Studies in Systems, Decision and Control 153

Haiyan Xu Keith W. Hipel D. Marc Kilgour Liping Fang

Conflict Resolution Using the Graph Model: Strategic Interactions in Competition and Cooperation

Studies in Systems, Decision and Control

Volume 153

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: kacprzyk@ibspan.waw.pl

The series "Studies in Systems, Decision and Control" (SSDC) covers both new developments and advances, as well as the state of the art, in the various areas of broadly perceived systems, decision making and control- quickly, up to date and with a high quality. The intent is to cover the theory, applications, and perspectives on the state of the art and future developments relevant to systems, decision making, control, complex processes and related areas, as embedded in the fields of engineering, computer science, physics, economics, social and life sciences, as well as the paradigms and methodologies behind them. The series contains monographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/13304

Haiyan Xu · Keith W. Hipel D. Marc Kilgour · Liping Fang

Conflict Resolution Using the Graph Model: Strategic Interactions in Competition and Cooperation

Haiyan Xu College of Economics and Management Nanjing University of Aeronautics and Astronautics Nanjing, Jiangsu China	D. Marc Kilgour Department of Mathematics Wilfrid Laurier University Waterloo, ON Canada
China	and
Keith W. Hipel Department of Systems Design Engineering University of Waterloo Waterloo, ON Canada	Department of Systems Design Engineering University of Waterloo Waterloo, ON Canada
and Centre for International Governance Innovation Waterloo, ON Canada	Liping Fang Department of Mechanical and Industrial Engineering Ryerson University Toronto, ON Canada
and	and
Balsillie School of International Affairs Waterloo, ON Canada	Department of Systems Design Engineering University of Waterloo Waterloo, ON Canada

 ISSN 2198-4182
 ISSN 2198-4190 (electronic)

 Studies in Systems, Decision and Control
 ISBN 978-3-319-77669-9
 ISBN 978-3-319-77670-5 (eBook)

 https://doi.org/10.1007/978-3-319-77670-5
 ISBN 978-3-319-77670-5
 ISBN 978-3-319-77670-5

Library of Congress Control Number: 2018934334

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To Ju, Sheila, Joan and Hong

Preface

The theory and practice of key advances in the Graph Model for Conflict **Resolution** (GMCR) are presented for strategically investigating real-world disputes arising in any field in which conflict takes place. Since humans are inherently competitive, GMCR can be utilized to ascertain what is the best a particular decision maker (DM) can achieve given the social constraints of a conflict in which the DM dynamically interacts with others in terms of moves and countermoves as he or she seeks to satisfy her goals or value system. When trying to negotiate a climate change agreement, for example, each nation may act according to its own self-interests in order to fare as well as possible in the short term, by reducing its greenhouse gas emissions as little as possible. However, a country may then attempt to find out whether it can do even better if it *cooperates* with other nations to reach a fair climate change deal in which each nation cuts back very significantly in its greenhouse gas emissions in order for the nations of the world to do much better in the long run and thereby avoid the extreme consequences of climate change. Accordingly, the rich range of GMCR methodologies presented in this book and elsewhere can be employed in a highly competitive situation, in which all participants are out to satisfy their own goals, to ones in which there is a high level of cooperation when it is beneficial for DMs to form coalitions.

You, our valued reader, may wish to know if this book contains information that will be useful to your understanding and capability for resolving tough disputes in your domain of interest, which may range from personal disputes within a family to international trading conflicts among corporations and nations. If you are a *researcher* in multiple participant decision-making who wishes to refine and expand basic GMCR methodologies or to employ the latest advances in conflict resolution for tackling complex conflicts within a domain such as stakeholder satisfaction in land use development and planning, then this book should be of high value to you. If you are a *teacher* in operations research, systems engineering, or an applied field of application in which conflict takes place, you may wish to use this book as a course text at the upper undergraduate or graduate levels or else as a valuable

