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Preface

At the CISM course “Vehicle Dynamics of Modern Passenger Cars”, a team of six
international distinguished scientists presented advances regarding theoretical
investigations of the passenger car dynamics and their consequences with respect to
applications.

Today, the development of a new car and essential components and improve-
ments are based strongly on the possibility to apply simulation programmes for the
evaluation of the dynamics of the vehicle. This accelerates and shortens the
development process. Therefore, it is necessary not only to develop mechanical
models of the car and its components, but also to validate mathematical–mechanical
descriptions of many special and challenging components such as e.g. the tire. To
improve handling behaviour and driving safety, control schemes are integrated,
leading to such properties as avoiding wheel locking or torque vectoring and more.
Future developments of control systems are directed towards automatic driving to
relieve and ultimately replace most of the mundane driving activities.

As a consequence, this book and its six sections—based on the lectures of the
mentioned CISM course—aim to provide the essential features necessary to
understand and apply the mathematic–mechanical descriptions and tools for the
simulation of vehicle dynamics and its control. An introduction to passenger car
modelling of different complexities provides basics for the dynamical behaviour
and presents the vehicle models later used for the application of control strategies.
The presented modelling of the tire behaviour, also for transient changes of the
contact patch properties, provides the needed mathematical description. The
introduction to different control strategies for cars and their extensions to complex
applications using, e.g., state and parameter observers is a main part of the course.
Finally, the formulation of proper multibody code for the simulation leads to the
integration of individual parts. Examples of simulations and corresponding vali-
dations will show the benefit of such a theoretical approach for the investigation
of the dynamics of passenger cars.

As a start, the first Chapter “Basics of Vehicle Dynamics, Vehicle Models”
comprises an introduction to vehicle modelling and models of increasing com-
plexity. By using simple linear models, the characteristics of the plane vehicle
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motion (including rear wheel steering), driving and braking and the vertical motion
are introduced. Models that are more complex show the influence of internal vehicle
structures and effects of system nonlinearities and tire–road contact. Near Reality
Vehicle Models, an assembly of detailed submodels, may integrate simple models
for control tasks.

Chapter “Tire Characteristics and Modeling” first presents steady-state tire for-
ces and moments, corresponding input quantities and results obtained from tire
testing and possibilities to formulate tire models. As an example, the basic physical
brush tire model is presented. The empirical tire model known as Magic Formula, a
worldwide used tire model, provides a complex 3D force transfer formulation for
the tire–road contact. In order to account for the tire dynamics, relaxation effects are
discussed and two applications illustrate the necessity to include them.

Chapter “Optimal Vehicle Suspensions: A System-Level Study of Potential
Benefits and Limitations” starts with fundamental ride and handling aspects of
active and semi-active suspensions presented in a systematic way, starting with
simple vehicle models as basic building blocks. Optimal, mostly linear-quadratic
(H2) principles are used to gradually explore key system characteristics, where each
additional model DOF brings new insight into potential benefits and limitations.
This chapter concludes with practical implications and examples including some
that go beyond the traditional ride and handling benefits.

Chapter “Active Control of Vehicle Handling Dynamics” starts with the prin-
ciples of vehicle dynamics control: necessary basics of control, kinematics and
dynamics of road vehicles starting with simple models, straight-line stability. The
effects of body roll and important suspension-related mechanics (including the
Milliken Moment Method) are presented. Control methods describing steering
control (driver models), antilock braking and electronic stability control, all
essential information for an improvement for the vehicle handling, are provided.

In Chapter “Advanced Chassis Control and Automated Driving”, it is stated first
that recently various preventive safety systems have been developed and applied in
modern passenger cars, such as electronic stability system (ESS) or autonomous
emergency braking (AEB). This chapter describes the theoretical design of active
rear steering (ARS), active front steering (AFS) and direct yaw moment control
(DYC) systems for enhancing vehicle handling dynamics and stability. In addition
to recently deployed preventive safety systems, adaptive cruise control (ACC) and
lane-keeping control systems have been investigated and developed among uni-
versities and companies as key technologies for automated driving systems.
Consequently, fundamental theories, principles and applications are presented.

Chapter “Multibody Systems and Simulation Techniques” starts with a general
introduction to multibody systems (MBS). It presents the elements of MBS and
discusses different modelling aspects. Then, several methods to generate the
equations of motion are presented. Solvers for ordinary differential equation
(ODE) as well as differential algebraic equation (DAE) are discussed. Finally,
techniques for “online” and “offline” simulations required for vehicle development
including real-time applications are presented. Selected examples show the con-
nection between simulation and test results.

vi Preface



The application of vehicle and tire modelling, the application of control strate-
gies and the simulation of the complex combined system open the door to inves-
tigate a large variety of configurations and to select the desired one for the next
passenger car generation. Only conclusive vehicle tests are necessary to validate
and verify the simulation quality—an advantage that is utilized for modern car
developments.

