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Preface

This is a book about a beautiful subject that begins with the topic of Möbius
transformations. Indeed, Möbius transformations

z �→ az+ b

cz+ d

are studied in complex analysis since their mapping properties demonstrate won-
derful connections with geometry. These transformations map extended circles to
extended circles, enjoy the symmetry principle, come in several types yielding
different behavior depending on their fixed point(s), and, through an identification
with 2 × 2 matrices, make connections to group theory and projective geometry.
Finite Blaschke products, the focus of this book, are products of certain types of
Möbius transformations, the automorphisms of the open unit disk D, namely

z �→ ξ
w − z

1 − wz
,

where |w| < 1 and |ξ | = 1 are fixed. These products have an uncanny way of
appearing in many areas of mathematics such as complex analysis, linear algebra,
group theory, operator theory, and systems theory. This book covers finite Blaschke
products and is designed for advanced undergraduate students, graduate students,
and researchers who are familiar with complex analysis but who want to see more
of its connections to other fields of mathematics. Much of the material in this book
is scattered throughout mathematical history, often only appearing in its original
language, and some of it has never seen a modern exposition. We gather up these
gems and put them together as a cohesive whole, taking a leisurely pace through the
subject and leaving plenty of time for exposition and examples. There are plenty of
exercises for the reader who not only wants to appreciate the beauty of the subject
but to gain a working knowledge of it as well.
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In the early twentieth century, the study of infinite products of the form

B(z) =
∏

k�1

|zk|
zk

zk − z

1 − zkz
,

in which z1, z2, . . . is a sequence in D, was initiated in 1915 by Wilhelm Blaschke
(1885–1962). This product converges uniformly on compact subsets of D if and only
if the zero sequence zk satisfies

∑
k�1(1− |zk|) < ∞. These Blaschke products are

analytic on D and have the additional property that the radial limit limr→1− B(reiθ )

exists and is of unit modulus for almost every θ ∈ [0, 2π). In other words, B is
an inner function. Blaschke products have been studied intensely since they were
first introduced and they appear in many contexts throughout complex analysis and
operator theory.

This book is concerned with finite Blaschke products, in which the zero sequence
z1, z2, . . . , zn is finite and the product terminates. Although the skeptical reader
might think this focus is too narrow, there are many fascinating connections with
geometry, complex analysis, and operator theory that demand attention.

There are already some excellent texts that cover infinite Blaschke products and,
more generally, inner functions [38, 61]. However, as the reader will see, there
are many beautiful theorems involving finite Blaschke products that have no clear
analogues in the infinite case. Finite Blaschke products are not often discussed in
the standard texts on function spaces or complex variables since the focus there is
often on inner functions as part of the broader theory of Hardy spaces. This book
focuses on finite Blaschke products and the many results that pertain only to the
finite case.

The book begins with an exposition of the Schur class S , the set of analytic
functions from D to D

−, the closure of D, and an introduction to hyperbolic
geometry. We develop this material from scratch, assuming only that the reader
has had a basic course in complex variables. We characterize the finite Blaschke
products in several different ways. First, a rational function is a finite Blaschke
product if and only if it is of the form

α0 + α1z+ · · · + αnz
n

αn + αn−1zn−1 + · · · + α0zn
,

in which the numerator is a polynomial whose n roots lie in D. Second, a finite
Blaschke product maps D onto D (and the unit circle T onto itself) precisely n times
and a theorem of Fatou confirms that these are the only functions that are continuous
on D

− and analytic on D with this property. Third, each finite Blaschke product B
satisfies

lim
|z|→1−

|B(z)| = 1
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and another result of Fatou shows that the finite Blaschke products are the only
analytic functions on D that do this. Whether as rational functions whose defining
polynomials enjoy certain symmetries, as n-to-1 analytic functions on D, or as
analytic functions with unimodular boundary values, the finite Blaschke products
distinguish themselves as special elements of the Schur class.

The approximation of a given analytic function by well-understood functions
from a fixed class is a standard technique in complex analysis. For example, there
are the well-known approximation theorems of Runge, Mergelyan, and Weierstrass.
We examine a few results of this type that involve finite Blaschke products. More
specifically, a celebrated theorem of Carathéodory ensures that any function in the
Schur class S can be approximated, uniformly on compact subsets of D, by a
sequence of finite Blaschke products. In fact, one can even take the approximating
Blaschke products to have simple zeros. After Carathéodory’s theorem, we discuss
Fisher’s theorem, which says that any function in S that extends continuously to D

−
can be approximated uniformly on D

− by convex combinations of finite Blaschke
products. As another example, a theorem of Helson and Sarason states that any
continuous function from T to T can be uniformly approximated by a sequence of
quotients of finite Blaschke products.