informative reference in a course. If you are a *mentor* of students carrying out research at the Ph.D. or Master's level, or tackling tough problems involving conflict in challenging projects, you will find this book to be highly attractive for meeting your purposes. If you are a student studying conflict resolution and would like to investigate how nations or regions can learn from their past mistakes in order to discover how to avoid similar situations ever taking place again, such as a great depression from an economical perspective or a devastating war with a rogue nation from a military viewpoint, then the contents of this text constitute essential informative conflict resolution techniques to include in your tool kit. A doctoral student may wish to expand the basic GMCR methodologies based on gaps that he finds when systematically studying conflict in fields such as energy development, environmental engineering, water resources, and legal studies. If you are a *practitioner* or professional like a consulting engineer, urban planner, political advisor, manager, lawyer, policy analyst, or military systems engineer, this book will be compelling for you to use in resolving challenging practical problems within your professional area of expertise. For instance, as climate change intensifies and regional wars erupt, military analysts within operations research groups in defense departments will find this book to be very useful for tackling the severe security issues involved with the mass migration of affected populations, as is occurring and intensifying right now in Europe where refugees are continually arriving in increasing numbers. If you are a professional like a computer engineer or computer scientist, you may wish to utilize the basic design for a flexible decision support system (DSS) for conflict resolution put forward in this book for programming the next generation of DSSs for employment by researchers, teachers, mentors, students, and practitioners for applying the new GMCR techniques in this book to real-life situations.

To convince you, our reader, that GMCR can be actually utilized in practice for addressing challenging *real-world disputes*, examples are provided throughout the book to demonstrate how the various ideas can be applied. These applications clearly demonstrate why "good theory means good practice" and vice versa. Hence, in the very first chapter in the book, a highly controversial groundwater contamination dispute which occurred in the town of Elmira, Ontario, Canada, is employed to explain how the conflict can be modeled and analyzed using GMCR in order to gain a better understanding and strategic insights. This same environmental conflict along with others are utilized in the book to explain how various concepts are designed and work in practice.

The basic theoretical structure of GMCR and its expansions were purposefully designed to address conflicts which actually occur in reality. To accomplish this, the underlying axioms of GMCR were formulated to reflect the key characteristics of real-world conflict, thereby forming the solid foundations upon which the theoretical framework can be properly built and expanded. For example, in a conflict situation, DMs often think like a chess player in terms of *moves and countermoves*. If a particular DM is contemplating moving from the current situation to a more preferred state, the DM may wish to know the consequences of this possible move.

If, for instance, a car manufacturer decides to decrease the selling price of its cars and thereby hopefully gain greater market share, will the company's competitors also decrease the cost of buying their cars and put the particular company in a worse situation? If so, the company is better off not to lower its prices. In GMCR, different ways in which people may *behave* under conflict can be captured mathematically by what are called solution concepts or stability definitions. Furthermore, the possible moves that a DM controls can be recorded using a graph in which the scenarios or states that could occur form the vertices (nodes) while moves that the DM can make in one step are drawn as the directed arcs connecting states. Another key feature of GMCR is that only *relative preference information* is required which means that you only have to know if a DM prefers one state over another or if the states are equally preferred. Hence, if someone asks you if you would like to have a cup of coffee or tea, you may respond by saying that I prefer to have coffee, thank you, or it does not matter. You would certainly not give a quantitative response by saying that for me coffee has a utility value of 6.912 while tea is worth 2.591. A key design feature of GMCR is that only relative preference information is needed, which is fairly easy to obtain in practice and mimics the way people think about their preferences.

The foregoing fashion of directly thinking about a conflict in terms of moves and countermoves coupled with relative preferences is called the *logical form* of the game. A person can intuitively understand how a conflict can evolve and be resolved by logically explaining what can happen using moves and countermoves as DMs attempt to do the best they can in a dispute. If, for instance, from a state all of the ways in which a DM could unilaterally improve can be sanctioned by others, then this state is said to be stable for that DM according to a certain type of behavior. If it is not advantageous for any of the DMs to move, the state is a possible resolution or equilibrium if it is reached during the evolution of the dispute under study. For a specific conflict, providing a logical explanation of what can happen is highly appealing. However, the information contained in a graph keeping track of moves or preferences can be stored in a matrix for computational purposes. In fact, the logical interpretation of GMCR both in terms of modeling and stability calculations can be equivalently formulated using a *matrix representation*, which is also called algebraic form. When programming the engine for calculating the stability results, the matrix form is much more efficient than its logical counterpart in terms of the number of required calculations. Moreover, for theoretical purposes, it is much easier to expand GMCR when the matrix form is utilized. Therefore, throughout the book, both the logical and matrix representations of GMCR are provided for all of the advancements that are presented, which makes this book truly unique.