To summarize these aspects and methods, this book intends to demonstrate how
to investigate the dynamics of modern passenger cars and the impact and conse-
quences of theory and simulation for the future advances and improvements of
vehicle mobility and comfort. The chapters of this book are generally structured in
such a way that they first present a fundamental introduction for the later investi-
gated complex systems. In this way, this book provides a helpful support for
interested starters as well as scientists in academia and engineers and researchers in
car companies, including both OEM and system/component suppliers.

I would like to thank all my colleagues for their great efforts and dedication to
share their knowledge, and their engagement in the CISM lectures and the con-
tributions to this book.

Vienna, Austria Peter Lugner
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Basics of Vehicle Dynamics, Vehicle
Models

Peter Lugner and Johannes Edelmann

Abstract For the understanding and knowledge of the dynamic behaviour of

passenger cars it is essential to use simple mechanical models as a first step. With

such kind of models overall characteristic properties of the vehicle motion can be

investigated. For cornering, a planar two-wheel model helps to explain understeer–

oversteer, stability and steering response, and influences of an additional rear wheel

steering. Another planar model is introduced for investigating straight ahead accel-

eration and braking. To study ride comfort, a third planar model is introduced. Con-

sequently, in these basic models, lateral, vertical and longitudinal dynamics are sep-

arated. To gain insight into e.g. tyre–road contact or coupled car body heave, pitch

and roll motion, a 3D-model needs to be introduced, taking into account nonlineari-

ties. Especially the nonlinear approximation of the tyre forces allows an evaluation of

the four tyre–road contact conditions separately—shown by a simulation of a brak-

ing during cornering manoeuvre. A near reality vehicle model (NRVM) comprises

a detailed 3D description of the vehicle and its parts, e.g. the tyres and suspensions

for analysing ride properties on an arbitrary road surface. The vehicle model itself is

a composition of its components, described by detailed sub-models. For the simula-

tion of the vehicle motion, a multi-body-system (MBS)-software is necessary. The

shown fundamental structure of the equations of motion allows to connect system

parts by kinematic restrictions as well, using closed loop formulations. A NRVM also

offers the possibility for approving a theoretical layout of control systems, generally

by using one of the simple vehicle models as observer and/or part of the system.

An example demonstrates the possibility of additional steering and/or yaw moment

control by differential braking.

Keywords Vehicle dynamics ⋅ Vehicle handling ⋅ Basic models

Non-linear models

P. Lugner (✉) ⋅ J. Edelmann
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2 P. Lugner and J. Edelmann

1 Introduction

Important features of modern passenger cars with respect to vehicle dynamics are

easy handling for normal driving, appropriate ride comfort, and support of the driver

by control systems e.g. for lane keeping or in critical situations.

In addition to investigate the fundamental dynamic behaviour of the vehicle, the-

oretical methods support the engineer in an early stage of vehicle development in

order to define basic vehicle layout properties, where no experiments are available,

and also for understanding detailed dynamic properties of (sub) systems. Thereby the

use of models of different complexity comprises the understanding of basic proper-

ties as well as the interaction with (human) control systems, by applying simulations

with multi-body-system (MBS) programs, see Lugner (2007), Rill (2012). With the

obtained results, the overall characteristics of the car can be interpreted and recom-

mendations for details of components can be given, as well as the potential for future

developments and improvements demonstrated.

Which kind of mathematical–dynamical vehicle model is needed/will be used

is obviously a matter of the demanded degree of detail with respect to the investi-

gated ride/handling quality. For the understanding and characterization of the basic

behaviour with respect to the longitudinal and lateral dynamics and vertical motion,

different linearized models may be used, see e.g. Mitschke and Wallentowitz (2014),

Plöchl et al. (2015).

More complex models, including proper nonlinear descriptions of the tyre

behaviour, are necessary to describe the spacial carbody motion and tyre–road con-

tact to consider higher accelerations.

For the layout of vehicle components and their kinematic and dynamic interaction,

detailed MBS-models including full nonlinearities are used to establish a near reality

vehicle model (NRVM). Such a model also provides the possibility to investigate the

behaviour of control systems in a theoretical environment—a necessity for the tuning

of structures and parameters for a later realisation.

