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Preface

This book contains a selection of refereed short papers presented at the Annual
International Conference of the German Operations Research Society (OR2017),
which took place at the Freie Universität Berlin, Germany, September 6–September 8,
2017. Over 900 participants attended the conference—practitioners and academics
from mathematics, computer science, business administration and economics, and
related fields. The scientific program included about 600 presentations. The confer-
ence theme, Decision Analytics for the Digital Economy, placed emphasis on the
process of researching complex decision problems and devising effective solution
methods toward better decisions. This includes mathematical optimization, statistics,
and simulation techniques. Yet, such approaches are complemented by methods from
computer science for the processing of data and the design of information systems.
Recent advances in information technology enable the treatment of big data volumes
and real-time predictive and prescriptive business analytics to drive decision and
actions. Problems are modeled and treated under consideration of uncertainty,
behavioral issues, and strategic decision situations.

Altogether, 100 submissions have been accepted for this volume (acceptance
rate 63%), including papers from the GOR doctoral dissertation and master’s thesis
prize winners. The submissions have been evaluated by the stream chairs for their
suitability for publication with the help of selected referees. Final decisions have
been made by the editors of this volume.

We would like to thank the many people who made the conference a tremendous
success, in particular the members of the organizing and the program committees,
the stream chairs, the 14 invited plenary and semi-plenary speakers, our exhibitors
and sponsors, our host Freie Universität Berlin, the many people organizing the
conference behind the scenes, and, last but not least, the participants from about 46
countries. We hope that you enjoyed the conference as much as we did.

Berlin, Germany Natalia Kliewer
Magdeburg, Germany Jan Fabian Ehmke
Berlin, Germany Ralf Borndörfer
January 2018
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Solving the Time-Dependent Shortest
Path Problem Using Super-Optimal
Wind

Adam Schienle

1 Introduction

With air travel steadily on the rise and the increased fuel burn associated to it, it
is ever more important that aircraft fly efficient routes. Planning such routes is a
fundamental process of flying: commonly, a route is planned a few hours before the
flight, focussing on key factors such as overfly costs and fuel burn. According to the
Air Transport Action Group [1], around 1.5 billion barrels of fuel are burnt every
year, corresponding to 93.75 billion USD [6]. A decrease of just 0.25% would add
up to 234.375 million USD. There is also a visible impact for airlines: Lufthansa’s
total fuel consumption in 2016 amounted to 9 055 550 tons [7]. Decreasing this by
0.25% leads to 22 639 tons less fuel being burnt, or savings of almost 11.67 million
USD per year. In terms of CO2, this is equivalent to a reduction of more than 70 tons
per year [7].

The need for efficient routes gives rise to the Flight Planning Problem (fpp),
which is the problem of finding a minimum cost trajectory between two airports on
the Airway Network, a directed graph. In general, the objective function consists of
several summands, such as fuel costs, overfly costs and crew costs. In this paper,
however, we shall concentrate on minimising the fuel costs. We further assume that
aircraft fly levelly on a given altitude and neither climb nor descend. In this setting,
fuel consumption is equivalent to flight time, which reduces fpp to the Horizontal
Flight Planning Problem (hfpp). Since winds have a strong impact on flight time
and because of the time-dependency of the weather, we can model hfpp as a Time-
Dependent Shortest Path Problem (tdspp).

tdspp has been extensively studied in the literature, with particular emphasis
on road networks. Dijkstra’s algorithm yields an optimal solution in polynomial
time; however, for large networks, several speedup techniques have been developed,
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allowing to curb runtimes by several orders of magnitude with respect to Dijkstra’s
algorithm [2]. Most of them rely on a preprocessing phase, in which either some
shortest paths or other auxiliary data is precomputed and stored to speed up the
query. For a comprehensive survey, see [2].

Throughout this paper, aweighted graphwill always refer to a pair (G, T ), consist-
ing of the actual (directed) graph G and a possibly time-dependent weight function
T : A × [0,∞) → [0,∞), mapping an arc a ∈ A and a time τ ∈ [0,∞) to the travel
time T (a, τ ) on a.