To appreciate the uniqueness and innate capabilities of GMCR, the connections and differences of GMCR with respect to other game theory methods are discussed in the second chapter. Moreover, the relationships of GMCR to other formal decision-making techniques developed in the fields of Operations Research, Systems Engineering and elsewhere are clearly explained. If a decision-making methodology like GMCR is programmed as a DSS so it can be readily applied to actual disputes, the methodology becomes an *operational decision technology*. In practice, one may use a toolbox of decision technologies for addressing a complex problem like urban expansion for which GMCR could be used for investigating the strategic and controversial aspects of the project.

In actuality, everything affects everything else within and among societal and physical systems of systems. For instance, the utilization of fossil fuels in society's industrial, transportation and electricity generation systems in nations around the world releases massive quantities of carbon dioxide into the atmosphere, which is one of a number of deadly greenhouse gases causing average temperatures around the globe to increase significantly over time. This, in turn, alters the earth's climate system, creates extreme weather conditions, shrinks the area and thickness of sea ice, melts glaciers, makes ocean levels rise, and increases the acidity of oceans. These and other negative consequences of climate change on the earth's natural systems can adversely impact societal systems such as agriculture, industry and the economy as a whole, as well as the stakeholders who are part of these systems. Accordingly, it is highly intuitive and informative to envision any problem from a system of systems perspective. Within this vision of reality, a useful tool like GMCR can be employed to investigate the myriads of conflicts that will arise among affected parties, which for the case of climate change will surely increase in number and intensity as the climate continues to deteriorate, perhaps irreversibly.

To responsibly handle complex problems connected to climate change, the Elmira groundwater contamination problem, and other tough issues facing society, an *integrative and adaptive approach to management and governance* can be followed in a participatory fashion with stakeholders whose interests or values must be taken into account in policy design and decision-making. In this way, solutions to problems can be found which adhere to desirable systems characteristics like sustainability, fairness, and robustness. A flexible tool like GMCR can be employed to handle disputes that may arise for which the stakeholders value systems are always considered.

After putting decision-making into perspective in Chap. 2 and explaining the vital role that GMCR has to play, various conflict models are defined in Chap. 3. As explained in Chap. 3, what is called the *option form* of the game is particularly powerful as a notation for keeping track of the options or courses of actions available to each DM in a dispute and recording the possible feasible states or scenarios that could occur in the conflict. These states are then used in both the *logical form* and *matrix representation* of GMCR presented in Sects. 3.2 and 3.3, respectively. Because they reflect the underlying value system of a DM, a crucial input to a conflict model is the relative preference of the DM among the feasible states that could occur.

Subsequent to modeling a given conflict in terms of DMs, states, state transitions, and relative preferences, a stability analysis is carried out in terms of investigating moves and countermoves that could occur according to four *solution concepts* reflecting *human behavior* under conflict when determining if a state is stable or not: Nash stability, general metarationality, symmetric metarationality, and sequential stability. Depending on the type of preference information that is available, these solution concepts are appropriately defined for both the logical and matrix representations of GMCR. Hence, the next four chapters in the book provide the stability definitions for the following types of preference information:

Chapter 4: *Simple preference* in which a given state can be more preferred, equally preferred, or less preferred to another state by a DM.

Chapter 5: *Unknown preference* in which a DM does not know the preference relationship for some pairs of states. This type of preference uncertainty is uniquely defined for employment with GMCR since it does arise in practice. In the last chapter in this book, it is mentioned that fuzzy sets, grey numbers, and probabilistic approaches to preference uncertainty have also been developed for employment with GMCR.

Chapter 6: In some situations, a DM may greatly prefer one state over another such as when environmentalists greatly prefer that an industrialist does not allow his company to significantly pollute the surrounding environment by releasing untreated wastes. This is referred to as *degree of preference* for which the degree can be taken to any level for specified pairs of states.

Chapter 7: *Hybrid preference* in which unknown and degree of preference can occur as well as simple preference.