One might think there is not much to say about the zeros of a finite Blaschke
product. After all, the location of the zeros is part of the definition! However, there
are some beautiful gems here. The famed Gauss–Lucas theorem asserts that if P

is a polynomial, then the zeros of P ′, the derivative of P , are contained in the
convex hull of the zeros of P . There are theorems that say that the zeros of a finite
Blaschke product B are contained in the convex hull of the solutions to the equation
B(z) = 1 (or indeed the solutions to B(z) = eiθ for any θ ∈ [0, 2π)). Moreover,
the hyperbolic analogue of the Gauss–Lucas theorem says that the zeros of B ′ (the
critical points of B) are contained in the hyperbolic convex hull of the zeros of B.
For Blaschke products of low degree, these results are even more explicit and can
be stated in terms of classical geometry involving ellipses. There is also a result of
Heins which says that one can create a finite Blaschke product with any desired set
of critical points in D. Finally, for analytic functions on D

−, one can state, in terms
of finite Blaschke products, a curious converse (the Challener–Rubel theorem) to
Rouché’s theorem.

Interpolation is another important topic in complex analysis. The most basic
result in this direction is the Lagrange interpolation theorem, which guarantees
that for distinct z1, z2, . . . , zn and any w1, w2, . . . , wn there is a polynomial P for
which P(zj ) = wj for all j . The connection finite Blaschke products make with
interpolation comes from Pick’s theorem: given distinct z1, z2, . . . , zn ∈ D and any
w1, w2, . . . , wn ∈ D, then there is an f ∈ S for which f (zj ) = wj for all j if and
only if the Pick matrix

[
1 − wjwi

1 − zj zi

]

1�i,j�n
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is positive semidefinite. Furthermore, when the interpolation is possible, it can be
done with a finite Blaschke product. A more involved boundary interpolation result
is the Cantor–Phelps theorem (for which we provide two distinct proofs, one abstract
and another constructive), which says that given distinct ζ1, ζ2, . . . , ζn ∈ T and any
ξ1, ξ2, . . . , ξn ∈ T there is a finite Blaschke product B with B(ζj ) = ξj for all j .

So far we have discussed finite Blaschke product themselves and their connec-
tions to well-studied topics in complex analysis (zeros, critical points, residues,
valence, approximation, and interpolation). However, as mentioned earlier, finite
Blaschke products appear in many other places.

For example, Bohr’s inequality asserts that if f =∑n�0 anz
n ∈ S , then

∑

n�0

|an|rn � 1, r ∈ [0, 1
3 ].

The number 1
3 is optimal and is called the Bohr radius for the Schur class. Using

finite Blaschke products, we explore a Bohr-type inequality for subclasses of Schur
functions that vanish at certain points of D and for the Schur class functions whose
first several derivatives vanish at zero. It turns out that the extremal functions for
these extended Bohr problems are finite Blaschke products.

Next we cover two connections finite Blaschke products make with group theory.
For a fixed finite Blaschke product B, consider the set GB of continuous functions
u : T → T for which B ◦u = B. One can see that GB is a semigroup under function
composition. A theorem of Chalendar and Cassier reveals that GB is a cyclic group
and that one can identify a generator by considering the previously mentioned n-to-1
mapping properties of B on T. We also cover, via Cowen’s unpublished exposition,
an old theorem of Ritt that examines when we can write B as a composition B =
C ◦D, in which C and D are finite Blaschke products. The answer is in terms of the
monodromy group of B−1. We also give an equivalent formulation of Ritt’s theorem
in terms of certain subgroups of GB .

Finite Blaschke products also make connections to operator theory. For example,
if T is a contraction on a Hilbert space and B is a finite Blaschke product with n

zeros, then B(T ) is also a contraction. Moreover, a theorem of Gau and Wu says
that ‖B(T )‖ = 1 if and only if ‖T n‖ = 1. Another connection is with the numerical
range of an operator. The spectral mapping theorem says that σ(p(T )) = p(σ(T )),
in which σ(T ) is the spectrum of a bounded Hilbert space operator T and p is
a polynomial. One may wonder whether or not a similar identity W(p(T )) =
p(W(T )) holds for the numerical range

W(T ) = {〈T x, x〉 : ‖x‖ = 1}.