The ground distance dG(a) of an arc a ∈ A on the Earth’s surface is constant, and
we assume that aircraft fly with constant air speed1 vA. In contrast, the ground speed
vG(a, τ ) of an aircraft is dependent on the prevailing wind conditions on the arc and
given by the formula

vG(a, τ ) =
√
v2A − wC(a, τ )2 + wT (a, τ ) ∀a ∈ A, τ ∈ [t0, tr ], (1)

where wC(a, ·) and wT (a, ·) are the crosswind and trackwind components of the
wind vector, i.e., the components perpendicular and parallel to the current flight
direction. Ground speed and ground distance are linked via the relation

T (a, τ ) = dG(a)

vG(a, τ )
. (2)

2 Super-Optimal Wind

Weare looking to solve the tdsppmodel of hfpp to optimality by using an appropriate
shortest path algorithm. A natural choice would be Dijkstra’s algorithm; in practice,
however, the time to plan a flight is limited and for the most part, this process takes
place shortly before the aircraft departs. In particular, this means that query times
should be as short as possible. In this paper, we restrict ourselves to the discussion
of the A* algorithm, introduced in [5]. For an overview of other algorithms and their
applicability to hfpp, see [3].

The intricacy with A* is to find a suitable potential function πt : V → [0,∞),
which for every v ∈ V underestimates the cost of a shortest v-t-path in (G, T ). We
define the reduced cost of an arc (u, v) ∈ A at time τ as

T ′((u, v), τ ) = T ((u, v), τ ) − πt (u) + πt (v), (3)

and call πt feasible on (G, T ) if for every arc (u, v) ∈ A and for every τ ≥ 0, we
have T ′((u, v), τ ) ≥ 0. Ifπt is feasible, runningA* is equivalent to runningDijkstra’s
algorithm on G using the reduced costs.

1Speed relative to the surrounding air mass.
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To obtain a feasible potential function, we have to find a lower bound for the
travel time on the arcs. To this end, we introduce the concept of Super-Optimal Wind
to underestimate the travel time. While it is possible to minimise the travel time
function directly, this takes too long for practical purposes. Furthermore, it requires
knowledge of the airspeed in advance, as opposed to constructing the Super-Optimal
Wind vector.

We assume that weather is given for a finite set of times {t0, t1, . . . , tr }, and
between the ti , the weather data is interpolated to obtain the wind vectorw(a, τ ). Let
t0 = τ0 < τ1 < · · · < τn = tr be a discretisation of [t0, tr ] such that τi − τi−1 = �
for some � > 0 and for all i = 1, . . . , n. To ensure that for every i ∈ {0, . . . , n − 1}
we always find a j ∈ {0, . . . , r − 1} such that [τi , τi+1] ⊂ [t j , t j+1], we require that
r | n. We then define for i = 1, . . . , n

w
(i)
C (a) = min

τ∈[τi−1,τi ]
|wC(a, τ )| and w

(i)
T (a) = max

τ∈[τi−1,τi ]
wT (a, τ ),

which are the minimum crosswind and maximum trackwind on each discretisation
step. The vector defined through its cross- and trackwind components

w
(i)
s-opt(a) = (w

(i)
C (a), w(i)

T (a))

is called Super-Optimal Wind vector, and is used to overestimate the ground speed
(note that by (2), this is equivalent to underestimating the travel time). We define

v
(i)
G (a) =

√
v2A − w

(i)
C (a)2 + w

(i)
T (a),

and let vG(a) := maxi∈{1,...,n} v(i)G (a). It is easy to prove the following lemma:

Lemma 1 The inequality vG(a, τ ) ≤ vG(a) holds for all τ ∈ [t0, tr ].
Note that in particular, if v∗

G(a) = maxτ∈[t0,tr ] vG(a, τ ) denotes themaximum ground
speed in [t0, tr ], we also have

vG(a) ≥ v∗
G(a). (4)

Define r∗
a := maxτ∈[t0,tr ]

√
wC(a, τ )2 + wT (a, τ )2, themaximumoverall wind speed

on a ∈ A. Under the condition that vA ≥ 2r∗
a , which in practice is always the case,

we obtain

Theorem 1 Suppose vA ≥ 2r∗
a . Then there exists a constant C > 0 such that

0 ≤ vG(a) − v∗
G(a) ≤ C�.