As mentioned earlier, in addition to determining how well a given DM may fare when behaving independently, one should also determine if a DM can do even better by cooperating with others. Hence, in Chap. 8 *coalitional stabilities* are defined for the aforementioned four types of preference situations for both the logical and matrix forms of GMCR. As an important type of follow-up analysis, the possible *evolution of a conflict* from a specified starting or status quo state to a particular final state is presented for both the logical and matrix representations of GMCR in Chap. 9. In practice, one may wish to know whether a desirable state, such as a win/win resolution, can actually be reached by DMs who have under their control unilateral moves that they can select to levy.

The book concludes with the presentation of a *universal design* of future generations of DSSs for GMCR based on an internal matrix representation structure for handling the current and future expansions of GMCR in Chap. 10. These *future opportunities* include the capability of having systems engineering investigations in which inverse engineering and behavioral engine specification can be fully studied. Inverse engineering or inverse GMCR means ascertaining the preferences needed by DMs for a desirable final state to be an equilibrium. The behavioral engine problem is given the input and output to determine the type of behavior exhibited by the DMs.

So, our cherished readers, we trust that you will enjoy the exciting journey through our comprehensive book. But hang on to your hats: there will be a lot more to come in the future both in terms of *new operational methodologies* for expanding the capabilities of GMCR and also the wealth of *pressing conflicts* that have to be properly addressed right now, as well as challenging conflicts that may

arise in the future as the earth becomes a smaller and smaller place for all of us to live and prosper.

We warmly wish you, our readers, a most revealing and exciting journey through our book.

Bon voyage!

Nanjing, China Waterloo, Canada Waterloo, Canada Toronto, Canada March 2018 Haiyan Xu Keith W. Hipel D. Marc Kilgour Liping Fang

Acknowledgements

The four authors of this book have had the distinct pleasure of working with one another for many years within a stimulating academic environment of friendship, collegiality, and innovation. The academic home in which they developed many of their ideas in conflict resolution, among themselves and with colleagues and students, was the Conflict Analysis Group based in the Department of Systems Design Engineering at the University of Waterloo. The authors have been privileged to work with many gifted scholars at their own universities in Canada and China as well as at many other research institutions around the globe. Accordingly, they would like to convey their deep appreciation to their colleagues and former students who executed research on topics directly connected to the theme of this book or that complemented or inspired research contained in this text. These contributions include co-authorship of research papers that form part of the content of this book, as well as the provision of timely guidance and encouragement.

Although the solid foundations for the leading-edge ideas of the Graph Model for Conflict Resolution (GMCR) contained in this text were cleverly designed and carefully constructed over three decades ago, this book focuses on advances in GMCR achieved during the past ten years, including some material appearing in print here for the first time. Research ideas from journals or other publications are of course properly referenced. Moreover, for material that comes directly from another publication, permission of the copyright holder has been obtained.

As an expression of our sincere gratitude, we would like to record here the names of our fellow researchers who are co-authors or inspirers of ideas contained in this book. In alphabetical order, they are as follows: Taha Alhindi, Yasir Aljefri, Mubarak Al-Mutairi, Motahareh Armin, Abul Bashar, Sean Bernath Walker, Michele Mei-Ting Bristow, David Bristow, Ye (Richard) Chen, Yu Chu, Aldo Dagnino, Mitali De, Jose R. del Monte, Jianfeng Ding, Niall M. Fraser, Bing (Ben) Fu, Kei Fukuyama, Masao Fukushima, Amanda Garcia, Bingfeng Ge, Mohammad Reza Ghanbarpour, Kiyoko Hagihara, Yoshimi Hagaihara, Luai Hamouda, Xueshan Han, Yu Han, Shawei (David) He, Yuhang Hou, Kaixan (Max) Hu, Takehiro Inohara, Ju Jiang, Yangzi Jiang, Monika Karnis, Moustafa Kassab, Young-Jae Kim, Yi (Ginger)