Although the desired identity is not true in general, there are some suitable substi-
tutes. In fact, Halmos asked whether or not W(T ) ⊆ D

− implies that W(T n) ⊆ D
−

for every n � 1. Progress was made when it was shown that if W(T ) ⊆ D
− and

B is a finite Blaschke product with B(0) = 0, then W(B(T )) ⊆ D
−. A theorem
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of Berger and Stampfli extends this result from finite Blaschke products that vanish
at the origin to the Schur functions that are continuous on D

− and vanish at the
origin. However, without the condition f (0) = 0, there are contractions T with
W(T ) ⊆ D

− for which W(f (T )) intersects the complement of D
−. A suitable

replacement here is a theorem of Drury which says that though W(f (T )) may
intersect the complement of D

−, it is contained in a certain “teardrop” region, a
slight “bulge” of D. Moreover, the use of finite Blaschke products indicates the
sharpness of Drury’s theorem.

Still another connection to finite Blaschke products comes with models of linear
transformations. In linear algebra, or more broadly in operator theory, one often
wants to create a model for certain types of linear transformations. For example,
there is the classical spectral theorem from linear algebra which says that any
normal matrix is unitarily equivalent to a diagonal matrix. One can show that any
contractive matrix T with rank(I−T ∗T ) = 1 and whose eigenvalues λ1, λ2, . . . , λn
are contained in D is unitarily equivalent to the compression of the shift operator
f �→ zf on the Hardy space H 2 to the model space

span
{ 1

1 − λj z
: 1 � j � n

}
.

Along with this result, one obtains a function-theoretic characterization of the
invariant subspaces of these operators as well. In fact, this model space is the vector
space of rational functions f with no poles in D

− for which

∫ 2π

0
f (eiθ )B(eiθ )e−inθ dθ

2π
= 0, n � 0,

in which B is the finite Blaschke product whose zeros are the eigenvalues λj .
The finite-dimensional approach undertaken in this book is intuitive and prepares
interested readers for the more advanced text [59].

Finite Blaschke products can also be used to explore rational functions f that are
analytic on D and for which f (eiθ ) is an extended real number for all θ ∈ [0, 2π ].
These functions are sometimes called the real rational functions. Examples include

f (z) = i
1 + z

1 − z
,

and, more generally,

f = i
B1 + B2

B1 − B2
,

in which B1 and B2 are finite Blaschke products such that B1 − B2 has no zeros on
D. In fact, a theorem of Helson says these are all of the real rational functions. We
will discuss various properties of real rational functions such as a characterization of
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those that are zero free on D, the valence of these functions, as well as a factorization
of a real rational function f as f = FG, where F and G are real rational functions,
F has the same zeros of f , and G is zero free.

Finally, there is the connection Blaschke products make with the Darlington
synthesis problem from electrical engineering. Here, in its simplest realization, one
is given a rational function a with no poles in D

− and one needs to find rational
functions b, c, d on D with no poles in D

− so that the matrix-valued analytic
function

M(z) =
[
a(z) b(z)

c(z) d(z)

]

is such that M(eiθ ) is a unitary matrix for every θ ∈ [0, 2π). The determinant of
such a matrix M is a finite Blaschke product B and the model space associated
with B determines the structure of and relations between the unknown functions
b, c, d. Most curiously, we see that every rational matrix inner function M(z) enjoys
a peculiar quaternionic structure.

This book is mostly self-contained and should be accessible to a student with a
background in basic real and complex analysis along with linear algebra. The proofs
are detailed and dozens of illustrations are provided. We thank Zach Glassman for
his assistance with Tikz and for producing many of our illustrations. At the end
of each chapter, we include exercises so that the reader can gain greater technical
fluency with the material. An appendix contains some background information
about operator theory and function spaces that is relevant for a few results in the
later chapters.

Claremont, CA, USA Stephan Ramon Garcia
Laval, QC, Canada Javad Mashreghi
Richmond, VA, USA William T. Ross
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Chapter 1
Geometry of the Schur Class

This chapter will cover some basic facts about the Schur class. In what follows,

D := {z ∈ C : |z| < 1}, D
− = {z ∈ C : |z| � 1}, T := {z ∈ C : |z| = 1}.

