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Preface

The present volume contains selected contributions given at the 8th International
Workshop on Simulation held at the University of Natural Resources and Life
Sciences, Vienna, Austria, September 21–25, 2015.

The conference was organized by the Center of Experimental Design of the
Institute of Applied Statistics and Computing of the University of Natural
Resources and Life Sciences, Vienna, in collaboration with the Department of
Statistics of the Alpen-Adria University of Klagenfurt, the Department of Statistical
Modelling of Saint Petersburg State University, and INFORMS Simulation Society
(USA). This international conference was devoted to statistical techniques in
stochastic simulation, data collection, and analysis of scientific experiments and
studies representing broad areas of interest. The 1st–6th Workshops took place in
St. Petersburg (Russia) in 1994, 1996, 1998, 2001, 2005, and 2009. The 7th
International Workshop on Simulation took place in Rimini, May 21–24, 2013.

The conference in Vienna was held in memory of Luidmila Kopylova- Melas,
the wife of Viatcheslav Melas who initiated this series of conferences. Luidmila
passed away on September 21, 2013; she worked relentlessly as secretary of the
whole series of our simulation workshops.

The Scientific Program Committee was chaired by Viatcheslav Melas
(St. Petersburg, Russia), Dieter Rasch (Vienna, Austria), and Jürgen Pilz
(Klagenfurt, Austria). We are indebted to the following members of the Scientific
Program Committee for their fruitful help in organizing the sessions and making the
Vienna Workshop a tremendous success: Aleksander Andronov (Latvia), Anthony
Atkinson (UK), Narayanaswamy Balakrishnan (Canada), Russell Barton (USA),
Michel Broniatowski (France), Ekaterina Bulinskaya (Russia), Holger Dette
(Germany), Sergei Ermakov (Russia), Valerii Fedorov (USA), Nancy Flournoy
(USA), Subir Ghosh (USA), Marie Hušková (Czech Republic), Jack Kleijnen (The
Netherlands), Gennady Mikhailov (Russia), Simos Meintanis (Greece), Werner
Müller (Austria), Valery Nevzorov (Russia), Michael Nikulin (France), Jordi
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Ocania (Spain), Ingram Olkin (USA), Fortunato Pesarin (Italy), Luigi Salmaso
(Italy), Rainer Schwabe (Germany), John Stufken (USA), Bruno Tuffin (France),
Dariusz Ucinski (Poland), Henry Wynn (UK).

The Local Organizing Committee was led by Karl Moder (Vienna, Austria). We
are thankful to the following members of this committee for their extremely helpful
and efficient organizational work during the conference: Marianne Mansuri
(Vienna), Beate Simma (Klagenfurt), Bernhard Spangl (Vienna), Gunter Spöck
(Klagenfurt), and Albrecht Gebhardt (Klagenfurt).

The present proceedings volume consists of six parts; the first part contains four
invited papers, and the remaining five parts deal with various applications of
simulations.

The first of the invited papers, presented by Jack P. C. Kleijnen, gives an
overview of the state of the art in the design and analysis of simulation experiments,
with a special emphasis on simulation optimization in operation research. The
second of the invited papers gives a review of simulation usage in the New Zealand
electricity market: G. Zakeri and G. Pritchard demonstrate, in particular, how
optimization of electricity consumption and reserves can be combined in an efficient
way. In the third invited paper, Z. Prášková gives an overview of bootstrap
changepoint testing procedures for dependent data. In the last one of the invited
papers, C. Draxler and K. D. Kubinger review the present state and future chal-
lenges of power and sample size determination in psychometrics.

The contributed twenty-nine papers have been arranged in six parts dealing with
different aspects of simulation in mathematical analysis, stochastic processes, sta-
tistical estimation and testing problems, clinical trials, design of experiments and in
reliability and queueing theory models and applications.

The chapters in Part II (Simulation for Mathematical Modeling and Analysis)
start with a contribution by T. M. Tovstik studying in detail the covariation matrix
of solutions of linear algebraic system equations via the Monte Carlo method. O. N.
Soboleva and E. P. Kurochkina consider large-scale simulation studies of acoustic
waves in random multiscale media. H. S. Bhat, R. A. Madushani, and S. Rawat deal
with parameter inference for stochastic differential equations with density tracking
by quadrature. G. A. Mikhailov, N. V. Tracheva, and S. A. Ukhinov present a new
Monte Carlo algorithm for the evaluation of outgoing polarized radiation.

Simulation models and their analysis for stochastic process applications played
an important role at the 8th IWS. Contributions in this direction are collected in
Part III of the present proceedings volume. E. Ermishkina and E. Yarovaya study
the evolution and simulation of branching random walks. Y. Belopolskaya studies
stochastic models for nonlinear cross-diffusion systems. N. Vollert, M. Ortner, and
J. Pilz report on experiences with the application of tree-structured Gaussian pro-
cess models for optimization in magnetic field shaping problems. The last three
contributions in Part III deal with applications in actuarial science and stochastic
finance: E. Bulinskaya and J. Gusak consider insurance models under incomplete
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information; Ch. Quast et al. model and compare pension systems in Austria, Chile,
Slovakia, and Sweden; A. Andronov and T. Yurkina study the Markowitz portfolio
problem in a particular random environment.

Part IV collects contributed chapters on the use of simulation models for sta-
tistical testing and classification problems. S. Tarima et al. report on the use of signs
of residuals for testing coefficients in quantile regression. B. Darkhovsky and A.
Piryatinska apply their concept of ɛ-complexity (based on Kolmogorov’s notion of
complexity) to the classification of multivariate time series and give an application
to the classification of EEG data. P. Langthaler et al. analyze high-dimensional data
from the spectral density curves of EEG measurements on several channels to
dementia classification of patients. B. Peštová and M. Pešta use simulation studies
to compare ratio and non-ratio test statistics to detect structural changes in panel
data. Finally, D. Rasch and T. Yanagida report on robustness results for the
two-sample triangular sequential t-test against variance heterogeneity.

