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Preface

This conference marks the 9th International Symposium on Superalloy 718 and
Derivatives. The legacy which started in 1989 in Pittsburgh, Pennsylvania, con-
tinues to provide a rich forum for a combination of industrial and academic tech-
nical papers, presentations, and posters on highly relevant, high-temperature,
superalloy materials. The strength of this series is in its breadth of technical,
geographic, demographic, and application coverage. Over the years, it has provided
an event for all those interested in high-temperature materials and reaches well
beyond the simple exchange of technical findings. It is regularly a reunion for the
many who work together solving development and production challenges at a
distance from one another through ever-increasing electronic-enabled
collaborations.

This 2018 proceedings volume consists of 72 papers; topic coverage includes the
traditional subjects of casting, forging, and mechanical properties as well as topics
on microstructure, joining, and novel processing. In the most recent two confer-
ences, the advent of novel processing technologies including additive manufac-
turing has begun to open new avenues of investigation in what is a very dynamic
field of engineering and science. Across the range of technology areas, the use of
advanced characterization and modeling continues to make significant advances in
the field. Contributions in this year’s conference have spanned a wide swath of the
industrialized world from Canada to South Korea and from the USA to Japan;
60% of papers come from outside the USA. Authors represent academic institutions
(44%), laboratories (17%), and companies (36%). Although from a great diversity
of areas and backgrounds, many gather to discuss knowns and unknowns and to
forge ahead with enriching the understanding of metallurgy and application of these
materials.
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Our volunteer team has worked to bring a high quality and broadly relevant
conference to authors and conference participants. We hope that the conference and
these proceedings continue to enrich the advancement of understanding and
application of these materials now and in the years to come.

Eric Ott, Lead Editor
Xingbo Liu, Organizer
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Part I
Superalloy 718 & Derivatives: Keynotes



Age Hardenable Nickel-Based Alloy
Developments and Research for New
High Temperature Power Cycles

John P. Shingledecker and John A. Siefert

Abstract Advanced Ultrasupercritical (A-USC) steam Rankine cycles and
Supercritical Carbon Dioxide (sCO2) Brayton cycles are under intensive develop-
ment to enable low carbon generation of electricity. These high-efficiency power
cycles, aimed at fossil and in some cases renewable energy, require higher tem-
peratures and pressures compared to traditional steam cycles for pressuring
retaining components such as tubing, piping, heat exchangers, and turbine casings.
Extensive research and development to produce and characterize age-hardenable
nickel-based alloys containing Al, Ti, and Nb in judicious amounts have allowed
designers to now consider supercritical fluid temperatures up to ∼760 °C which is
much greater than today’s supercritical steam technology based on steel metallurgy
up to ∼610 °C. This paper will focus on the alloys developed around the world to
enable these advanced power cycles, and a discussion on their key properties:
long-term creep strength (100,000 h+), fabricability, and weldability/weld perfor-
mance. Most of these alloys contain less than 25% gamma prime, such as alloy
740H, 263, and 282, due to the need for heavy section weldability, unique to these
applications. While welding processes have now been developed for many of these
alloys using a variety of filler metals and processes, key research questions remain
on the applicability of processes to field power plant erection, the potential for
cracking to occur during service, and the long-term weld creep and creep-fatigue
performance.
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Introduction to Advanced Energy Systems Requiring
Nickel-Based Alloys

National and Global Trends

In 2015, the electricity produced from coal and natural gas in the U.S. was
approximately equal at 34% each, representing 68% of the total electricity generated
with the remaining major sources being nuclear at 20% and all renewables (hydro,
wind, solar, biomass, etc.) at 12%. In 2016, for the first time in the history of the U.
S., electricity produced from natural gas exceeded that of coal generation 36 to 31%
as shown in Fig. 1 [1]. Globally coal and natural gas continue to be the predominate
fuels for the production of energy [2]. While future projection for the exact mix of
fossil fuels remain uncertain both nationally and globally, the world is projected to
need more electricity with fossil fuels being a major source of new generation [3].
In the US, the need for electricity continues to increase. As illustrated in Fig. 2,
which shows the historical use of electricity as a percentage of the total energy use
in the U.S., efficient electrification for residential, commercial, and industrial sectors
has steadily increased for over 50 years as electrification is recognized as a key
element of the future energy in the U.S. [4]. The need for environmentally
responsible electricity through significant reductions in the emission of CO2 cou-
pled with these national and global drivers for continued use of fossil fuels
necessitates the need for highly efficient and transformational fossil energy systems
in the future. Various roadmaps, such as the Coal Utilization Research Council