2 Simple (linear) Vehicle Models

By using basic (planar) linear models with a low number of degrees of freedom

(DoF), the equation of motions may decouple with regard to lateral, longitudinal and

vertical vehicle motion. Thus, cornering, longitudinal dynamics and vertical dynam-

ics can be investigated independently.
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2.1 Cornering, x-y-plane Motion

This well known simplified model of the vehicle is based on merging both wheels

of an axle to a substitutive wheel (axle characteristics) in the centre of this axle, see

Fig. 1. Furthermore, it is assumed that the whole model—called two-wheel model

(or bicycle model)—may move in the x-y-plane only. Since the model is planar, the

CG will also move in this plane only, e.g. Plöchl et al. (2015), Plöchl et al. (2014),

Abe (2009), Popp and Schiehlen (2010). For the nomenclature and explanation of

state variables see also DIN ISO 8855 (2013).

The relevant DoF for this model are the longitudinal and lateral motion and the

rotation about a vertical axis, represented by the velocities vx and vy (or v and side

slip angle of the vehicle 𝛽), and yaw rate �̇� = r, see Fig. 1.

With front and rear steering angles 𝛿F and 𝛿R as inputs to the vehicle, the kinematic

description of the motion of the car provides the side slip angles of front and rear

substitutive wheels with

𝛼F = 𝛿F −
𝜐y + lF�̇�

𝜐x

𝛼R = 𝛿R −
𝜐y − lR�̇�

𝜐x
(1)

Fig. 1 Planar vehicle model
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A linear model as basic description of the lateral tyre/axle forces

Fyi = Ci𝛼i i = R,F (2)

is applied, where the cornering stiffness Ci comprises properties of the tyres and the

suspension stiffnesses.

With the aerodynamic forces WL, WY and the aerodynamic moment MZ the equa-

tions of motion are

x ∶ m(v̇ − aq𝛽) =
(
FxF − FyF𝛿F

)
+
(
FxR − FyR𝛿R

)
− WL (3)

y ∶ m(aq + 𝛽v̇) =
(
FxF𝛿F + FyF

)
+
(
FxR𝛿R + FyR

)
+ WY (4)

z ∶ IZ�̈� =
(
FxF𝛿F + FyF

)
lF −

(
FxR𝛿R + FyR

)
lR + MZ (5)

The lateral acceleration can be expressed by using the radius 𝜌 of the curvature of

the path of the CG

aq = v2
𝜌

(6)

Considering the steering angles 𝛿F, 𝛿R and the longitudinal tyre/axle forces FxF, FxR
(provided by the drive train and brake system) as input quantities, Eqs. (1)–(5), will

describe the motion of the car by v(t), 𝜓(t), 𝜌(t).
With the restriction of the linear description of the lateral tyre forces, neglecting

the influence of the longitudinal force transfer and assuming small accelerations v̇ or

steady state conditions, Eqs. (4) and (5) are sufficient to describe the in-plane-motion

of the vehicle.

For basic investigations of the cornering behaviour a constant longitudinal veloc-

ity is considered, leading to

v ≅ vx = konst ; v = (�̇� + �̇�)𝜌 (7)

aq ≅ ay = v(�̇� + �̇�) (8)

Moreover, for constant velocity v the longitudinal tyre forces will be small. Thus

the expressions Fxi𝛿i in (4) and (5) can be neglected. and the linear matrix equation

of the linear two-wheel model is derived by

ẋ = Fx +G𝛿 (9)

x =
[

vy
�̇�

]
=
[

vy
r

]
, 𝛿 =

[
𝛿F
𝛿R

]
,
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F =
⎡
⎢
⎢
⎣

−CF+CR
mvx

−(lFCF−lRCR)
mvx

− vx

−(lFCF−lRCR)
IZ vx

− l2FCF+l2RCR

IZ vx

⎤
⎥
⎥
⎦
, G =

⎡
⎢
⎢
⎣

CF
m

CR
m

lFCF
IZ

− lRCR
IZ

⎤
⎥
⎥
⎦

Another way to describe the system is to transfer (9) into a second-order-system,

Kortüm and Lugner (1994)

𝛽 + 2K1�̇� + K2𝛽 =
CF

mvx
�̇�F −

CF(lFmv2x − CRlRl)
IZmv2x

𝛿F

+
CR

mvx
�̇�R −

CR(−lRmv2x − CFlFl)
IZmv2x

𝛿R (10a)

r̈ + 2K1ṙ + K2r =
lFCF

IZ
�̇�F +

CFCRl
IZmvx

𝛿F

−
lRCR

IZ
�̇�R −

CFCRl
IZmvx

𝛿R (10b)

with

K1 =
IZ(CR + CF) + m(CFl2F + CRl2R)

2IZmvx
> 0 (11)

K2 =
l2CFCR + (CRlR − CFlF)mv2x

IZmv2x
⋛ 0 (12)

Here it becomes immediately obvious that the expression

(CRlR − CFlF)mv2x (13)

is responsible for the sign of K2 and the possibility for larger velocities vx that K2 < 0.