Part V (Clinical Trials and Design of Experiments) starts with a contribution by
N. Minois et al. on the performance of the Poisson–gamma model for patients’
recruitment in clinical trials when there are pauses in the recruitments procedure.
N. Savy et al. detail their views on principles and good practices for simulated
clinical trials, with a focus on virtual patient generation. D. Rasch et al. report on
the determination of the optimal sample size of subsamples for testing a correlation
coefficient by a sequential triangular test. The last two chapters in Part V deal with
experimental design issues: V. B. Melas and P. V. Shpilev give explicit solutions
for determining T-optimal discriminating designs for trigonometric regression
models. R. Fontana and F. Rapallo perform simulation studies on the combinatorial
structure of D-optimal designs.

In the final Part VI, we have collected five contributions dealing with the role of
simulations for reliability and queueing models. G. Tzavelas and P. Economou
investigate the consequences of model misspecification for biased samples from the
Weibull distribution. D. Kurz, H. Lewitschnig, and J. Pilz give an overview on
recent advances in statistical burn-in modeling for an efficient evaluation of early
life failure probabilities of semiconductor devices. K. E. Samouylov,
Y. V. Gaidamaka, and E. S. Sopin describe a simplified approach to the analysis of
queueing systems with additional randomness due to imperfect knowledge of the
exact amount of resources released by the departure of a customer. V. Rykov and
D. Kozyrev compare analytic and simulation results on the sensitivity of
steady-state probabilities of a cold redundant system to the shapes of life and repair
time distributions of its elements. D. Efrosinin et al. perform a reliability analysis of
an aging unit with a controllable repair facility activation, using a continuous-time
Markov chain model for the process of gradual aging.

It is our great pleasure to thank all authors of invited and contributed chapters for
carefully preparing their manuscripts and submitting them for editorial processing
of the present volume. We are indebted to our reviewers from the Scientific
Program Committee for critical reading and providing constructive comments.
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Finally, we are indebted to the relentless secretarial work and technical help by
Beate Simma and Johannes Winkler from Alpen-Adria University of Klagenfurt
and to Mrs. Veronika Rosteck from Springer International Publishing.

Klagenfurt, Austria Jürgen Pilz
Rostock, Germany Dieter Rasch
Vienna, Austria Viatcheslav B. Melas
St. Petersburg, Russia Karl Moder
September 2017
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Chapter 1
Design and Analysis of Simulation
Experiments

Jack P. C. Kleijnen

Abstract This contribution summarizes the design and analysis of experiments with
computerized simulation models. It focuses on two metamodel (surrogate, emula-
tor) types, namely first-order or second-order polynomial regression, and Kriging
(or Gaussian process). The metamodel type determines the design of the simula-
tion experiment, which determines the input combinations of the simulation model.
Before applying these metamodels, the analysts should screen the many inputs of a
realistic simulation model; this contribution focuses on sequential bifurcation. Opti-
mization of the simulated systemmay use either a sequence of first-order and second-
order polynomials—so-called response surface methodology (RSM)—or Kriging
models fitted through sequential designs—including efficient global optimization
(EGO). Robust optimization accounts for uncertainty in some simulation inputs.

Keywords Robustness and sensitivity · Metamodel · Design · Regression
Kriging

1.1 Introduction

Simulation is used in many scientific disciplines, but we focus on statistics and engi-
neering. Moreover, we focus on stochastic (random) simulation, but parts of our
contribution are also relevant for deterministic simulation. Simulation requires sev-
eral steps; see [17, p. 67]. A crucial step is the design and analysis of the experiments
with the computerized simulation model. This design and analysis are “intertwined”:
selecting an experimental design assumes a metamodel (surrogate, emulator) for the
analysis of the experimental results; e.g., changing a single factor (simulation input
or parameter) at a time assumes a metamodel with non-interacting factors. We focus
on the two most popular metamodel types: low-order polynomial regression and
Kriging.

J. P. C. Kleijnen (B)
Tilburg University, Postbox 90153, Tilburg, Netherlands
e-mail: kleijnen@tilburguniversity.edu

© Springer International Publishing AG, part of Springer Nature 2018
J. Pilz et al. (eds.), Statistics and Simulation, Springer Proceedings
in Mathematics & Statistics 231, https://doi.org/10.1007/978-3-319-76035-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76035-3_1&domain=pdf


4 J. P. C. Kleijnen

Mathematically, ametamodel is an explicit and relatively simple approximation of
the input/output (I/O) function implicitly definedby the underlying simulationmodel.
We define w = fsim(z, r) where w is the random simulation output (response), fsim
the simulation I/O function, z the vector with the values of the k simulation inputs
with the integer k ≥ 1, and r the vector with pseudorandom numbers (PRNs) so r
vanishes in deterministic simulation. Usually, z is standardized, so the resulting d
has elements −1 ≤ d j ≤ 1 ( j = 1, …, k). An input may be qualitative. If a qualitative
input has more than two values (levels), then special care is needed; see [12, pp.
69–71].

We define y = fmeta(x)+ ewhere y is themetamodel output, x the vector with (say)
q metamodel inputs (explanatory variables), e the approximation (fitting) error; an
example of fmeta is a second-order polynomial in d j ( j = 1,…, k) so x has the compo-
nents d j , d jd j ′ with j ≤ j ′, and the constant 1. Actually, a polynomial of any order is
a linear regression (meta)model. Another type of metamodel is Kriging—or Gaus-
sian process (GP)—metamodels, which are also explicit—but more complicated—
models of d j . Altogether, fmeta is explicit and much simpler than fsim. We call fmeta

“adequate” or “valid” if E(e) = 0.
We focus on simulation for sensitivity analysis (SA) and optimization of the under-

lying real system. Furthermore, we focus on global (not local) SA; e.g., in screening
and Kriging, we use global metamodels (see Sects. 1.4 and 1.5). Nevertheless, we
use local SA in response surface methodology (RSM) for optimization.