Fig. 1 Historical and projected U.S. electricity generation mix reported by U.S. Energy
Information Administration including the reference case scenario (left) and a scenario without
adoption of the Clean Power Plan (right) [1]
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(CURC)-EPRI roadmap [5] and the International Energy Agency (IEA) High
Efficiency Low Emission (HELE) roadmap [2, 3] have identified technology
pathways first based on maximizing the efficiency of today’s technologies and then
adopting new transformational technologies. EPRI’s Integrated Energy Network
(IEN) is a vision for the future in which all energy sources are more efficiently
integrated through (a) producing cleaner energy, (b) using cleaning energy through
efficiency and electrification, and (c) integrating energy resources [2]. A key aspect
of the IEN is the production of cleaner energy through the introduction of new
transformational fossil power systems which will lead to cost-effective low carbon
fossil generation (likely with carbon capture and storage).

Fossil Power Generation Technologies

Two major technologies identified in the previously mentioned roadmaps are
Advanced Ultrasupercritical (A-USC) steam cycles and Supercritical CO2 (sCO2)
power cycles. These concepts are explored in this paper because, as will be shown,
they share many similar structural materials needs and these cycles are required to
fully enable future transformational systems, such as an oxygen-fired boiler
(oxy-combustion) with carbon capture and an A-USC steam cycle.

Today’s pulverized coal-fired (PC) power plants operate at ultrasupercritical
(USC) conditions with steam temperatures up to ∼610 °C. A-USC conditions
generally refer to a steam cycle with steam temperatures of 700 °C and higher. The
world-wide development of A-USC technology started initially around 1998 with a
variety of European Projects [6]. In 2001, the U.S. Department of Energy in

Fig. 2 Historical U.S. electricity use as a percentage of total energy for various sectors showing
electricity use has grown faster than total energy for over 50 years [4]
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conjunction with the Ohio Coal Development Office (OCDO) and cost share from
all the major U.S. boiler and turbine original equipment manufacturers (Alstom,
B&W, Foster Wheel, Riley Power, GE, Siemens), the Energy Industries of Ohio
(EIO), and the Electric Power Research Institute (EPRI) with support from Oak
Ridge National Laboratory (ORNL) and the National Energy Technology Labo-
ratory (NETL) Albany Research Center (ARC) and managed for DOE by NETL,
began an ambitious pre-competitive research and development project that would
lead to higher efficiency coal-fired power plants with reduced CO2 emissions [7].
Figure 3 is a summary of pulverized coal-fired plant efficiency (HHV) and emis-
sions reduction, as a function of steam temperature for various U.S. based modeling
studies (solid symbols) with some current reported plant efficiency data (open
symbols). There is considerable variation due to local conditions (cooling water
temperature, fuel type, specific design considerations such as size and utilization of
waste heat, etc.). However, when compared to the U.S. Fleet averages of 32.3–
32.5% HHV, A-USC conditions are expected to raise efficiency up to 12.5 HHV%
which corresponds to a 35% reduction in CO2 emissions. Even when compared to
today’s state-of-the-art USC unit operating at 600 °C (for US Conditions), A-USC
offers a CO2 reduction of ∼13%. While an A-USC powerplant has yet to be built,
numerous economic studies have shown that in the reduction in operating costs
from fuel usage (increase in efficiency) for A-USC does not offset the increased
capital cost of the plant, until carbon capture and storage is considered. A-USC
becomes economically attractive for carbon reduction, as studies show it is more
cost effective to not produce CO2 in comparison to producing it and then capturing
it through carbon capture and storage (CCS). In other regions of the world with
more expensive fuel costs or lower labor costs, A-USC may be economically
attractive without carbon constraints [9, 10].