This is indicating an unstable steady-state motion of the system. To increase the range

of stable behaviour, it will help to put CG closer to the front lF < lR and/or ‘softer’

substitutive tyres at the front CF < CR (e.g. applying a stiffer torsion bar at the front

axle).

2.2 Steady State Cornering Without Rear Wheel Steering
(𝜹R = 𝟎)

In general the common passenger car layout does not have additional rear wheel

steering, but this feature may be used for control purposes in the near future. An

essential information regarding the vehicle behaviour with respect to the influence

of the cornering radius and the velocity is provided by the steady state condition,
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where the cornering radius is equal to the curvature radius 𝜌 = R and

v = const. (14)

�̇� = r = v∕R (15)

ay = v2∕R (16)

The steady state values for the steering angle and the side slip angle of the car

derive directly from (10a) and (10b) with (14) and with 𝛿R = 0:

𝛿F,st = 𝛿Fo +
CRlR − CFlF

CRCFl
may,st (17)

𝛽st = 𝛽o −
lF

CRl
may,st (18)

Using the condition v → 0 the corresponding values of side slip angle and steering

angle (also denoted Ackermann angle 𝛿a) are, see Fig. 2:

𝛽o =
lR
R
, 𝛿a = 𝛿Fo = l

R
= l

𝜐2x
ay,st, 𝛽o =

lR
l
𝛿Fo (19)

To characterize the steering behaviour, an understeer gradient is used:

KUS =
m(CRlR − CFlF)

CRCFl
⋛ 0 (20)

Consequently (17) can be modified, and with the sign of KUS the increase/decrease

of the necessary steering angle with increasing values of velocity or acceleration can

be explained.

𝛿H,st

is
= 𝛿F,st = 𝛿F0 + KUSay,st (21)

As indicated in (21) also the hand wheel steering angle 𝛿H,st together with the steering

system ratio is is introduced. Thus, (21) and KUS may be used to characterise the

steering behaviour of the vehicle:

KUS > understeer behaviour

KUS = neutral steering

KUS < oversteer behaviour

For a graphical presentation of a typical behaviour two kinds of figures are common.

With the data given in Table 1 for an oversteer vehicle A and an understeer vehicle B

the Fig. 3 shows the change of steering angle 𝛿F for constant velocity as function of
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Fig. 2 Driving condition

for v → 0

R

0

lR

CG

F

R

l
0

0β

0β
F0δ

F0δ

Table 1 Vehicle data for the linear 2-wheel models used for the demonstration examples: two

different steering characteristics

Vehicle A B
m 1900 kg

IZ 2900 kgm2

lF 1.44 m

lR 1.36 m

CF 90 000 N rad
−1

60 000 N rad
−1

CR 80 000 N rad
−1

110 000 N rad
−1

KUS −1.95⋅10−3 s2m−1 +6.50⋅10−3 s2m−1

Steering characteristics oversteer understeer

lateral acceleration ay (for variation of R) and constant radius R as function of lateral

acceleration ay (for variation of v), Lugner (2007).

For the oversteer vehicle A with increasing ay the necessary steering angle 𝛿F
decreases. Consequently an increasing sensitivity of the driver is necessary for

proper steering. The understeer vehicle B needs increasing steering angles 𝛿F with

increasing ay, a property that for the driver fits to the expected behaviour. Though

the steering behaviour is quite different for vehicles A and B, the side slip angle 𝛽

characteristics do not show greater differences with increasing ay. For both vehicles

the 𝛽 < 0 indicates an inward turned attitude during cornering.
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0 1 2 3 4 5

0.01

0.02

0.03

δH
is

= δF
[rad]

ay [m/s2]

δa = l
v2
x
ay

B,KUS > 0

A,KUS < 0

K
U
S
=

0

(a)

0 1 2 3 4 5

0.07=δF0

2δF0

δF
[rad]

A,KUS < 0

B,KUS > 0

KUS = 0

ay [m/s2]

(b)

0
1 2 3 4 5

0.034=β0

−β0

β
[rad]

ay [m/s2]

B

A

(c)

Fig. 3 Steady state steering characteristics, data corresponding to Table 1: a for v = constant=
80 km/h; b for R = constant= 40m; c side slip angles to (b)

2.3 Steady State Cornering with Rear Wheel Steering 𝜹R ≠ 𝟎

The effects of additional rear wheel steering, representing an additional system input,

make it possible to change/improve the steering behaviour or the side slip angle of

the car.