We base our survey on our book [12], which includes many Web site addresses
for software and hundreds of additional references, and on our article [14]. However,
compared with [14], our survey is half the length, corrects a mathematical error,
and assumes familiarity with basic statistical design concepts (e.g., resolution and
CCD) and basic operations research (OR) concepts (e.g., M/M/1); also see the more
complicated queueing model in [23].

1.2 Basic Linear Regression and Designs

We define basic symbols and terminology used in the next sections, starting with
linear regression (meta)models y = Xβ + e where y denotes the n-dimensional
vector with the dependent (explained) variable with n denoting the number of dif-
ferent simulated input combinations; X = (xi;g) is the n × q matrix of independent
(explanatory) regression variables with xi;g the value of xg in combination i (i = 1,
…, n; g = 1, …, q), so row i ofX is xi = (xi;1, . . . , xi;q); β is the q-dimensional vec-
tor with regression parameters; e is the n-dimensional vector with residuals, so e =
E(y) − E(w)withw denoting the n-dimensional vector withwi = fsim(zi , ri )where
zi denotes combination i of the k original simulation inputs that are determined by
the n × k design matrix D =(di; j ), and ri denotes the vector with PRNs used in
combination i ; row i of D is di ; x is a simple function of the original z or the
standardized d.
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We focus on a special case of linear regression, namely a second-order polynomial
with k simulation inputs: y = β0 +

∑k
j=1 β j x j +

∑k
j=1

∑k
j ′≥ j β j; j ′x j x j ′+ e with the

intercept β0, the k first-order effects β j ( j = 1, …, k), the k(k − 1)/2 two-factor
interactions (cross products) β j; j ′ ( j < j ′), and the k purely quadratic effects β j; j .
This metamodel is nonlinear in x, but it is linear in β; engineers call this metamodel
nonlinear, whereas statisticians call it linear.

We assume that interactions among three or more inputs are unimportant; such
interactions are hard to interpret. Of course, we should check this assumption; i.e.,
we should “validate” the estimated metamodel.

The least squares (LS) estimator ofβ is β̂ = (X′X)−1X′w.Ifdi—which determines
xi—is simulated mi times and mi is a constant m, then we may replace w by w with
the n elements wi =

∑m
r=1 wi;r/m so X is indeed an n × q matrix. Usually, m > 1 in

random simulation. If mi is not a constant, then xi is repeated mi times within X, so
X has

∑n
i=1 mi rows and q columns.

Actually, β̂ is identical to the maximum likelihood estimator (MLE) if e is white
noise; i.e., ei is normally, independently, and identically distributed (NIID) with
zero mean and constant variance σ 2

e . If the metamodel is valid, then σ 2
e = σ 2

w where
σ 2
w denotes the variance of w. The white-noise assumption implies that β̂ has the

covariance matrix �
β̂
= (X′X)−1σ 2

w. Because σ 2
w is unknown, we estimate σ 2

w = σ 2
e

through the mean squared residuals MSR = (̂y − w)′(̂y − w)/(n − q) where ŷ =
Xβ̂

′
and n − q > 0, which gives �̂

β̂
.

To derive confidence intervals (CIs) and tests for the individual elements of β̂,
we use the estimated standard deviations s(β̂g) that are the square roots of s2(β̂g)

(estimate of Var(β̂g)) on the main diagonal of �̂
β̂
. This gives the following t-statistic

with n − q degrees of freedom: tn−q = (β̂g − βg)/s(β̂g) with g = 1, . . . , q.

To select a specific design matrix D with di in a given experimental area, we
minimize Var(β̂g); i.e., we select an orthogonal X. Usually, design of experiments
(DOE) assumes that the z j are standardized (scaled) such that−1≤ di; j ≤ 1. If z j has
only twovalues in the experimentwithn input combinations, then this standardization
uses di; j = (zi; j − z j )/[(Hj − L j )/2] (i = 1, …, n; j = 1, …, k) where L j denotes
the lower value of z j in the experiment, Hj the higher value, z j the average value
of z j in a balanced experiment with z j observed at L j in n/2 combinations. If X is
orthogonal, then X′X = nI so �

β̂
= (nI)−1σ 2

w = Iσ 2
w/n. Hence the q estimators in β̂

are statistically independent and have the same variance. So, the s2(β̂g) are constant,
and we can rank xg using either β̂g or tn−q with βg = 0 so tn−q = β̂g/s(β̂g).

Now we discuss designs of different resolution (R); e.g., R-III means “resolution
III”. Initially, we assume mi = 1 (i = 1, …, n). A R-III or Plackett–Burman (P–B)
design gives unbiased estimators of β j ( j = 1, …, k) if a first-order polynomial is
a valid metamodel. A subclass are fractional factorial two-level 2k−p

I I I designs with
integer p such that 0≤ p < k and n = 2k−p ≥ 1 + k. In a R-III design, n is a multiple
of 4; e.g., 8 ≤ k ≤ 11 implies n = 12. If n > k + 1, then we ignore some columns of
D. If n = k + 1, then D is saturated; the MSR is then undefined. To compute MSR,
we may then add one or more combinations; e.g., either combinations from the 2k
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design excluding the combinations in the original saturated D or the combination
at the center of the experimental area where d j = 0 if d j is quantitative, and d j is
randomly selected as −1 or 1 if d j is qualitative with two values.