Brayton power cycles with supercritical CO2 (sCO2) as the working fluid are
undergoing intense development for a range of power systems including fossil
energy, nuclear power, shipboard propulsion, geothermal energy extraction, and
solar thermal power cycles [11]. Principle advantages of the sCO2 cycle due to the
physical properties of CO2 include compact turbo-machinery, high efficiency, and

Fig. 3 Effect of steam temperature on pulverized coal-fired powerplant net efficiency (HHV basis)
and corresponding reduction in CO2 [8]
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the ability to reject heat at higher temperatures when compared to traditional steam
Rankine cycles. These advantages may lead to lower capital costs and higher
efficiencies for future power systems [12]. Two general types of systems are being
investigated as depicted in Fig. 4. Indirect cycles with a closed loop of sCO2 are
being considered for a range of application as the ‘heat-source’ could be coal,
natural gas, molten salt, waste heat, etc. To achieve high cycle efficiencies, fluid
temperatures of 700 °C and pressures approaching 300 bar are being considered.
Current commercial offerings are only available at smaller sizes <10 MW and
lower temperatures [13]. A more transformational cycle is the direct cycle (right of
Fig. 4) which involves direct combustion of natural gas (or gasified coal) and
oxygen into a high pressure sCO2 system. The only byproducts of this approach are
high pressure ‘sequestration ready’ CO2 and water. A pilot plant testing this
technology is currently under construction, and to achieve high efficiency the
selected fluid temperature is >700 °C [13]. Some of the challenges of the sCO2

system in comparison to a steam Rankine cycle are a narrow heat addition window,
the need for extensive recuperation of heat, much higher working fluid recirculation
volume, and sensitivity to pressure drop. Many small-scale pilot demonstrations are
being investigated to develop these concepts for future power plant applications.

Background on Alloys, Materials Selection, and Completed
R&D

Both A-USC and sCO2 power cycles require materials to withstand high temper-
atures > 700 °C and pressures > 300 bar for long times. In most cases, the materials
for piping, tubing, valves, and heat exchangers are pressure boundary materials and
subject to approval to the ASME Boiler and Pressure Vessel (B&PV) Code (or

Power
Turbine

Re-compressor

LTR

Compressor Inlet Cooler

HTR

Main
Compressor

Primary
Heater

Fig. 4 Examples of general system arrangements for indirect (closed) system (left) and direct
(open) cycle (right); note HTR = high temperature recuperator and LTR = low temperature
recuperator
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similar code of construction), while turbine components have more flexibility in
selection of materials based on the manufacturers detailed knowledge. At these fluid
conditions, the ASME allowable stresses for design are based on the creep-rupture
performance of the materials. As stated earlier, major materials development pro-
grams in the EU and USA (and later Japan, China, and India) have been working
for over a decade to develop the underlying materials technology to make such
components available [8]. Figure 5 shows the average 100,000 h rupture strength
for various classes of materials. A line at 100 MPa denotes a first cut approximation
at the relative temperature capability for materials typically used in today’s boilers
which shows martensitic/ferritic steels are limited to about 610 °C (highest steam
conditions in today’s USC power plants). Austenitic stainless steels have higher
creep-rupture strength, but poor thermal conductivity and a high coefficient of
thermal expansion limit their use to thinner wall components such as tubes due to
the generation of thermal stresses in thick components such as boiler headers,
turbine casings and discs. Nickel-based alloys are the only alloys available which
meet the basic creep-rupture strength requirements for 700 °C+ service. However,
there are a range of other properties which are critical for application to A-USC and
sCO2 components including formability, weldability, corrosion resistance,
short-term strength, ductility, creep-fatigue performance, weld performance, and
manufacturability often in very large section thicknesses. Piping, header, and casing
components may require wall thicknesses approaching 100 mm, and there is a need