For cornering with very low speed (v → 0), Fig. 4 provides

l
R

= 𝛿Fo − 𝛿Ro (22)

𝛽Ro =
lR
l
𝛿Fo +

lF
l
𝛿Ro =

lR
R

+ 𝛿Ro (23)

according to the relation of these two steering inputs. So 𝛿Ro may be chosen in such

a way that 𝛽Ro = 0 for left/right cornering.

For velocities or accelerations larger than zero the equation corresponding to (17)

becomes

𝛿F,st − 𝛿R,st = 𝛿Fo − 𝛿Ro
+

CRlR − CFlF
CFCRl

may,st (24)

It is obvious that for constant 𝛿Fo − 𝛿Ro and no further change of the rear wheel

steering angle (e.g. 𝛿R,st = 0), the characterisation for under-, neutral- and oversteer

behaviour is the same as before. On the other hand, if (𝛿R,st − 𝛿Ro) is used as a variable

input—e.g. by a control system—one may achieve an arbitrary steering behaviour.
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Fig. 4 Additional rear

wheel steering: steady state

cornering with v → 0

Assuming that there is no change of the initial rear wheel steering angle 𝛿R0, and

𝛿R,st = 0, the side slip angle of the vehicle will become

𝛽R,st = 𝛽Ro + (𝛿R,st − 𝛿Ro) −
lF

CRl
may,st (25)

Compared to (19), this relation indicates a shift in 𝛽st only.

In contrast to (10a) it can be shown that, with a proper control, the side slip angle

𝛽 of the car can be hold at 𝛽st = 0—as considered to be desirable in literature.

𝛽st = 0 = 𝛿F

(
lR
l
−

CFlFmv2x
l2CFCR

)
+ 𝛿R

(
lF
l
+

CRlRmv2x
l2CFCR

)
(26)

Especially in tight curves with vx → 0 this control aim may help the driver regarding

the orientation of the vehicle motion and the direction of his/her view. If it is wanted

to have both a given steering (wheel) characteristic for the driver and the side slip

angle 𝛽 = 0, an additional front wheel steering Δ𝛿F or a variable steering ratio is
need to be used.

2.4 Stability

Under certain conditions the motion of the car—represented by the linear dif-

ferential equations (9) or (10)—can become unstable. Even small disturbances at

steady state driving conditions will result in uncontrolled motions, e.g.

Mitschke and Wallentowitz (2014), Rill (2012).
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The eigenvalues of the equations of motion characterize the stability behaviour.

As well known, the eigenvalues 𝜆1,2 can be derived from the homogenous part of the

differential equations (9) or (10) by

det(F − 𝜆E) = 0 (27)

(where E represents the unity matrix) or

𝜆2 + 2K1𝜆 + K2 = 0 (28)

From (28) the eigenvalues follow immediately with

𝜆1,2 = −K1 ±
√

K1
2 − K2 (29)

In general, stability is given as long as the real parts of the eigenvalues are smaller

than zero. The system will show an unstable behaviour if K2 < 0 . To determine the

sign of K2 Eq. (12) leads to

l2CFCR + (CRlR − CFlF)mvx
2 ⋛ 0

l +
(CRlR − CFlF)

lCRCF
mvx

2 ⋛ 0 (30)

So it is immediately obvious that the expression (see (13))

(CRlR − CFlF)mv2x (31)

is responsible for the sign of K2 and the possibility for larger velocities vx that K2 < 0
indicates the instability of the system.

Using (20) Eq. (30) can be expressed by

𝛿F0 + KUSay,st ⋛ 0; (32)

which is identical with the right hand side of (21). So the sign of the understeer

gradient KUS is also informative regarding the stability. An oversteer vehicle can

become unstable for higher velocities/accelerations.

Since only the homogenous equations are employed for the determination of the

stability, the criterion (32) for a car with additional rear wheel steering needs to be

modified due to (24) to

𝛿F0 − 𝛿R0 + KUSay,st ⋛ 0 (33)

Since 𝛿R0 ⋛ 0 the lateral acceleration ay,st for the stability limit can be changed com-

pared to pure front wheel steering.
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Fig. 5 Steering step input

limits defined by ESV
(Experimental Safety

Vehicle): with two examples

of a passenger car (step input

�̇�H ≅ 500◦∕s, final steady

state lateral acceleration

ay,st ≅ 0.4g)

0 1 2 3 s
Time since steering input

r
rst

1.6

1.2

0.8

0.4

Test speed
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2.5 Step Steering Input

In critical situations it may happen that the driver will introduce a step like steering

input. Then the response of the vehicle can be characterized e.g. by the yaw velocity

r which will reach the steady state value rst after the transient phase following the

input. Figure 5 shows accepted limits for r(t).
The corresponding steady state straight ahead driving yaw velocity gain (see

(10b)) is defined by

Gr,st =
r

𝛿H∕is
∕st =

vx

l + KUSvx
2 (34)

where the denominator is already introduced with (30).