The first inequality follows directly from (4), and the proof for the second inequality
can be found in [3]. Analogous to the ground speed, we define
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T (a) = min
i∈{1,...,n} T

(i)(a) := min
i∈{1,...,n}

dG(a)

v
(i)
G

.

Letting T ∗
a = minτ∈[t0,tr ] T (a, τ ) and following (2), one readily obtains

Corollary 1 Suppose vA ≥ 2r∗
a . Then there exists a constant C ′ > 0 such that for

any arc a ∈ A, we have
0 ≤ T ∗

a − T (a) ≤ C ′�.

In particular, T (a) underestimates the travel time needed to traverse an arc, and the
error is bounded linearly in the discretisation step.

2.1 The Super-Optimal Wind Potential Function

For theA* algorithm,we seek to find a good and feasible potential function. For hfpp,
we can exploit the fact that in our application, there is a small number of possible
target nodes (corresponding to airports). Since our objective in hfpp is to minimise
travel time, we construct the weighted graph (G, T ), where T : A → [0,∞)maps an
arc a ∈ A to the underestimated travel time T (a) obtained through the Super-Optimal
Wind computation, i.e., T (a) ≤ T (a, τ ) for all τ ∈ [t0, tr ] and all arcs a ∈ A. Note
that (G, T ) is a weighted graph with static arc weights, and we can without effort
compute an all-to-one shortest path tree for each target node t . We then define a
potential function for hfpp as

πt (v) = min
{∑

a∈P T (a) : P is a (v, t) − path
}
.

Note that this is equivalent to running the ALT-Algorithm [4] with the target node as
the only landmark.

Theorem 2 The following two statements hold:

(i) πt (·) is feasible in (G, T ).
(ii) πt (·) is feasible in (G, T ).

For details on the proof, see [8]. In particular, Theorem2yields that running theA*
algorithm on (G, T ) is equivalent to running Dijkstra’s algorithm on the reduced cost
graph (G, T ′) obtained from (3), and A* visits at most as many nodes as Dijkstra’s
algorithm.

2.2 Validation of Super-Optimal Wind

Theorem 1 and Corollary 1 state that the absolute error of the overestimated ground
speed with respect to the optimum ground speed is bounded linearly in the dis-
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Table 1 Errors and runtimes of Super-Optimal Wind computation

Altitude
(ft)

Segments
(#)

Av. error
(%)

Max. error
(%)

Computation time
(s)

37000 344936 0.041 5.263 2.50

34000 344920 0.045 5.882 1.59

31000 338567 0.045 8.333 2.52

cretisation step. To assess the quality of the travel time underestimation with Super-
Optimal Wind computationally, we ran it on several real-world instances (cf. [3]),
each instance using 28 threads.

Asourweather prognoses are given at times ti all spaced three hours apart, a natural
choice for the discretisation step is ti+1 − ti = τi+1 − τi = � = 3h. We found this
choice to already yield excellent results, as shown in Table1, which contains the
average andmaximumvalues of the relative error ρ(a) = T (a)−T ∗

a
T ∗
a

∀a ∈ A. The results
show that the Super-Optimal Wind is an excellent underestimator in practice, and
can be computed fast.

3 A Case Study

In the following,we investigate the effect ofwindon a route. In particular,we consider
a flight between Taipei-Taoyuan (tpe) and New York-John F. Kennedy (jfk). We use
weather data from the 25th April 2017, starting the route on the same day at 0300
UTC. We assume an aircraft flying at 37 000ft (≈11 277m).