Acknowledgements

Ke, Rami Kinsara, Hanbin (Eric) Kuang, Jonathan R. D. Kuhn, Jason K. Levy, Kevin Wu Li, Xiang-Ming (Samuel) Li, Xuemei Li, Jing Ma, Kaveh Madani, Yasser Matbouli, Darren Bruno Gerrit Meister, K. D. W. Nandalal, Leilei Ni, Donald J. Noakes, Amer Obeidi, Norio Okada, Sevda Payganeh, Xiaoyong (John) Peng, Simone Philpot, the late James Radford, Jiwu Rao, Michael R. Rooks, Sara Anne Ross, J. Fernando Molina Ruibal, Hiroyuki Sakakibara, Bader Sabtan, Maiko Sakamoto, Peter Savich, Majid Sheikhmohammady, Maisa Mendonça Silva, Aihua Song, Nigel W. Stokes, West Suhanic, Hirokazu Tatano, Marcella Maia Bezerra de Araujo Urtiga, Junjie Wang, Lizhong (George) Wang, Muhong Wang, Qian Wang, Colin Williams, Saied Yousefi, Yi Xiao, Peng Xu, Jun Yang, Xian-Pei Yin, Jing (Crystal) Yu, Dao-Zhi Zeng, Jinlong (John) Zhang, Jinshuai Zhao, Shinan Zhao, Yuming (Arthur) Zhu, and Ziming Zhu.

The authors are extremely grateful for the assistance they received in the refinement, processing, and proofreading of the final version of book. Specifically, Shinan Zhao and Yi Xiao provided a great deal of timely and expeditious help in completing the book. The authors would also like to thank professionals at Springer for the expert service they rendered in the publication of the book.

The authors are indebted for financial support provided by funding agencies in China and Canada for their long-standing support of the research contained in this book. In particular, they would like to acknowledge funding from the National Natural Science Foundation of China (NSFC) (Grant Numbers 71071076, 71471087, and 61673209) as well as the Natural Sciences and Engineering Research Council (NSERC) of Canada through its Discovery and Strategic Grants programs. Over the years, the authors' home universities have also furnished research space and in-kind support.

In closing, the authors would like to express their special appreciation of their spouses and family members who provided the love and support that enabled them to blossom in their academic careers and dedicate their creative time to challenging research projects. We all agree that it was our supportive family and social environments that made the writing of this book possible.

Nanjing, China Waterloo, Canada Waterloo, Canada Toronto, Canada March 2018 Haiyan Xu Keith W. Hipel D. Marc Kilgour Liping Fang

Contents

1	Conf	lict Reso	olution in Practice	1
	1.1	The Pe	ervasiveness of Conflict	1
		1.1.1	Pressing Conflicts Facing Society	2
		1.1.2	Objectives of This Book	3
		1.1.3	Audience	4
	1.2	Investi	gating Conflict	5
		1.2.1	Key Ideas	5
		1.2.2	Modeling	6
		1.2.3	Stability Analysis	16
		1.2.4	Follow-Up Analyses	22
		1.2.5	Application Approaches	24
		1.2.6	Benefits	30
	1.3	Journe	ys Through the Book	31
	1.4	Proble	ms	36
	Refer	ences		37
2	Decis	ion-Mal	king in Perspective	43
	2.1	Overvi	ew	43
	2.2	Game '	Theory Methods: Classifications	44
		2.2.1	The Evolution of Game Theory Methods	44
		2.2.2	Classifying Formal Game Theory Techniques	45
	2.3	Formal	Decision-Making Techniques	48
		2.3.1	Operations Research	49
		2.3.2	Systems Engineering	54
		2.3.3	Decision Support Systems	56
	2.4	Conflic	et Resolution in Responsible Governance	58
		2.4.1	System of Systems	59
		2.4.2	Integrative and Adaptive Management	64