A R-IV design gives unbiased estimators of β j in a first-order polynomial if
two-factor interactions are nonzero but “higher-order” effects are zero: xi = (1,
di;1, . . . , di;k, di;1di;2, . . . , di;k−1di;k). To construct a R-IV design, we apply the
foldover theorem; i.e., we augment a R-III design D with its mirror design −D. A
R-IV design does not enable unbiased estimators of all the individual two-factor
interactions; e.g., k = 7 implies n = 27−4 × 2 = 16 so n < q = 1 + 7 + 21 = 29;
consequently, X′X is singular, so the LS estimator does not exist.

A R-V design enables LS estimation of β j , β j; j ′ with j ′ > j , and β0 if all
other effects (including β j; j ) are zero. Unfortunately, 2k−p

V designs imply n � q.
Rechtschaffner designs include saturated R-V designs, but they are not orthogonal;
see [12, p. 62].

A central composite design (CCD) enables LS estimation of all the effects in a
second-order polynomial if all higher-order effects are zero. A CCD consists of (i)
a R-V design; (ii) the central combination (say) 0′

k ; (iii) the 2k axial combinations,
which form a star design; see [12, p. 63–66]. CCDs have non-orthogonalX, and n �
q.

1.3 Assumptions Versus Practice

The classic statistical assumptions stipulate a single type of simulation output and
white noise. A practical simulation model, however, may give multivariate output,
and the univariate output wi (i= 1, …, n) may be non-normal with heterogeneous
variances; wi and wi ′ (i , i ′= 1, …, n) are correlated if the simulation uses common
random numbers (CRN); E(e) may be nonzero. In this section, we examine: (a)
How realistic are the classic assumptions? (b) How can we test these assumptions?
(c) Can we transform the simulation’s I/O data such that the assumptions hold for
the transformed data? (d) Which other statistical methods can we apply?

Multivariate Simulation Output

We assume that for r -variate simulation output with r ≥ 1, we use r univariate linear
regression metamodels, and these metamodels are polynomials of the same order
(e.g., second-order):

y(l) = Xβ(l)+e(l) with l = 1, . . . r (1.1)

where the various symbols are defined analogously to the univariate model (e.g., y(l)

is the dependent variable corresponding with simulation output of type l); the e(l)

have variances thatmay varywith l, and e(l)
i and e(l ′)

i (l ′ =1,…, r ) are not independent.
However, [21] proves that LS per output still gives the best linear unbiased estimator
(BLUE): β̂(l) = (X′X)−1X′w(l).We can easily obtain CIs and tests for the elements in
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β̂(l), using the classic formulas. We do not know any general designs for multivariate
output; also see [11].

Non-normality

The normality assumption often holds asymptotically: if the simulation run is “long,”
then the sample average of the autocorrelated observations is “nearly” normal. Esti-
mated quantiles, however, may be very non-normal. The t-statistic is quite insensitive
to non-normality, whereas the F-statistic is not. It seems prudent to test the normality
assumption as follows.

Wemay use various residual plots and goodness-of-fit statistics (e.g., a chi-square
statistic). A basic assumption of these statistics is that the observations are identically
and independently distributed (IID). We may, therefore, obtain “many” (say, 100)
replications for a specific input combination (e.g., the base scenario) if the simulation
is not computationally expensive; otherwise, these statistical tests lack power and
the plots are too rough.

Actually, the white noise assumption concerns e, not w. Given mi ≥ 1 (i = 1,
…, n) replications, we obtain wi =

∑mi
r=1wi;r/mi and êi = ŷi − wi . For simplicity

of presentation, we assume mi = m. If wi;r has a constant variance σ 2
w, then wi also

has a constant variance σ 2
w = σ 2

w/m. Even if wi is independent of wi ′ with i �= i ′ (no
CRN), then

�ê= [I − X(X′X)−1X′]σ 2
w, (1.2)

so êi does not have constant variance, and êi and êi ′ are correlated. This complicates
the interpretation of the popular plot with estimated residuals.

We may apply normalizing transformations; e.g., log(w) may be more normally
distributed than w. Unfortunately, the metamodel now explains the behavior of the
transformed output (not the original output); see [12, p. 93] and [15].

Another transformation is jackknifing, which may (i) give CIs for non-normal
observations, or (ii) reduce bias of a given estimator. Suppose we want CIs for the
q elements of β, for non-normal w. For simplicity, we assume mi = m > 1. The
original LS estimator is β̂; jackknifing deletes replication r for each combination i ,
so

β̂−r = (X′X)−1X′w−r (r = 1, . . . ,m) (1.3)

wherew−r = (wi;−r )withwi;−r denoting the average of them − 1 simulation outputs
excluding the output of replication r . Let us focus on βq (last element of β). The
pseudovalue is

Jr = mβ̂q − (m − 1)β̂q;−r . (1.4)

In this example, both β̂q and β̂q;−r are unbiased, so the m pseudovalues also remain
unbiased. In general, however, possible bias is reduced by the jackknife point esti-
mator J = ∑m

r=1 Jr/m; an example of a biased estimator is (1.7). Jackknifing gives
a CI, treating the Jr as if they were NIID. So if tm−1;1−α/2 denotes the 1 − α/2 quan-
tile of the tm−1-distribution and σ̂ 2

J
denotes

∑m
r=1(Jr − J )2/[m(m − 1)], then the

two-sided symmetric (1 − α) CI for βq is J − tm−1;1−α/2σ̂J < βq < J +
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tm−1;1−α/2σ̂J . Many applications of jackknifing in simulation are given in [8] and
[12, p. 95].