Fig. 5 100,000 average creep-rupture strength for various classes of alloys of interest to A-USC
and sCO2 power cycle application
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for large forgings on the order of 1000 mm in thickness for steam turbine rotors.
Conventional nickel-based alloys such as Waspalloy and Nimonic 105 which
appear to meet the requisite basic creep strength requirements may be used for
specific smaller non-welded components such as turbine blades (buckets) and
bolting, but these alloys are not code approved nor do they have the weldability and
formability for heavy-wall components due to large volume fractions of gamma
prime. Similarly, alloys strengthened by gamma double prime such as 718 which
have good processing characteristics lose their long-term creep strength above 650
°C, are not code approved, and won’t meet creep and tensile strength requirements.
Therefore, the main nickel-based alloys of interest to A-USC and sCO2, shown in
Fig. 5 (nominal compositions in Table 1), are either solid solution strengthened
with basic temperature capability for approximately 700 °C or gamma prime
strengthened with higher capability to about 760 °C. While Table 1 is not an
exhaustive list of materials, the material identified have seen the most study pre-
dominately by the US and EU for A-USC applications. Currently, the
highest-strength code approved alloy is Inconel® Alloy 740H® which has been
successfully welded and fabricated into components up to about 80 mm in thick-
ness. This is a significant technological achievement (along with similar studies and
successes on alloys 617, 263, 230, and Haynes 282) in the processing of
age-hardenable nickel-based alloys. Table 2 describes some of the research done on
various components made with these alloys; more detailed alloy specific informa-
tion and results from major government led developments is summarized in Ref.
[8]. In addition to large section thickness and similar concerns for A-USC steam
Rankine systems, sCO2 Brayton cycles present additional unique nickel-based
materials challenges. One challenge is the need for very large pipe diameters due to
high recirculation requirements compared to steam; such pipe sizes can only be
fabricated through forming and welding. A second consideration is the need to
develop processing and performance data for compact heat exchangers with these
materials. Compact heat-exchangers are currently made using specialized methods
and designs based on combinations of etching, diffusion bonding, brazing, small
tubes, fins, and wire meshes which will need to be developed for these nickel-based
alloys [14].

A number of recent conferences [11, 22] and summary reports/papers are now
available with extensive detail into the laboratory investigations, processing studies,
fabrication trials, corrosion performance, and long-term creep behavior of A-USC
alloys for boilers [23], turbines [24], and in-plant studies/component demonstration
activities [15, 25]. As stated previously, the development of welding procedures for
thick sections on age-hardenable materials including forgings, extrusions, and
castings represents a significant technological advancement. Figure 6 shows just
three examples of the progress made in welding large nickel-based components.
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Table 2 Examples of component production and demonstrations on various A-USC and sCO2

candidate materials

Material Component
(size or max
thickness)

Manufacturing
demonstrated

Evaluation
method

Notes

CCA617
[15]

Piping
system
(50 mm)

Pipe and tube
production; header
component
production; piping
system fabrication,
high-temperature
valves

Comtes 700
A-USC
Component Test
Facility
Operation:
20,000 h at 700
°C

Overall good
performance and
demonstrated many
manufacturing and
field erection
methods, but
numerous cracks and
failures in thick
section components
subject to thermal
cycles; concluded that
all welds needed an
additional
heat-treatment to
avoid stress relaxation
cracking

CCA617,
740H [16]

Superheater
tubing
(10 mm)

Superheater
manufacturing
including similar and
dissimilar metal
welding

Steam-Cooled
A-USC corrosion
test loop: 4 years
at 760 °C

Accpetable corrosion
performance and no
issues identified at
welds (note: low
operational stress)

740H [17] Piping
(80 mm)

Pipe extrusion and
weldability

Destructive
laboratory testing

Successful narrow
groove welding,
validated longer
extrusion lengths than
same 617 extrusion

740H [18] Pipes and
fittings

Small forgings
(hydro-forming, hot
forming), thin wall
pipe production
(rolled formed pipe)

Destructive
laboratory testing
and Installation in
sCO2 pilot plant

Pilot plant operation
planned for 2018 [19]

263 [8] Rotor
Forging
(1000 mm)

Large forging
demonstration and
rotor welding proof
of concept

Destructive
testing

Limited data on
performance available
in literature; some
suggestion that alloy
optimization for
structural stability is
still needed

(continued)
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Weldability and Weld Performance

Based on the successful welds made around the globe for A-USC materials, a
comprehensive review was conducted by Siefert and colleagues on the funda-
mentals, weldability, and weld performance of A-USC nickel-based alloys [26, 27].
The major findings and recommendations for the materials listed in Table 1 are
highlighted in the following sections, but the reader is encouraged to review ref-
erences [26, 27] for a more thorough treatment of the subject matter.