For an understeer vehicle KUS > 0 the gain Gr,st will have a maximum at a char-

acteristic speed vch that can be obtained by

𝜕Gr,st

𝜕vx
=

l − KUSv2ch

(l + KUSv2ch)2
= 0

v2ch = l
KUS

, KUS > 0 (35)

In contrast, the oversteer vehicle KUS < 0 will have an unlimited yaw response

for the critical speed vcrit
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A, KUS < 0
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vcrit,A = 136 km/h

vch = 74 km/h

Fig. 6 Behaviour of oversteer, neutral and understeer vehicle with respect to the static yaw velocity

gain; vehicle data for A, B according Table 1

Gr,s ⇒ ∞

v2crit = − l
KUS

, KUS < 0 (36)

Figure 6 shows for the already introduced vehicles A and B (see Table 1) the yaw

velocity gains. The understeer vehicle B shows a nearly equal response for 40 km/h

and more—a driver friendly behaviour. The increasing response of vehicle A will be

a challenge for the driver even for velocities smaller than the critical one.

The corresponding acceleration response is shown in Fig. 7. With the steady state

acceleration

ay,st = r vx

the lateral acceleration response

ay

𝛿H∕is
∕st = Gay,st =

v2x
l + KUSvx

2 (37)

has the same structure as the yaw response. The understeer vehicle B has a limitation

for the ay,st while even a neutral steering vehicle tends to have nonlinear increasing

values of Gay,st.
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Gay,st,B |vx→∞ = 153 m/s2

rad

Fig. 7 Steady state lateral acceleration gain for oversteer KUS < 0, neutral steer KUS = 0 and under-

steer vehicle KUS > 0; vehicle data for A, B according to Table 1

2.6 Frequency Response

To provide an information for an alternating steering the vehicle reaction to harmonic

inputs of different frequencies can be considered. It is assumed that the driver starts

the harmonic input at straight ahead driving; no rear wheel steering is taken into

account.

The yaw velocity frequency response for frequency 𝜈 results again from Eq. (10):

Gr(i𝜈) = ( r
𝛿F

)|i𝜈 = Gr,st
1 + TZ(i𝜈)

1 + 2D
𝜔o
(i𝜈) − 𝜈2

𝜔2
o

(38)

with

TZ =
mvxlF
CRl

𝜔2
o = K2 =

CFCRl2

IZmv2x
(1 +

KUSv2x
l

)

D𝜔o = K1

The response for the lateral acceleration can be calculated using also (10) and

ay = vx(r + �̇�)
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Fig. 8 Normalized acceleration frequency response of the oversteer vehicle A and the understeer

vehicle B (Table 1). No response of vehicle A for v > vcrit = 136 km/h

ay(i𝜈)
𝛿F(i𝜈)

= vx[
r(i𝜈) + i𝜈𝛽(i𝜈)

𝛿F(i𝜈)
]

Gay(i𝜈) = (
ay

𝛿F
) = Gay,st

1 + T1(i𝜈) − T2𝜈
2

1 + 2D
𝜔o
(i𝜈) − 𝜈2

𝜔2
o

(39)

with

T1 =
lR
vx

, T2 =
Iz

CRl

and D, 𝜔0 corresponding to (38).

With Fig. 8 it can be noticed that for the lateral acceleration gain in the region

of normal steering till about 1 Hz the oversteer vehicle shows a strongly frequency

dependent response with large phase angles compared to the driver friendly behaviour

of vehicle B. The low steering response behaviour about 1–2 Hz is a generally

accepted feature.

Examples for measured frequency responses are shown in Fig. 9 for an understeer

vehicle.
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Fig. 9 Measurements of yaw velocity and lateral acceleration responses of an understeer vehicle

(KUS = 0.0062 s
2
m

−1
, vch = 76 km/h) similar to vehicle A for different driving velocities, Lugner

(2007)

2.7 Longitudinal Dynamics, x-z-plane

To investigate the influences of braking or accelerating a plane vehicle model like

Fig. 10 is introduced, Plöchl et al. (2015), Lugner (2007). Thereby no heave and pitch

motions are taken into account.