Another statistical method that does not assume normality is distribution-free
bootstrapping; also see [25]. This bootstrappingmay be used not only for non-normal
distributions, but also for nonstandard statistics. We distinguish between the original
w and the bootstrapped w∗ with the usual superscript ∗ for bootstrapped observations.
Standard bootstrapping assumes that thew observations are IID; indeed,wi;1,…,wi;m
are IID because the m replications use non-overlapping PRN streams. We resample
with replacement from the m original IID observations wi;r such that the original
sample size remains m; we apply this resampling to each simulated combination,
obtaining w∗

i;1, …, w∗
i;m . This gives w

∗ = (w∗
i ), so

β̂∗ = (X′X)−1X′w∗.

To reduce samplingvariation, bootstrapping repeats this resampling B times; a typical
value for this bootstrap sample size B is 100 or 1,000. This B gives β̂∗

b with b = 1,
…, B. The percentile method gives a non-symmetric two-sided (1 − α) CI:

P(β̂∗
q;(Bα/2) < βq < β̂∗

q;(B[1−α/2])) = 1 − α (1.5)

where β̂∗
q;(Bα/2) denotes theα/2 quantile of the empirical density function (EDF) of β̂∗

q
obtained through the order statistics denoted by the subscript (·) where (for simplic-
ity) we assume that Bα/2 is integer; an analogous definition holds for β̂∗

q;(B[1−α/2]).
We shall also mention bootstrapped CIs for quantiles, R2, and cross-validation.

Heterogeneous Variances of Simulation Outputs

In practice, Var(wi ) changes as the input combination i changes. Unfortunately,
Var(wi ) is unknown; so if mi > 1, then we compute s2i =

∑mi
r=1(wi;r − wi )

2/(mi −
1).This s2i itself has high variance (e.g., if wi;r is normally distributed with Var(wi;r )
= σ 2

i , then Var(s2i ) = 2σ 4
i /mi ). To compare n estimators s2i , we may apply various

tests; see [12, p. 101].
The transformation log(w) may be used not only to obtain Gaussian output but

also to obtain constant variances. Actually, this transformation is a special case of
the normalizing Box–Cox power transformation; see [12, p. 93]. Anyhow, we prefer
to accept variance heterogeneity, and to adapt our analysis, as follows.

If E(e) = 0, then β̂ is still unbiased. However, �
β̂
then becomes

�
β̂

= (X′X)−1X′�wX(X′X)−1 (1.6)

where mi = m so �w is the diagonal matrix with elements σ 2
i /m.

Alternatively, we might switch from LS to weighted LS (WLS), which gives β̃.
In practice, however, Var(wi ) is estimated, and using s2i in WLS gives estimated

WLS (EWLS), which gives the nonlinear estimator ̂̃β. Obviously, ̂̃β is non-normally
distributed and may be biased, so it is difficult to derive exact CIs. Above, we have
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already discussed a simple solution, jackknifing; in jackknifed EWLS (JEWLS) with
mi = m and without CRN, we proceed analogously to (1.3):

̂̃β−r = (X�̂−1
w;−rX)−1X′�̂−1

w;−rw−r (r = 1, . . . ,m) (1.7)

where w−r is the vector with the n averages of the m − 1 replications after deleting
replication r , and �̂w;−r is the diagonal matrix with s2i;−r computed from the same

m − 1 replications. Using ̂̃β and ̂̃β−r , we compute the pseudovalues that give the
desired CI.

The DOE literature ignores designs for heterogeneous output variances. We pro-
pose two-stage designs withmi such that the resulting V âr(wi ) = s2i /mi (i = 1,…, n)
are approximately constant; see [12, p. 105–106]. Actually, these designs use classic
designs with an appropriate relative number of replications m̂i/m̂i ′ . To select abso-
lute numbers m̂, we recommend [17, p. 505]’s rule-of-thumb with a user-specified
relative estimation error ree:

m̂ = min

⎡

⎣r ≥ m :
tr−1;1−α/2

√
s2i (m)/ i

|w(m)| ≤ ree
1 + ree

⎤

⎦ . (1.8)

We shall return to the selection of mi , in Sect. 1.5.

Common Random Numbers

CRN are meant to compare the outputs of different simulation input combinations
while all other “circumstances” are the same. CRN are the default in software for
discrete event simulation. Ifmi =m, then we can arrange wi;r (i = 1, …, n; r = 1, …,
m) into a matrix W = (wi;r ) = (w1, …, wm) with wr = (w1;r , …, wn;r )′. CRN create
correlation between wi;r and wi ′;r . Two different replications use non-overlapping
PRN streams, so wi;r and wi;r ′ with r �= r ′ are independent; i.e., wr and wr ′ are
independent. The final goal of CRN is to reduce Var(β̂g) and Var(ŷ); actually,
CRN increase Var(β̂0). CRN implementation in MATLAB is discussed in [15].

If we use CRN and LS, then �
β̂
is given by (1.6) but now �w is not diagonal.

�̂w is singular if m ≤ n; else we may compute CIs for β̂ j from tm−1. An alternative
method requires only m > 1:

β̂r = (X′X)−1X′wr (r = 1, . . . ,m)

where wr has n elements that are correlated because of CRN and may have differ-
ent variances. Furthermore, β̂r has q elements β̂g;r with variance σ 2(β̂g;r ) for any
r . These β̂g;r give β̂g =

∑m
r=1β̂g;r/m and s2(β̂g) =

∑m
r=1(β̂g;r − β̂g)

2/[m(m − 1)],
which give tm−1 = (β̂g − βg)/s(β̂g)with g = 1, . . . , q.We cannot apply this alterna-
tivewhen estimating a quantile.We then recommend distribution-free bootstrapping;
see [12, pp. 99, 110] and [16].
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Validation of Metamodels

To test whether E(e) = 0, we may use (i) coefficients of determination; (ii) cross-
validation. We explain (i) and (ii) next.