Often, routes lie close to the geodesic, but if aircraft can take advantage of strong
tailwinds, they commonly divert to areas with more favourable winds. In Fig. 1, we
observe that the search space for A* is doughnut-shaped, which is due to the fact
that on that day, there was an unusually strong jetstream on the Northern Pacific,
rendering the Pacific route shown in green more efficient than the polar route (red),
which would seem a more natural choice. When one compares the ground distances
of the northerly route to the Pacific route, one finds the red route to be almost 1880km
shorter than the green route – but considering wind, the green route is 131s faster
than the red route, or roughly 0.26% of the total travel time. As this translates directly
to fuel burn, it makes sense to favour the seemingly longer Pacific route over the polar
route.

In Fig. 1, we also observe that A* visits significantly fewer arcs than Dijkstra’s
algorithm. This also impacts the runtime: between tpe and jfk, A* yields a speedup
factor of 11 over Dijkstra’s algorithm. For a more detailed discussion on the speedup
of A* over many instances, we refer the reader to [8].
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Fig. 1 Search spaces for Dijkstra’s algorithm (white) and A* (yellow) between tpe and jfk. The
route closest to the geodesic is marked red, the shortest route shown in green (Map data: Google,
Landsat/Copernicus/IBCAO)
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Anticipation in Dynamic Vehicle Routing

Marlin W. Ulmer

1 Motivation

Decision making in real-world routing applications is often conducted under incom-
plete information. Vehicle dispatchers deal with uncertainty in travel times, service
times, customer demands, and customer requests. This information is only revealed
successively during the execution of the route. Technological advances allow dis-
patchers to adapt their decisions to new information [13]. These developments pave
“the way for models of a dynamic nature” [1]. Nevertheless, current decisions influ-
ence later outcomes. Anticipation, that is, “incorporating information about the
uncertainty of future events” [8] is necessary to avoid myopic decision making.
These advances and challenges lead to the field of stochastic and dynamic vehicle
routing problems (SDVRPs), a field gaining growing attention in the research com-
munity. This attention is reflected in the increasing amount of research on SDVRPs
[5]. As [7] state, addressing these new developments and therefore SDVRPs “may
necessitate new views, paradigms, and models for decision support.” In essence, the
field of SDVRPs poses many challenges for the research community in both models
and algorithms and has not been studied comprehensively yet.

The canonicalmodel for SDVRPs is aMarkov decision process (MDP, [6]).MDPs
model subsequent decision states connected by decisions and stochastic realizations
of information. Solving the MDP for SDVRPs is challenging due to the “Curses
of Dimensionality” [4]. Generally, state space, decision space, and transition space
are vast. Methods of approximate dynamic programming (ADP) address these chal-
lenges. Still, these methods are not yet established in the field of SDVRP due to the
high complexity of the routing problems [10]. In the following, we recall the func-

M. W. Ulmer (B)
Technische Universität Braunschweig, Braunschweig, Germany
e-mail: m.ulmer@tu-braunschweig.de

© Springer International Publishing AG, part of Springer Nature 2018
N. Kliewer et al. (eds.), Operations Research Proceedings 2017, Operations
Research Proceedings, https://doi.org/10.1007/978-3-319-89920-6_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89920-6_2&domain=pdf


12 M. W. Ulmer

tionality and notation of the MDP. We then define and tailor methods of ADP to the
specific needs of SDVRPs. We show how ADP enables substantial improvements
compared to state-of-the-art benchmark policies.

2 Markov Decision Process

Within the (finite) MDP, a number of decision points K = {0, . . . , K − 1} occurs
subsequently. Here, K can be a random variable. For each decision point k ∈ K, a
set of statesSk is given, combined in the finite set of statesS. State S0 ∈ S denotes the
initial state and state SK ∈ S denotes the termination state. For each decision point
k ∈ K and for each state Sk ∈ S, a subset of decisions X (Sk) ⊆ X of the overall
decision space X is given. The combination of a state Sk and a decision x ∈ X (Sk)
leads to a (deterministic) post-decision state (PDS) Sx

k ∈ P with P the overall set of
post-decision states. It further leads to an immediate reward (or costs) R(Sk, x) with
R : S × X → R. Given PDS Sx

k , a stochastic transition ωk ∈ Ω leads to the next
state (Sx

k ,ωk) = Sk+1 ∈ S.
A solution for theMDP is adecision policyπ ∈ �. Decision policies determine the

decision to be selected given a specific state. A decision policy π ∈ � is a sequence
of decision rules (Xπ