Weldability

Nickel-based alloys considered for A-USC and sCO2 applications may be sus-
ceptible to a range of potential weldability issues including: solidification cracking,
heat affected zone (HAZ) liquation cracking, ductility dip cracking (DDC), and
strain age cracking (SAC) which is also known as stress relaxation cracking.
Quantitative ranking of candidate materials for each potential mechanism is prob-
lematic because the number of variables which need to be considered include:
welding process, shielding gas (if applicable), weld metal composition, base metal
composition, grain size, heat-treatment, degree of constraint, sample size/thickness,

Table 2 (continued)

Material Component
(size or max
thickness)

Manufacturing
demonstrated

Evaluation
method

Notes

282 [20] Rotor
Forging
(1100 mm
disc)

Triple-melt
production (2 heats),
chemical
homogeneity, and
disc forging
development

Destructive
testing

Good processing
characteristics
suggested larger
forging sizes are
possible and
optimization of grain
structure for creep and
fatigue were
demonstrated

282 [21] Turbine
valve chest
(8000 kg
pour
weight)

Sand casting for
turbine cast
components (valves
and casings)

Destructive
testing

First and largest
known demonstration
of heavy wall 282
casting, size range
applicable to steam
turbine casings,
limited mechanical
testing showed
acceptable
performance
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and welding residual stresses. Furthermore, there exist many non-standardized test
methodologies which make comparisons of different studies challenging. However,
comprehensive and careful review of the data (when reported) can identify key
trends and provide practical mitigation methods if problems are encountered in
service.

Fusion Zone Solidification Cracking

Solidification cracking, which occurs in the fusion zone of weldments, is of concern
for the candidate alloys. Specifically, many studies have shown that the potential for
solidification cracking is sensitive to a host of compositional factors even within the

Fig. 6 Examples of successful welding demonstrations on A-USC materials including:
a cross-sectional micrograph of a 75 mm thick alloy 740H pipe butt weld with no observed
welding defects or cracks, b multiple orientations and welding processes for a 50 mm thick alloy
CCA617 pipe and plate welds on a demonstration header, along with tube dissimilar metal welds,
and c ∼63 mm thick 282 casting to 740H piping weld with 282 filler metal, representing welding
to a turbine casing [23, 24]
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specification range for the alloys. For alloys 617 and 230, the level of Boron (B) has
been found to have a major effect. Figure 7 shows the data gathered for
trans-varestraint testing in which a high B heat (0.004 wt%) of 617 exhibited a
higher tendency to solidification cracking (as measured by crack length) compared
to alloys 263 and 740. HR6 W, a laves phase strengthened Ni-Fe-Cr alloy with 6–
8 wt%W and candidate A-USC temperatures <700 °C was included in this study as
well. Figure 8 shows results for testing on Haynes 230 where B free heats exhibited
fewer cracks compared to heats with 0.004–0.006 wt% B. In general B is added to
improve high-temperature creep behavior and microstructural stability in
nickel-based alloys, but care must be taken to ensure weldability challenges are
minimized. In the case of Haynes 230 for example, matching filler metals are
essentially free from B to reduce concerns over solidification cracking.

Liquation Cracking

Nickel-based alloys typically exhibit a wide melting and solidification range
depending on alloying additions. In general, the wider the solidification range
combined with specific alloying elements can lead to HAZ cracking in areas of the
base metal near welds which may undergo partial melting during welding cycles.
Liquation cracking was first identified in alloy 740 during microstructural exami-
nations of thick section welding trials including base metal HAZ cracking as well as
weld metal cracking. Figure 9 shows the ‘Nil Ductility Range’ (NDR) for a host of
740 and modified 740 compositions along with other nickel-based alloys [30].
Based on these results and other similar studies including computational thermo-
dynamics to help understand how alloying elements segregated and created
low-melting point locations in the material, an optimized 740H composition with
reduced B, Si, and Nb was produced. Multiple welding trials (see Fig. 6) have
shown this composition to be resistant to liquation cracking. Figure 9 also shows

Fig. 7 Trans-varestraint test results for mean and total crack length (MCL and TCL), respectively,
gas tungsten arc welding process with 3% loading strain for A-USC alloys after [27, 28]
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