomes dominant and
continues to grow (Fig. 1c). Subordinate embryos usually do not develop further
but persist briefly in the ovule and appear to be the initiating material for SE in
loblolly pine (Becwar et al. 1990, 1991; Becwar and Pullman 1995). MacKay et al.
(2001) found that the number of zygotic embryos per seed may be a driver of
initiation and could be a useful indicator of initiation potential.

During SE somatic cells from the plant reprogram to form somatic embryos.
Hormonal and nonhormonal inducers can be used to promote the somatic
embryogenic transition (Fehr 2003). Nonhormonal inducers are often stress factors
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and include osmotic shock, culture medium dehydration, water stress, heavy metal
ions, altered culture medium pH, heat or cold shock, hypoxia, antibiotics, ultravi-
olet radiation, and some mechanical or chemical treatments (Zavattieri et al. 2010,
Fehr 2003). Stress, in particular oxidative stress, appears to be an important initiator
of SE (Fehr 2003). 2,4-dichlorophenoxyacetic acid (2,4-D) which is one of the most
effective and commonly used initiators of SE appears to function as an oxidative
stress activator. 2,4-D may act by increasing auxin activity and simultaneously
increasing stress responses (Fehr 2003).

Fig. 1 Natural zygotic embryogenesis in Pinus taeda. a Megagametophyte with two archegonia
visible shortly after fertilization. b Polyembryony several weeks after fertilization. Multiple
early-stage zygotic embryos are visible resulting from simple and or cleavage polyembryony.
Double-stained with acetocarmine and Evans blue (Gupta and Holmstrom 2005). c As
development continues, one embryo becomes dominant and the subordinate embryos slowly
die. Tissue stained with acetocarmine and Evans blue. Reproduced from Pullman and Bucalo
(2014) with permission from Springer

Embryogenic Tissue Initiation in Loblolly … 15



3 Materials

A. Seed (collected at specific developmental stages).
B. Media for P. taeda: initiation (2785, 2880), capture and maintenance (1250).

Components are shown in Table 1.
C. Sterilizing solutions: 10% Liqui-Nox with 0.2% Tween 20; 20% H2O2.
D. Chemical reagents: reagent alcohol (70%).
E. Consumable supplies: scalpel blades (sterile), pipettes (10, 50 mL), vacuum

filters (0.2 mm, 250 mL), syringe filter (0.2, 13 mm) Costar #3526 Well
Culture Cluster Plates and Parafilm.

Table 1 Media components for loblolly pine initiation and capture

Media and components (mg/l)
1133 1250 2785 2880

NH4NO3 603.8 603.8 200.0 200.0

KNO3 909.9 909.9 909.9 909.9

KH2PO4 136.1 136.1 136.1 136.1

Ca(NO3)2•4H2O 236.2 236.2 236.2 236.2

MgSO4•7H2O 246.5 246.5 246.5 246.5

Mg(NO3)2•6H2O 256.5 256.5 256.5 256.5

MgCl2•6H2O 101.7 101.7 101.7 101.7

KI 4.15 4.15 4.15 4.15

H3BO3 15.5 15.5 15.5 15.5

MnSO4•H2O 10.5 10.5 10.5 10.5

ZnSO4•7H2O 14.4 14.4 14.668 14.668

Na2MoO4•2H2O 0.125 0.125 0.125 0.125

CuSO4•5H2O 0.125 0.125 0.1725 0.1725

COCl2•6H2O 0.125 0.125 0.125 0.125

AgNO3 – – 3.398 3.398

FeSO4•7H2O 6.95 6.95 13.9 13.9

Na2EDTA 9.33 9.33 18.65 18.65

Maltose – – 15,000 15,000

Sucrose 30,000 30,000 – –

Myo-inositol 1000 1000 20,000 20,000

Casamino acids 500 500 500 500

L-glutaminea 450 450 450 450

Thiamine•HCl 1.0 1.0 1.0 1.0

Pyridoxine•HCl 0.5 0.5 0.5 0.5

Nicotinic acid 0.5 0.5 0.5 0.5

Glycine 2.0 2.0 2.0 2.0

D-xylose – – 100 100
(continued)
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