0 , Xπ
1 , . . . , Xπ

K−1) for every decision point k ∈ K. Each decision
rule Xπ

k (Sk) specifies the decision to be selected in state Sk . Optimal decision poli-
cies π∗ ∈ � select decisions leading to the highest expected rewards and therefore
maximize the sum of expected rewards. In a specific state Sk , the optimal decision
Xπ∗
k (Sk) can be derived by maximizing the sum of immediate and expected future

rewards as shown in the Bellman Equation (1):

Xπ∗
k (Sk) = argmax

x∈X (Sk )

⎧
⎨

⎩
R(Sk, x) + E

⎡

⎣
K∑

j=k+1

R(Xπ∗
j (Sj ))|Sk

⎤

⎦

⎫
⎬

⎭
. (1)

The expected future rewards are also known as the value V (Sx
k ) of PDS Sx

k .

3 Approximate Dynamic Programming

For small MDPs, the values can be calculated recursively to eventually obtain an
optimal policy. Still, for SDVRPs, this is usually hardly possible due to the “Curses
of Dimensionality” [4]. The state, decision, and transition spaces are generally vast.
Thus, solutionmethods aimon approximating the values bymeans of simulations and
approximate dynamic programming (ADP). In the following, we present two ADP-
methods, the dynamic lookup table (DLT) and the offline–online rollout algorithm,
capturing the complexity of SDVRPs.



Anticipation in Dynamic Vehicle Routing 13

3.1 The Dynamic Lookup Table

One way of approximating the values is value function approximation (VFA).1 The
VFA procedure starts with initial values V̂ 0. These values define an initial policy
π0 with respect to the Bellman Equation (1). The VFA then frequently simulates
MDP-realizations. In every simulation run i , the VFA uses the current policy πi−1

for decision making within the simulation. After the simulation run, the values V̂ i−1

are updated with respect to the observed values. The new values V̂ i then define a
new policy πi . This procedure is continued until a stopping criterion is reached.
Subsequently, the VFA approximates the real values and the optimal policy.

The advantage of VFAs is that the simulations are conducted only once offline
before the actual implementation of the policy. Thus, these methods allow immediate
responses to new information, for example, customer requests. Still, to apply VFA,
the value for every PDS needs to be stored. For SDVRPs, the number of PDSs is vast
and an aggregation is necessary. Thus, PDSs are reduced to a vector of state features
(like point of time). This vector space is then partitioned to a lookup table (LT).
Conventional LT-partitionings are static. The partitioning is defined a-priori. This
leads to disadvantages in the approximation process because “important” LT-areas
are represented in insufficient detail while other areas are not sufficiently observed.
To alleviate these shortcomings, we propose a dynamic lookup table. This table starts
with an initial partitioning and subsequently refines the partitioning in “important”
areas. Areas are important if a sufficient number of observations allows and a high
variance in the observed values demands a refinement. Thus, the DLT is able to adapt
to the approximation process. For a detailed definition and algorithmic procedure of
the DLT, we refer to [14].

3.2 Offline–Online Rollout Algorithm

One shortcoming of VFA in general is that not all but only a few state features can
be considered in the evaluation. For SDVRPs, VFAs are usually not able to capture
spatial information such as customer and vehicle locations [14]. To integrate these
details in the evaluation of a PDS, the simulation needs to be conducted online in the
actual decision state. One prominent online simulation method is the post-decision
rollout algorithm (RA).Originating from a particular PDS, anRA simulates a number
of trajectories into the future. To determine decisions within the simulations, a base
policy is used. The PDS is evaluated with respect to the observed rewards in the
simulation. This evaluation is then used in the Bellman Equation to determine the
actual decision.