(i) R2 is defined as

R2 =
∑n

i=1(ŷi − w)2

∑n
i=1(wi − w)2

= 1 −
∑n

i=1(ŷi − wi )
2

∑n
i=1(wi − w)2

(1.9)

where w =
∑n

i=1wi/n and mi ≥ 1. If n = q, then R2 = 1 even if êi �= 0. If n > q
and q increases, then R2 increases, whatever the size of |̂ei | is. Because of possible
overfitting when q increases, we adjust R2:

R2
adj = 1 − n − 1

n − q
(1 − R2). (1.10)

Critical values for R2 or R2
adj are unknown, because these statistics do not have classic

distributions. So we may use bootstrapping; see [12, p. 114].
(ii) Leave-one-out cross-validation may be defined as follows. For ease of pre-

sentation, we suppose that X has n rows: if mi = m ≥ 1, then we replace w by w
in the LS estimator. Now we delete I/O combination i to obtain (X−i ,w−i ), which
gives

β̂−i = (X′
−iX−i )

−1X′
−iw−i (i = 1, . . . , n). (1.11)

This gives ŷ−i = x′
i β̂−i . We may “eyeball” the scatterplot with (wi , ŷ−i ) and decide

whether E(e) = 0. If mi = m > 1, then [12, pp. 115–120] uses the Studentized
prediction error t (i)m−1 = (wi − ŷi )/[s2(wi ) + s2(ŷ−i )]1/2.

We may be interested not only in the predictive performance of the metamodel,
but also in its explanatory performance; i.e., do the n estimates β̂−i in (1.11) remain
stable?

Related to cross-validation are several diagnostic statistics; most popular is the
prediction sum of squares (PRESS)

∑n
i=1(ŷ−i − wi )

2/n]1/2. Regression software
uses a shortcut to avoid the n recomputations in cross-validation. We may apply
bootstrapping to estimate the distribution of these validation statistics; see [3].

If ê is big, then we may consider various transformations. We may replace y and
x j by log(y) and log(x j ) ( j = 1,…, k) so that the first-order polynomial approximates
relative changes through elasticity coefficients. If we assume that fsim is monotonic,
then we may replace w and x j by their ranks: rank regression. In the preceding
subsections, we considered transformations that makew nearly normal with constant
variance; unfortunately, different goals of a transformation may conflict with each
other.

In Sect. 1.2, we discussed designs for low-order polynomials. If such a design does
not give a validmetamodel, thenwe do not recommend routinely adding higher-order
terms: these terms are hard to interpret.However, if the goal is not to betterunderstand
the simulation model but to better predict its output, then we may add higher-order
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terms; e.g., a 2k design enables the estimation of the interactions among two or more
inputs. In the discussion of (1.10), we have already mentioned the danger of overfit-
ting. Adding more explanatory variables is called stepwise regression; eliminating
nonsignificant variables is called backwards elimination.

1.4 Factor Screening: Sequential Bifurcation

Screening means searching for the really important simulation inputs among the
many inputs that can be varied in a simulation experiment. Sparsitymeans that only
a few inputs among these many inputs are important. Indeed, the Pareto principle
or 20–80 rule states that only “a few” inputs (20%) are important; e.g., [12, p. 136]
presents two examples, with 281 and 92 inputs, respectively; screening finds only 15
and 11 inputs to be important.

There are several types of screening designs; see [12, pp. 137–139] and [29]. We
focus on designs that treat the simulation model as a black box: only the I/O of the
simulation model is observed. We focus on sequential bifurcation (SB), because SB
is very efficient and effective if its assumptions are satisfied. SB selects the next input
combination after analyzing the preceding I/O data, so SB is indeed sequential. SB
is customized; i.e., SB accounts for the specific simulation model.

To explain the basic SB idea, we assume deterministic simulation and a valid first-
order polynomial metamodel so β j; j ′ = 0 with j ≤ j ′. Let γ j denote the first-order
effect of z j (original scale). SB assumes that the sign of γ j is known so that we can
define the low and high bounds L j and Hj of z j such that γ j ≥ 0. Hence, we may
rank the inputs such that the most important input has max j γ j ; the least important
input has min j γ j ↓ 0. Changing z j from L j to Hj makes w change by (Hj − L j )γ j

= 2β j ; also see [12, pp. 41–44] . SB calls z j important if 2β j ≥ cw where the users
specify the threshold cw (≥ 0).

In step 1, SB aggregates all k inputs into a single group and checks whether or not
that group has an important effect. Let w(Lk) denote w with zk = Lk = (L1, . . . , Lk)

′
where zk = (z1, . . . , zk)′; likewise, w(Hk) denotes w with zk = Hk = (H1, . . . , Hk)

′.
So, SB obtains w(Lk) and w(Hk). If ∃ j : β j > 0, then w(Lk) < w(Hk). It may
happen that ∀ j : β j < cw/2, but w(Hk)− w(Lk) > cw; SB will discover this “false
importance” in its next steps.

Assume that at least one input is important, sow(Hk)− w(Lk) > cw. Then in step
2, SB splits the input group into two subgroups: bifurcation. Let k1 and k2 denote
the size of subgroup 1 and subgroup 2 (so k1 + k2 = k). Then SB obtains w(Hk1). If
w(Hk1) − w(Lk) < cw, then none of the individual inputs in subgroup 1 is important
so SB eliminates this subgroup from further experimentation. If w(Hk) − w(Hk1) ≥
cw, then one or more individual inputs in subgroup 2 may be important.

In each following step, SB splits important subgroups into smaller subgroups and
eliminates unimportant subgroups. SB may find both subgroups to be important,
so SB further experiments with two important subgroups in parallel. Obviously,
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these steps give smaller subgroups; in the final steps, SB identifies and estimates all
individual inputs that are not in eliminated (unimportant) subgroups.