Definition 1.0.1 The Schur class S is

S := {f : D → D
− : f is analytic}. (1.0.2)

The Maximum Modulus Principle ensures that f (z) ∈ T for some z ∈ D if and only
if f is a constant function of unit modulus. Thus, S consists of the nonconstant
analytic functions f : D → D along with the constant functions with values in D

−.

1.1 The Schwarz Lemma

The Schwarz Lemma is one of the cornerstones of complex analysis. Despite its
deceptive simplicity, it has many profound consequences [31]. Schwarz proved this
lemma for injective functions. Carathéodory proved the general version.

Lemma 1.1.1 (Schwarz [125]) If f ∈ S and f (0) = 0, then

(a) |f (z)| � |z| for all z ∈ D, and
(b) |f ′(0)| � 1.

Moreover, if |f (w)| = |w| for some w ∈ D\{0} or if |f ′(0)| = 1, then there is a
ζ ∈ T so that f (z) = ζz for all z ∈ D.
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Proof (Carathéodory [15]) Define g : D → C by

g(z) =
⎧
⎨

⎩

f (z)

z
if z �= 0,

f ′(0) if z = 0,

and observe that g is analytic on D\{0}. The singularity at 0 is removable since

lim
z→0

g(z) = f ′(0)

and hence g is analytic on all of D. For r ∈ [0, 1), an application of the Maximum
Modulus Principle to the disk |z| � r yields a ζ ∈ T so that

|g(rz)| � |g(rζ )| = |f (rζ )|
|rζ | � 1

r
, z ∈ D.

Now let r → 1− to obtain statements (a) and (b).
Suppose that |f (w)| = |w| for some w ∈ D\{0} or that |f ′(0)| = 1. Then

|g(w)| = 1 for some w ∈ D. Since |g| � 1 on D, the Maximum Modulus Principle
provides a ζ ∈ T such that g(z) = ζ for all z ∈ D. Thus, f (z) = ζz for all
z ∈ D. ��

1.2 Automorphisms of the Disk

Definition 1.2.1 A bijective analytic function f : D → D is an automorphism
of D.

Since most of our work concerns the unit disk D, we often say “f is an automor-
phism” without explicit reference to D. The set of all automorphisms of D, denoted
by Aut(D), is a subset of the Schur class S .

If f is an automorphism, then the inverse bijection f−1 : D → D is analytic and
hence f−1 is also an automorphism. The identity function id : D → D defined by

id(z) = z

is an automorphism satisfying f ◦ f−1 = f−1 ◦ f = id for every f ∈ Aut(D).
Since the composition of two automorphisms is also an automorphism, and since
function composition is an associative operation, Aut(D) is a group under function
composition.

We now focus on two special automorphisms. For w ∈ D and γ ∈ T, define
ργ : D → C and τw : D → C by

ργ (z) = γ z and τw(z) = w − z

1 − wz
. (1.2.2)
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Since |γ | = 1, we see that ργ induces a rotation of D about the origin through an
angle of arg γ . Consequently, ργ ∈ Aut(D). Moreover,

ργ1 ◦ ργ2 = ργ1γ2 and ργ ◦ ργ = id. (1.2.3)

The function τw is also an automorphism of D, although to establish this requires a
little more work. First, a computation confirms that

τw ◦ τw = id, (1.2.4)

so τw is injective on D and the range of τw contains D. To show that the range of τw
is precisely D, observe that for each ζ ∈ T and w ∈ D,

|τw(ζ )| =
∣∣∣∣
w − ζ

1 − wζ

∣∣∣∣ =
|w − ζ |
|w − ζ | = 1

since ζ ζ = |ζ |2 = 1. Since the Maximum Modulus Principle implies that

|τw(z)| < 1, z ∈ D,

it follows that τw ∈ Aut(D). Therefore, by the discussion above,

{ργ ◦ τw : γ ∈ T, w ∈ D} ⊆ Aut(D).

The following theorem establishes that the preceding containment is an equality.

Theorem 1.2.5 If f ∈ Aut(D), then there are unique w ∈ D and γ ∈ T such that
f = ργ ◦ τw. In other words,

Aut(D) = {ργ ◦ τw : γ ∈ T, w ∈ D}.

Proof If f ∈ Aut(D), then there is a unique w ∈ D so that f (w) = 0. Then
g = f ◦ τw ∈ Aut(D) and g(0) = 0. Hence the Schwarz Lemma (Lemma 1.1.1)
ensures that

|g(z)| � |z|, z ∈ D.