Because the simulations are conducted online, RAs have the disadvantage that
the time for simulations is highly limited. Usually, the base policy is a runtime-

1Notably, in the following, we present non-parametricVFA because parametric VFAs are often not
able to capture the complex value function structure of SDVRPs [11].
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efficient rule of thumb. This inferior decision making within the simulations leads to
a discrepancy between simulated and realized outcome. Thus, the evaluation of the
PDS may be distorted. To alleviate this disadvantage, we integrate the DLT-policy
as base policy in the RA. This leads to an offline–online RA. Within the simulation,
decision making is conducted by the offline DLT. The simulation’s outcome is then
used to determine the actual decision. Thus, the simulation is reinforced and provides
better approximation and/or less simulation runs. We further improve the RA’s per-
formance by integrating the well-known Fully Sequential Procedure for Indifference
Zone Selection (IZS) by [3]. For a detailed definition of IZS and the offline–online
RA, we refer to [15].

4 Case Study

In the following, we applyDLT and offline–online RA to the dynamic vehicle routing
problem with stochastic requests (VRPSR) by [9].

4.1 Problem Definition and Markov Decision Process

In the VRPSR, a vehicle serves customers in a service area within a shift. The vehicle
starts and ends its tour at a depot. The customers request service during the shift and
are unknown beforehand. Decisions are made about the acceptance or rejection of
the new requests and the according routing update. The objective is to maximize the
expected number of accepted requests. In the according MDP, a state occurs when
the vehicle served a customer. A state Sk consists of the point of time tk , the currently
planned tour θk , and the set of new requests Cr

k . Tour θk starts at the vehicle’s current
location, traverses the customers still to serve, and ends at the depot. A decision x
determines the subset of requests to accept Ca

k and the according routing update θxk .
The reward is the number of accepted requests: R(Sk, x) = |Ca

k |. The PDS contains
the point of time tk , and the new routing θxk . The stochastic transition ωk updates the
origin of θxk and provides a set of new requests.

4.2 Computational Experiments

In the following, we describe how we tune DLT and offline–online RA to the needs
of the VRPSR. We present the benchmark policies and the results. For the DLT, we
select the features point of time tk and free time budget bxk . The free time budget
reflects the amount of time available to serve additional requests. It is defined as the
difference between remaining time in the shift and the tour duration of θxk . The DLT
is therefore two-dimensional. We run 1 million approximation runs and update the
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Fig. 1 Average improvement of the policies compared to AI

values with a running average. The partitioning starts with equidistant intervals of
16min and refines entries of theDLT by splitting them equally into 2 × 2 new entries.
The smallest entry-size is 1min. For the offline–online RA, we run 16 simulations
runs in every state. As benchmark policies, we draw on the current state-of-the-
art policy, anticipatory insertion (AI) by [2]. We also compare our methods with
the online RA by [12]. The online RA draws on a myopic base policy within the
simulations.We compare ourmethods for a variety of instance settings differing in the
number of dynamic requests and the spatial distribution of the requests. The average
improvement of the three policies DLT, offline–online RA, and online RA compared
to AI are depicted in Fig. 1. We observe that all three ADP-methods outperform the
benchmark policy by more than 5%. Notably, the offline DLT is able to achieve
similar results as the online RA while not requiring any online runtime. The offline–
online RA combines the advantages of the DLT’s extensive offline simulations with
the online RA’s detailed state consideration and achieves improvements of about 9%.

5 Conclusion

Stochastic dynamic vehicle routing problems gain significant interest in the research
community. To solve the according MDPs, we have proposed two novel methods
of ADP. For the dynamic vehicle routing problem with stochastic requests, we have
shown how these methods significantly outperform conventional policies. Future
research in stochastic dynamic vehicle routing should focus on applications and
methodology. Promising research areas with high dynamism are the growing fields
of same-day delivery and shared mobility. The proposed ADP-methodology can be
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generalized. Instead of a LT-structure, the state spacemay be dynamically partitioned
bymeansof clustering algorithms. Further, the combinationof online andofflineADP
may be determined based on a state’s value variance and number of observations.
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