Assuming β j ≥ 0 ensures that the β j within an input group do not cancel each
other. In practice, the users often do know the signs of β j . Nevertheless, if in a
specific case it is hard to specify the signs of a few specific inputs, then we should
not group these inputs with the other inputs (with known signs). We should treat
these inputs individually and investigate these inputs not through SB but through a
classic design. This seems safer than assuming a negligible probability of cancelation
within a subgroup.

The efficiency of SB improves if the individual inputs are labeled such that inputs
are placed in increasing order of importance. Such labeling implies that the impor-
tant inputs are clustered; i.e., these inputs are members of the same subgroup. The
efficiency further improves when placing “similar” inputs within the same subgroup;
e.g., place all “transportation” inputs in the same subgroup.Anyhow, splitting a group
into subgroups of equal size is not necessarily optimal. Practical examples of SB are
given in [12, pp. 136–172].

After explaining the basics of SB, we now assume random simulation and a
second-order polynomial. Moreover, if β j = 0, then β j; j ′ = 0 ( j ≤ j ′): heredity
assumption. SB then applies the foldover principle (see Sect. 1.2); i.e., SB also sim-
ulates the mirror input of the original input, to estimate β j unbiased by β j; j ′ . In
random simulation, SB may obtain a fixed m (number of replications) and use the
tm−1-statistic for a one-sided test of β j > 0. Or SB obtains a random m and uses
[28]’s sequential probability ratio test (SPRT) with user-selected thresholds cwU and
cwI to classify inputs with 2β j ≤ cwU as unimportant, inputs with 2β j ≥ cwI as
important, and remaining inputs as intermediate; see [12, pp. 154–159]. In practice,
simulation models havemultiple response types; see the multiresponse SB (MSB) in
[12, pp.159–172]. Note that SPRTs for testing two means (instead of group effects
in SB) are given in [15].

1.5 Kriging Metamodels and Their Designs

Kriging metamodels are fitted to simulation I/O data obtained for the global experi-
mental areas instead of the local areas in RSM.

Ordinary Kriging in Deterministic Simulation

In this subsection, we focus on ordinary Kriging (OK), which is popular in deter-
ministic simulation. OK assumes

y(x) = μ + M(x) (1.12)

whereμ is the constant mean E[y(x)] andM(x) is a stationaryGPwith zeromean. A
GP has covariances that depend only on the distance between the input combinations
x and x′. We call M(x) the extrinsic noise, to distinguish it from the intrinsic noise
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in stochastic simulation. Let X denote the n × k matrix with the n combinations xi
(i = 1, …, n); in the preceding sections, we used D, but the Kriging literature uses
X. Kriging software standardizes zi to obtain xi and also standardizes the simulation
output w; for publications and Web sites see [12, p. 190].

OKuses the best linear unbiased predictor (BLUP) ŷ(x0) for the new combination
x0:

ŷ(x0) = ∑n
i=1λiwi = λ′w. (1.13)

Such an “unbiased” predictor implies that if x0 = xi , then ŷ is an exact interpolator:
ŷ(xi ) = w(xi ). This “best” predictor minimizes the mean squared error (MSE);
because ŷ is unbiased, the MSE equals the variance Var[̂y(x0)]. Altogether, the
optimal weight vector is

λ′
o=[σM(x0)+1

1 − 1′�−1
M σ (x0)

1′�−1
M 1

]′�−1
M (1.14)

where�M = (cov(yi , yi ′)) denotes the n × nmatrix with the covariances between the
metamodel’s “old” outputs yi , and σM(x0) = (cov(yi , y0)) denotes the n-dimensional
vectorwith the covariances between yi and the newoutput y0. Theweightλi decreases
with the distance between x0 and xi , so λ is not a constant vector (unlike β in
regression). Substitution of λo into (1.13) gives

ŷ(x0) = μ + σM(x0)
′�−1

M (w−μ1) (1.15)

where 1 denotes an n-dimensional vector with all elements equal to 1. Obviously,
ŷ(x0) in (1.15) varies with σM(x0), whereas μ, �M , and w remain fixed.

The gradient ∇(ŷ) follows from (1.15); see [19, Eq.2.18]. We should not confuse
∇(ŷ) and ∇(w); sometimes we can indeed estimate ∇(w) and use ∇̂(w) to estimate
a better OK model; see [12, pp. 183–184].

Defining τ 2 = Var(y) implies

MSE [̂y(x0)] = τ 2 − σM(x0)′�−1
M σM(x0) + [1 − 1′�−1

M σM(x0)]2
1′�−1

M 1
. (1.16)

This implies Var[̂y(x0)] = 0 if x0 = xi . So, Var[̂y(x0)] has n local minima.
Var[̂y(x0)] has local maxima at x0 approximately halfway between old input com-
binations. Kriging gives bad extrapolations compared with interpolations (linear
regression gives minimal Var[̂y(x0)] when x0 = 0).

Obviously, (1.14) shows that λo is a function of �M and σM(x0) or – switching
to correlations Ω = τ−2�M and ρ(x0) = τ−2σM(x0). There are several types of
correlation functions, but most popular is the Gaussian correlation function:

ρ(h) =
k∏

j=1
exp

(−θ j h
2
j

) = exp (−
k∑

j=1

θ j h
2
j ) (1.17)
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with distance vector h = (h j ) where h j =
∣
∣xg; j − xg′; j

∣
∣ and g, g′ = 0, 1, …, n. This

ρ(h) implies that λo assigns larger weights for xi closer to x0. Standardization of the
inputs affects h.