If the individual rotations of the wheels are included further extensions with

respect to the configuration of the drive train (four-wheel drive, electric hub drive,

Fig. 10 Plane vehicle

model for longitudinal

dynamics; symmetry to

central x-z-plane
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R

R
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R
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Z x
x

R
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a
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MY
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Fig. 11 Model of a wheel
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etc.) and at least the sticking and slipping of a wheel can be considered. Correspond-

ingly Fig. 11 shows the essential features of the wheel motion. It is assumed that in

the wheel hub—also the CG of the wheel—the forces X, Z are transferred to the axle.

The normal force Fz has an offset, the pneumatic trail 𝜉, which represents the rolling

resistance. MD,MB,MF, are driving torque, braking torque and friction moment by

the wheel bearing.

For the kinematics, the simplification that the tyre radius r is equal to the rolling

radius is assumed.

The equations of motion for the vehicle Fig. 10 now can be established:

max = 2FxF + 2FxR − WL − G sin 𝜗 (40)

0 = 2FzF + 2FzR + WZ − G cos 𝜗 (41)

2IF�̇�F + 2IR�̇�R = 2FzR(lR − 𝜉R) − 2FzF(lF + 𝜉F) − 2(FxF + FxR)h + MY (42)

With the aerodynamic components WL,WZ ,MY , the moments of inertia IF, IR of

the wheels with respect to their axes and the whole vehicle mass m. The angular

acceleration of e.g. the rear wheel can be calculated by

IR�̇�R = MDR − MBR − MFR − FzR𝜉R − FxRrR (43)

with the drive torque MDR, the braking moment MBR and possible small friction

effects with MFR ≈ 0.

To determine the effects of the drive train configuration by Eqs. (40)–(43), the

longitudinal acceleration ax initiated by the drive/brake forces has to be considered.

Assuming pure rolling of the wheels and

rR𝜔R = rF𝜔F = r𝜔 = vx

r�̇� = ax (44)
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Fig. 12 Structure of a drive

train with axle and central

differentials

RD FD
central
differential
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ωR ωF

ωR ωF
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the longitudinal acceleration of the vehicle becomes

(m +
2IR

r2
+

2IF

r2
)ax =

MD

r
−

MB

r
− Wges (45)

with the substitutes

Wges =
MF

r
+ WR + WL + WG

𝜉F∕r = 𝜉R∕r = fR
WR = fR(2FzR + 2FzF) = fR(G cos 𝜗 − WZ)
WG = mg sin 𝜗
MF = 2(MFR + MFF) ≈ 0
MD = 2MDR + 2MDF

MB = 2MBR + 2MBF

A drive train configuration with symmetric structure, angular velocity 𝜔E of the

engine and 𝜔KR, 𝜔KF for the front and rear drive shafts is established with Fig. 12.

With the transmission ratio NGn of the gear box and the ratio ND of the axle differ-

entials and the torque splitting of the central differential with 𝜈F, 𝜈R, the kinematics

become

𝜔E = 𝜔GNGn,

𝜔G = 𝜈R𝜔KR + 𝜈F𝜔KF

𝜔KR = ND𝜔R, 𝜔KF = ND𝜔F (46)

and the torques for the different kind of drives
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2MDF = MD𝜈F, 2MDR = MD𝜈R

with 𝜈F + 𝜈R = 1
for rear wheel drive ∶ 𝜈R = 1

for front wheel drive ∶ 𝜈F = 1
for 4WD with equal distribution ∶ 𝜈R = 𝜈F = 0.5 (47)

The torque transfer from the engine torque ME(𝜔E) to the wheels, using (44), can

be written by

MD = (2MDF + 2MDR) =

𝜂ME(𝜔E)N − r
[
ΘEN2

r2
+

(IC + IDR + IDF)
r2

N2
Gn

]
ax (48)

with

N = NGnND

𝜂 coefficient of efficiency

ΘE substitutive moment of inertia for the engine

IC moment of inertia for parts of gears and central differential

IDF, IDR moments of inertia: parts of differentials and shafts.