Since g−1 ∈ Aut(D) and g−1(0) = 0, the same argument yields

|g−1(z)| � |z|, z ∈ D.

Since g(z) ∈ D, we may substitute g(z) in place of z in the previous inequality and
obtain |z| � |g(z)| for all z ∈ D. Consequently,

|g(z)| = |z|, z ∈ D,
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and hence another application of the Schwarz Lemma yields a unique unimodular
constant γ such that g(z) = γ z. Thus, f (τw(z)) = γ z for all z ∈ D. Now substitute
z in place of τw(z) in the preceding identity and use (1.2.4) to obtain f = γ τw =
ργ ◦ τw.

We now verify the uniqueness of the parameters γ and w in the representation
ργ ◦ τw of a typical element of Aut(D). Suppose that

ργ ◦ τw = ργ ′ ◦ τw′

for some γ, γ ′ ∈ T and w,w′ ∈ D. Then (1.2.3) and (1.2.4) yield

ρ
γγ ′ = τw′ ◦ τw.

Evaluate the preceding identity at z = 0 to obtain τw′(w) = 0 and so w = w′.
Hence ρ

γγ ′ = id and thus γ = γ ′. ��
Since τ0 = −id and ρ1 = id, the unique representations of τw and ργ afforded

by Theorem 1.2.5 are

τw = ρ1 ◦ τw
and

ργ = ρ−γ ◦ τ0. (1.2.6)

It is also worth noting that if f ∈ Aut(D) and f (0) = 0, then f = ργ for some
γ ∈ T; that is, the only automorphisms of D that fix the origin are the rotations.

1.3 Algebraic Structure of Aut(D)

If f = ργ1 ◦ τw1 and g = ργ2 ◦ τw2 are automorphisms of D, then Theorem 1.2.5
implies that f ◦ g = ργ ◦ τw for some unique γ ∈ T and w ∈ D. Since we often
require concrete formulas that are applicable to problems in function theory, our
primary goal in this section is to obtain expressions for γ and w in terms of the
parameters γ1, γ2, w1, and w2. At the end of this section, however, we will briefly
describe a more group-theoretic approach to Aut(D).

Lemma 1.3.1 If f = ργ ◦ τw, then w = f−1(0) and

γ =
⎧
⎨

⎩
f (0)/f−1(0) if f (0) �= 0,

−f ′(0) if f (0) = 0.

Proof Since

f (w) = ργ (τw(w)) = ργ (0) = 0
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and f is invertible, we conclude that w = f−1(0). Moreover,

f (0) = ργ (τw(0)) = ργ (w) = γw = γf−1(0),

which yields the desired formula when f (0) �= 0. When f (0) = 0, we get

w = f−1(0) = 0

and hence

f (z) = ργ (τ0(z)) = ργ (−z) = −γ z.

Thus, γ = −f ′(0) as claimed. ��
The discussion below requires the following derivative formula:

τ ′w(z) = − 1 − |w|2
(1 − wz)2 .

Let z = 0 and z = w, respectively, in the preceding and obtain

τ ′w(0) = −(1 − |w|2) (1.3.2)

and

τ ′w(w) = − 1

1 − |w|2 . (1.3.3)

The following theorem provides an explicit realization of the group operation on
Aut(D). It also yields several formulas that are needed later on.

Theorem 1.3.4 If γ1, γ2 ∈ T and w1, w2 ∈ D, then
(
ργ1 ◦ τw1

) ◦ (ργ2 ◦ τw2

) = ργ ◦ τw,
where

w = τw2(γ2w1)

and

γ =
⎧
⎨

⎩
γ1τw1w2(γ2) if w2 �= γ2w1,

−γ1γ2 if w2 = γ2w1.

In particular, if w2 = γ2w1, then
(
ργ1 ◦ τw1

) ◦ (ργ2 ◦ τw2

) = ργ1γ2 .

Proof Let f = (ργ1 ◦ τw1) ◦ (ργ2 ◦ τw2). Lemma 1.3.1 says that w is the unique
solution to the equation

f (w) = [(ργ1 ◦ τw1) ◦ (ργ2 ◦ τw2)
]
(w) = 0.
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Since ργ1(0) = 0, we see that

[
τw1 ◦ (ργ2 ◦ τw2)

]
(w) = 0

and hence
(
ργ2 ◦ τw2

)
(w) = τw1(0) = w1

by (1.2.4). An application of (1.2.3) yields

τw2(w) = ργ2(w1) = γ2w1, (1.3.5)

after which another appeal to (1.2.4) provides the desired formula for w. Now
observe that the preceding formula yields

w = 0 ⇐⇒ w2 = γ2w1.