When estimating theKriging parametersψ = (μ, τ 2, θ ′)′ with θ = (θ j ), theMLE is
most popular; yet LS (L2 norm), cross-validation, and the L1 norm are also used; see
[13]. The estimation of ψ is challenging: different values may result from different
software packages or from initializing the samepackagewith different startingvalues.
Anyhow, we denote the estimator of ψ by ψ̂ . Plugging ψ̂ into (1.15) gives ŷ(x0, ψ̂).
This ŷ(x0, ψ̂) is a nonlinear predictor. In practice, we simply plug ψ̂ into (1.16) to
obtain MSE[̂y(x0, ψ̂)]; moreover, we ignore possible bias of ŷ(x0) so s2{ŷ(x0)} =
MSE[̂y(x0, ψ̂)]. To compute a CI, we use ŷ(x0, ψ̂), s2{ŷ(x0)}, and zα/2 (α/2 quantile
of standard normal):

P[w(x0) ∈ [̂y(x0, ψ̂) ± zα/2s{ŷ(x0)}] = 1 − α. (1.18)

Universal Kriging (UK) replaces μ in (1.12) by a low-order polynomial. UK
requires the estimation of additional parameters, besides β0 = μ; this may explain
why UK often has a higher MSE than OK has.

Designs for Deterministic Simulation

There are several design types for Kriging in deterministic simulation; e.g., [12, p.
198] mentions orthogonal array, uniform, maximum entropy, minimax, maximin,
integrated mean squared prediction error, and “optimal” designs. However, the most
popular design uses Latin hypercube sampling (LHS). LHS assumes that an adequate
metamodel is more complicated than a low-order polynomial; LHS does not assume
a specific type of metamodel (e.g., an OK model), but focuses on the input space
formed by x j (standardized simulation inputs). LHS results in an n × k matrix X.
There is no strict mathematical relationship between n and k, whereas DOEmay use
n = 2k−p. Nevertheless, if LHS keeps n “small” and k is “large,” then “space filling”
LHS covers the input space so sparsely that E(e) �= 0. A rule-of-thumb for LHS in
Kriging is n = 10k; see [18].

Mathematically, LHSdivides the range of x j intonmutually exclusive and exhaus-
tive intervals of equal probability. The LHS design is non-collapsing: if an input turns
out to be unimportant, then each remaining input still has one observation per inter-
val. We conjecture that the estimation of the correlation function may benefit from
this non-collapsing property. Unfortunately, projections of x onto more than one
dimension may give “bad’ designs, so there are maximin LHS, nearly orthogonal,
and sliced LHS designs.

Instead of LHSwith its single-shot design, wemay use sequential designs that are
application-driven or customized; i.e., they account for fsim. In general, sequential
procedures require fewer observations than fixed-sample procedures do, because we
learn about the behavior of the underlying system as we experiment with this system
and collect data (also see Sect. 1.4 on SB). Kriging, however, requires extra computer
time if it re-estimates ψ when new I/O data become available.
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We may use sequential Kriging designs for either SA (so the whole experi-
mental area is interesting) or optimization (only the optimum is interesting); see
[12, pp. 203–206] In a sequential design, we start with a pilot experiment with
n0 combinations of the k inputs selected through LHS and obtain the correspond-
ing simulation I/O data. Next we fit a Kriging model to these data. Then we may
consider—but not yet simulate—Xcand which denotes a larger matrix with candidate
combinations selected through LHS and find the “winning” candidate. In SA, this
winner has maxx s2{ŷ(x)} with x ∈ Xcand . Next we use the winner as the input to
be simulated, which gives additional I/O data. We re-fit the Kriging model to the
augmented I/O data (usually re-estimating ψ). We stop if either the Kriging model
satisfies a given goal or the computer budget is exhausted. Altogether, the design
selects relatively few combinations in subareas with an approximately linear fsim.

Stochastic Kriging for Random Simulation

Stochastic Kriging (SK) was developed in [1], adding the intrinsic noise term
εr (xi ) for replication r at combination xi to (1.12), which —after averaging over
replications—gives

y(xi ) = μ + M(xi ) + ε(xi ) (1.19)

where εr (x) ∈ N (0,Var[εr (x)]) and εr (x) is independent of M(x). Obviously,
mi replications without CRN make �ε diagonal with main diagonal elements
Var[ε(xi )]/mi ; CRN and mi = m give �ε = �ε/m.

To estimate Var[ε(xi )], SKmay use s2i . Alternatively, SKmay use another Kriging
model for Var[ε(xi )] (besides the Kriging model for E[yr (xi )]), which may give less
volatile estimates. Because s2i is not normally distributed, the GP is only a rough
approximation. We might also replace s2i by log(s2i ) in the Kriging model; also
see [10].

SK replaces �M in OK by �M + �ε and w by w, giving ŷ(x0, ψ̂) and s2{ŷ(x0)};
see [1, Eq.25]. SK for a quantile (instead of an average) is discussed in [12, p. 208].

In our discussion of (1.18), we have alreadymentioned the problems caused by the
randomness of ψ̂ . If mi � 1, then we may solve this problem through distribution-
free bootstrapping; see [12, p. 209].

Usually SK employs the same designs as OK or UK do for deterministic sim-
ulation. So, SK often uses single-shot LHS. In random simulation, however, we
also need to select mi . Above, we discussed the analogous problem in regression
metamodeling; a simple rule-of-thumb is (1.8).

In sequential designs for SA, we may select x that gives maxx s2{ŷ(x)}. In SK,
we may find this x through distribution-free bootstrapping. This design selects more
input values in subdomains with highly nonlinear estimated I/O functions.

More Kriging: Monotonic Kriging, and Global SA

Sometimes we know that fsim is monotonic (e.g., if the traffic rate increases, then
the mean waiting time increases); see Sect. 1.4. The Kriging predictor ŷ, however,
may be wiggling if the sample size n is small. To make ŷ monotonic, we may apply