Consequently (45) can be transformed to

(m + mr)ax =
𝜂ME𝜔EN

r
−

MB

r
− Wges (49)

with the reduced mass for the rotational parts:

mr =
1
r2

[
ΘEN2 + (IC + IRD + IFD)N2

GN + (2IR + 2IF)
]

To determine the normal forces Fzi and further on the friction limits for the force

transfer of the tyres, again Eqs. (41) and (42) are used. With the simplification of

pure rolling (44) and equal values 𝜉R = 𝜉F = 𝜉, these equations can be written in the

form

2FzF + 2FzR =G cos 𝜗 − Wz

−2lFFzF + 2lRFzR =
[(

2IF

r
+

2IR

r

)
ax + (max + WL + G sin 𝜗)h

+ MY + 𝜉(G cos 𝜗 − WZ)
]

(50)

Linearization and neglecting small terms and aerodynamic components leads to
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MY ≅ 0, WZ ≅ 0
𝜉(G cos 𝜗) ≪ (max + WL + G sin 𝜗)h

(2IF + 2IR)∕r ≪ mh

FzF

G
=

lR
l
cos 𝜗 − a∗ h

l
(51)

FzR

G
=

lF
l
cos 𝜗 + a∗ h

l

with a∗ =
(

ax

g
+ sin 𝜗 +

WL

mg

)
(52)

q = 100 ⋅ tan 𝜗 in%

If the inclination angle 𝜗 is small (road grade q less than about 10%), then the sin-

function can be linearized too.

With the determination of the normal forces, the rolling resistance WR, see (45),

can be calculated. Corresponding to Fig. 11 without MD,MB,MF and no grade 𝜗 = 0,

the longitudinal force due to tyre flexibility and energy dissipation can be written

with

Fx = −𝜉

r
Fz = −fRFz (53)

Some examples for typical values of the rolling resistance coefficient fR are shown

in Fig. 13, see e.g. Plöchl et al. (2014). As expected the energy dissipation increases

at higher speeds, but in the limits by traffic regulations it is nearly constant.

0 20 40 60 80 100 120 140 160 180 200 km/h 240
v

0.01

0.02

0.03

0.04

fR
SW

S

H V

speed index S, H, V; winter tyre SW

Fig. 13 Rolling resistance coefficient fR for different types of passenger car tyres
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G G G

Fig. 14 Aerodynamic forces Wy, WL and moment MZ by running speed vc and ambient wind vW ;

plane motion

The consequences of the aerodynamics for a vehicle running with v and ambi-

ent wind vW , are shown in Fig. 14, Mitschke and Wallentowitz (2014), Kortüm and

Lugner (1994).

With the cross section area A and aerodynamic coefficients ci, the forces are pre-

sented by

WL = WX = cx(𝜏)A ⋅
vr

2𝜚

2

WY = cy(𝜏)A ⋅
vr

2𝜚

2
(54)

MZ = cM(𝜏)lMA ⋅
vr

2𝜚

2

The coefficients are determined by experiments in a wind tunnel or/and also by soft-

ware packages calculating the aerodynamic flow.

To take into account the angle of attack 𝜏, the coefficients are considered to be

functions of 𝜏. Defining the coefficient for calm air with cw = cx(𝜏 = 0) as an exam-

ple, Fig. 15 shows the normalized value cx(𝜏)∕cw, Kortüm and Lugner (1994). The

values of the coefficient vary depending on the shape of the car body and will be

about cw ∼ 0.3 for passenger cars. The position for point D can be estimated with

lD ≅ 0.3l for passenger cars and lD ≅ 0.17l for more squared like shapes.

To provide driving performance information with respect to available engine

torque ME, transferred to the wheels or corresponding longitudinal forces, the engine

characteristics and drive train structure have to be known.

Figure 16 shows the typical maximal driving torque ME,max(nE) and power Pmax(nE)
of a gasoline engine as function of the engine speed nE = 60(𝜔E∕2𝜋) for steady state

conditions, Lugner (2007).
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Fig. 15 Normalized drag

coefficient cx(𝜏)∕cw as

function of the angle of

attack 𝜏

Fig. 16 Maximum torque

ME,max and power Pmax of a

gasoline combustion engine
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Considering the influence of the throttle position 𝜆T and the engine drag ME,d(nE)
an approximation for the available engine torque can be formulated. For low veloci-

ties/engine speeds, due to the fuel injection, at 𝜆T = 0 the drag ME,d(nE) > 0. In the

range of operation, ME,d is approximated by a linear function of nE.

ME = (ME,max − ME,d) f (𝜆T ) + ME,d, 0 ≤ f (𝜆T ) ≤ 1 (55)

So with the knowledge of f (𝜆T ) and the characteristics for ME,max and ME,d the

whole performance volume of the engine can be presented. Furthermore the trans-

mission ratio N can be introduced. With the effective driving force KE and Wges—

see (49)—the vehicle driving performance becomes

m𝜆ax =KE(v,N) − Wges(v,N) (56)

𝜆 =
m + mR

m

KE =
𝜂ME(nE)NDNGn

r
, KEmax = 𝜂

MEmax(nE)
r

NDNGn (57)