Since w = f−1(0), the second formula in Lemma 1.3.1 asserts that γ = f (0)/w
when w �= 0. The computation

f (0) = [(ργ1 ◦ τw1

) ◦ (ργ2 ◦ τw2)
]
(0)

= γ1τw1

(
γ2τw2(0)

)

= γ1τw1(γ2w2)

and (1.3.5) reveal that

γ = f (0)

w
= γ1τw1

(
γ2w2
)

τw2(γ2w1)
= γ1τw1w2(γ2).

The final equality in the statement of the theorem is verified by direct computation.
If w = 0, then we need to evaluate f ′(0). By the chain rule and (1.3.2),

f ′(0) = γ1τ
′
w1
[(ργ2 ◦ τw2)(0)] × γ2τ

′
w2

(0)

= −γ1τ
′
w1

(γ2w2)× γ2(1 − |w2|2)
= −γ1γ2. ��

Corollary 1.3.6 If w1, w2 ∈ D and w1 �= w2, then

τw1 ◦ τw2 = ργ ◦ τw,
where

w = τw2(w1) = w2 − w1

1 − w2w1
and γ = τw1w2(1) = −1 − w1w2

1 − w1w2
.
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For the following result, let γ1 = 1 and w2 = 0, then replace γ2 by −γ and w1
by w in Theorem 1.3.4. However, we admit that direct verification might be easier;
see Exercise 1.1.

Corollary 1.3.7 If w ∈ D and γ ∈ T, then

τw ◦ ργ = ργ ◦ τγw.

Although Theorem 1.3.4 provides an explicit description, in terms of the
factorization afforded by Theorem 1.2.5, of the group operation on Aut(D), an
algebraist might find our approach unsatisfactory. Let us briefly discuss a more
abstract approach to Aut(D).

A Möbius transformation (also called a linear fractional transformation) is a
rational function of the form

f (z) = az+ b

cz+ d
, (1.3.8)

in which ad − bc �= 0. Each Möbius transformation is a bijective map from the
extended complex plane Ĉ = C ∪ {∞} (or Riemann sphere) to itself. The set of all
Möbius transformations is a group under composition; the identity is the function
id(z) = z and the inverse of f is

f−1(z) = dz− b

−cz+ a
.

If we multiply the numerator and denominator of (1.3.8) by a suitable constant, we
may assume that ad − bc = 1.

The group of Möbius transformations is isomorphic to PSL2(C), the projective
special linear group of order 2 over C. To be more specific, PSL2(C) is the quotient
of SL2(C), the group of 2×2 complex matrices with determinant 1, by the subgroup
{I,−I }. Here I denotes the 2 × 2 identity matrix. The isomorphism between the
group of Möbius transformations and PSL2(C) is given by sending the function
in (1.3.8), in which ad − bc = 1, to the coset of

[
a b

c d

]

in SL2(C)/{I,−I }.
Theorem 1.2.5 asserts that Aut(D) = {ργ ◦ τw : γ ∈ T, w ∈ D}, in which

ργ (z) = γ z+ 0

0z+ 1
and τw(z) = −1z+ w

−wz+ 1
.

The cosets in SL2(C)/{I,−I } that correspond to ργ and τw are the cosets of

[
eiθ/2 0

0 e−iθ/2

]
and

[
α β

β α

]
,
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where

γ = eiθ , α = i√
1 − |w|2 , and β = −iw√

1 − |w|2 .

Consequently, Aut(D) can be identified with PSU1,1(C), the quotient of

SU1,1(C) =
{[

a b

b a

]
: |a|2 − |b|2 = 1

}

by the subgroup {I,−I }. It is worth remarking that SU1,1(C) is the set of 2 × 2
complex matrices U for which detU = 1 and U∗Γ U = Γ , in which U∗ denotes
the conjugate transpose of U and

Γ =
[

1 0
0 −1

]
.

This suggests a connection between Aut(D) and hyperbolic geometry that will be
explored further in Chap. 2.

From a topological perspective, Aut(D) is homeomorphic to T× D via the map

(γ,w) �→ ργ ◦ τw, γ ∈ T, w ∈ D.

Thus, Aut(D) can be visualized as an open solid torus, endowed with the group
structure described in Theorem 1.3.4.

1.4 The Schwarz–Pick Theorem

The hypothesis of the Schwarz Lemma (Lemma 1.1.1) involves a function that
vanishes at the origin. A generalization can be obtained that removes this hypothesis.
The crucial idea is to employ suitable automorphisms to reduce the general case to
the classical Schwarz Lemma.

Theorem 1.4.1 (Schwarz–Pick) For each f ∈ S ,

∣∣∣∣
f (z)− f (w)

1 − f (w)f (z)

∣∣∣∣ �
∣∣∣∣
z− w

1 − wz

∣∣∣∣ , w, z ∈ D, (1.4.2)

and

|f ′(z)|
1 − |f (z)|2 � 1

1 − |z|2 , z ∈ D. (1.4.3)
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Moreover, the following are equivalent.

(a) Equality holds in (1.4.2) at two distinct z,w ∈ D.
(b) Equality holds in (1.4.2) at all z,w ∈ D with z �= w.
(c) Equality holds in (1.4.3) at some z ∈ D.
(d) Equality holds in (1.4.3) at all z ∈ D.
(e) f ∈ Aut(D).

Proof Fix w ∈ D. If |f (w)| = 1, the Maximum Modulus Principle implies that
f is constant which means that (1.4.2) and (1.4.3) hold automatically. On the other
hand, if f (w) ∈ D, the Maximum Modulus Principle implies that f (D) ⊆ D. Let

g = τf (w) ◦ f ◦ τw (1.4.4)

and observe that g : D → D is analytic and g(0) = 0. Since

g(τw(z)) = f (w)− f (z)

1 − f (w)f (z)
and g′(0) = 1 − |z|2

1 − |f (z)|2 f
′(z),

we see that (1.4.2) is equivalent to

|g(τw(z))| � |τw(z)|, w, z ∈ D (1.4.5)

and (1.4.3) is equivalent to

|g′(0)| � 1. (1.4.6)

However, (1.4.5) and (1.4.6) hold by the Schwarz Lemma.
If any of (a)–(d) hold, then an application of the Schwarz Lemma to g confirms

that g = ργ for some γ ∈ T. Thus, (1.4.4) ensures that f ∈ Aut(D). Conversely, if
f ∈ Aut(D), then (1.4.4) implies that g ∈ Aut(D) with g(0) = 0 and thus g = ργ
for some γ ∈ T. For this automorphism g, equality holds in (1.4.5) and (1.4.6) and
consequently equality holds in (1.4.2) and (1.4.3). In other words, (e) implies any of
(a)–(d). ��

As a special case of Theorem 1.4.1, let f = τz0 to obtain
∣∣∣∣∣
τz0(z)− τz0(w)

1 − τz0(w)τz0(z)

∣∣∣∣∣ =
∣∣∣∣
z− w

1 − wz

∣∣∣∣ , z, w ∈ D, (1.4.7)

and

|τ ′z0
(z)| = 1 − |τz0(z)|2

1 − |z|2 , z ∈ D. (1.4.8)

These two identities will be useful later.
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1.5 An Extremal Problem

Theorem 1.4.1 can be applied to solve certain extremal problems for S . We briefly
discuss one of them. Fix α, β ∈ D and let

Aα,β = {f ∈ S : f (α) = β}.
Observe that f = τβ ◦ τα ∈ Aα,β and hence Aα,β �= ∅. Our goal is to compute

M = sup
f∈Aα,β

|f ′(α)|,

along with the functions f ∈ Aα,β for which the supremum above is attained.
Theorem 1.4.1 implies that

|f ′(α)| � 1 − |f (α)|2
1 − |α|2 = 1 − |β|2

1 − |α|2 , f ∈ Aα,β .

A computation using (1.3.2) and (1.3.3) confirms that equality is attained when
f = τβ ◦ τα . Thus,

M = 1 − |β|2
1 − |α|2 .

Moreover, Theorem 1.4.1 asserts that the f ∈ Aα,β for which

|f ′(α)| = 1 − |β|2
1 − |α|2

are precisely the f ∈ Aut(D) that satisfy f (α) = β. Let f be such an automorphism
and let g = τβ ◦ f ◦ τα; observe that g ∈ Aut(D). Then

g(0) = τβ(f (τα(0))) = τβ(f (α)) = τβ(β) = 0

and hence g(z) = γ z for some γ ∈ T; that is, g = ργ . Hence the solutions to the
extremal problem are given by

f = τβ ◦ ργ ◦ τα,
in which γ ∈ T is a free parameter.

1.6 Julia’s Lemma

The Schwarz–Pick theorem (Theorem 1.4.1) involves two points z,w ∈ D. What
happens if one of the points approaches T? This situation was studied by Julia and it
may be interpreted as a boundary Schwarz–Pick theorem [83, p. 87]. Julia’s lemma
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plays an essential role in studying the behavior of the derivative of infinite Blaschke
products. The proof of Julia’s lemma requires the important identity

1 −
∣∣∣∣
α − β

1 − βα

∣∣∣∣
2

= (1 − |α|2)(1 − |β|2)
|1 − βα|2 , α, β ∈ D, (1.6.1)

which follows from (1.4.8).

Lemma 1.6.2 (Julia [83]) Let f ∈ S . If there is a sequence zn in D such that

lim
n→∞ zn = 1, lim

n→∞ f (zn) = 1,

and

lim
n→∞

1 − |f (zn)|
1 − |zn| = A < ∞, (1.6.3)

then

|1 − f (z)|2
1 − |f (z)|2 � A

|1 − z|2
1 − |z|2 , z ∈ D. (1.6.4)

Proof The Schwarz–Pick theorem (Theorem 1.4.1) implies that

∣∣∣∣
f (z)− f (zn)

1 − f (zn)f (z)

∣∣∣∣ �
∣∣∣∣
z− zn

1 − znz

∣∣∣∣ , z ∈ D,

and hence

1 −
∣∣∣∣
z− zn

1 − znz

∣∣∣∣
2

� 1 −
∣∣∣∣
f (z)− f (zn)

1 − f (zn)f (z)

∣∣∣∣
2

.

The identity (1.6.1), applied to both sides of the above, yields

(1 − |z|2)(1 − |zn|2)
|1 − znz|2 � (1 − |f (z)|2)(1 − |f (zn)|2)

|1 − f (zn)f (z)|2
.

Rewrite the preceding inequality as

|1 − f (zn)f (z)|2
1 − |f (z)|2 � 1 − |f (zn)|2

1 − |zn|2 · |1 − znz|2
1 − |z|2 .

Now let n →∞ and apply (1.6.3) to complete the proof. ��
In the lemma above, we assumed that zn → 1 and f (zn) → 1. However, the

important issue is that the sequences zn and f (zn) converge toward points of the
unit circle T. For the sake of completeness, here is the general version of this result.
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Corollary 1.6.5 Let f ∈ S and α, β ∈ T. If there is a sequence zn in D such that

lim
n→∞ zn = α, lim

n→∞ f (zn) = β,

and

lim
n→∞

1 − |f (zn)|
1 − |zn| = A < ∞,

then

|β − f (z)|2
1 − |f (z)|2 � A

|α − z|2
1 − |z|2 , z ∈ D.

Proof Apply Lemma 1.6.2 to the function g(z) = βf (αz). ��
We can also discuss the boundary limits of functions in S that satisfy the

hypotheses of Julia’s Lemma. Let ζ ∈ T and C > 1. The region

SC(ζ ) = {z ∈ D : |z− ζ | � C(1 − |z|)}

is the Stolz domain anchored at α with constant C; see Fig. 1.1.
We say that f ∈ S has the nontangential limit L at ζ ∈ T if, for each fixed

C > 1,

lim
z→ζ

z∈SC(ζ )
f (z) = L. (1.6.6)

If so, we define f (ζ ) = L and write

� lim
z→ζ

f (z) = f (ζ ).

The quantity f (ζ ) is referred to as the boundary value of f at ζ . The restriction
that z belongs to a Stolz domain SC(ζ ) in (1.6.6) ensures that z does not approach
ζ along a path that is tangent to T at ζ . Each Schur function has non-tangential
boundary values almost everywhere with respect to Lebesgue measure on T; see
Theorem A.3.1.

Corollary 1.6.7 Let f ∈ S and let α, β ∈ T. If there is a sequence zn in D such
that zn → α, f (zn) → β, and

lim
n→∞

1 − |f (zn)|
1 − |zn| < ∞,

then

� lim
z→α

f (z) = β.