	2.5	Import	ant Ideas	65
	2.6	Proble	ms	66
	Refer	ences		68
3	Confl	ict Mod	lels in Graph Form	75
	3.1	Norma	1 Form and Option Form	76
		3.1.1	Normal Form	76
		3.1.2	Option Form	80
	3.2	Graph	Model	84
	0.2	321	Decision Makers	87
		322	States	88
		323	State Transitions	89
		324	Preferences	91
		325	Directed Granh	92
	33	Matrix	Representation of a Graph Model	03
	5.5	331	Definitions from Algebraic Graph Theory	94
		332	A Rule of Priority to Label Colored Arcs	00
		333	A diagonary Matrix and Reachable List	102
		334	Preference Matrices	102
		225	Incidence Matrix and Graph Model	103
	3 /	J.J.J Import	ant Ideas	104
	5.4 2.5	Drobler		105
	3.5 Refer	ences	IIIS	105
	C(1)			111
4	Stabi	Inty Defi	Initions: Simple Preference	111
	4.1	Simple	Preference	112
	1.0	4.1.1	Reachable Lists of a Decision Maker	112
	4.2	Logica	Representation of Stability Definitions	115
		4.2.1	I wo Decision Maker Case	115
		4.2.2	Reachable Lists of a Coalition of Decision Makers	118
		4.2.3	<i>n</i> -Decision Maker Case	121
		4.2.4	Interrelationships Among Stability Definitions	122
	4.3	Matrix	Representation of Stability Definitions	124
		4.3.1	Preference Matrices and UM and UI Matrices	124
		4.3.2	Two Decision Maker Case	125
		4.3.3	Matrices to Construct Reachable Lists	
			of a Coalition	132
		4.3.4	<i>n</i> -Decision Maker Case	141
	4.4	Compu	itational Complexity	144
		4.4.1	Two Decision Maker Case	144
		4.4.2	<i>n</i> -Decision Maker Case	145
	4.5	Applic	ation: Elmira Conflict	146
		4.5.1	Procedures for Calculating Stability	147
		452	Analysis of Stability Results	153

	4.6	Import	ant Ideas	154
	4.7	Problem	ms	154
	Refer	ences		159
5	Stabi	litv Defi	initions: Unknown Preference	161
	5.1	Unkno	wn Preference and Reachable Lists	161
		5.1.1	Reachable Lists of a Decision Maker	162
	5.2	Logica	l Representation of Stability Definitions Under	
		Unkno	wn Preference	164
		5.2.1	Two Decision Maker Case	164
		5.2.2	Reachable Lists of a Coalition	169
		5.2.3	Multiple Decision Maker Case	172
		5.2.4	Relationships Among Stabilities in the Graph	
			Model with Preference Uncertainty	175
	5.3	Matrix	Representation of Stability Definitions Under	
		Unkno	wn Preference	177
		5.3.1	Preference Matrices Including Uncertainty	177
		5.3.2	Two Decision Maker Case	178
		5.3.3	Reachability Matrices for a Coalition	185
		5.3.4	Multiple Decision Maker Case	188
		5.3.5	Computational Complexity	193
	5.4	Applic	ation: Lake Gisborne Conflict	194
		5.4.1	Procedures for Calculating Stability	-
			with Unknown Preference	196
		5.4.2	Reachability Matrices of a Coalition	
			in the Gisborne Model	196
		5.4.3	Analysis of Stability Results for the Gisborne	
			Model	197
	5.5	Import	ant Ideas	199
	5.6	Proble	ms	200
	Refer	ences .		206
	G(1 *			200
6	Stabi	hty Defi	initions: Degrees of Preference	209
	6.1	Multip	The Transformer Construction of Preference	210
		6.1.1	Inree Types of Preference	210
	()	6.1.2 D	Multiple Degrees of Preference	212
	6.2	Reacha	able Lists of a Decision Maker	214
		6.2.1	Reachable Lists for Three Degrees of Preference	214
		6.2.2	Reachable Lists for Multiple Degrees	
		. .	of Preterence	215
	6.3	Logica	I Representation of Stabilities for Three Types	
		of Pref	erence	216
		6.3.1	Two Decision Maker Case	217

		6.3.2	Reachable Lists of a Coalition of Decision Makers	221
		6.3.3	<i>n</i> -Decision Maker Case	221
	6.4	Logica	al Representation of Stabilities for Multiple Degrees	
		of Pref	ferences	223
		6.4.1	Two Decision Maker Case	223
		6.4.2	Reachable Lists of a Coalition of Decision Makers	229
		6.4.3	<i>n</i> -Decision Maker Case	230
		6.4.4	Interrelationship Among Stability Definitions	
			for Multiple Degrees of Preference	234
	6.5	Matrix	Representation of Stability Definitions for Three	
		Degree	es of Preference	238
		6.5.1	Preference Matrices Including Strength	
			of Preference	238
		6.5.2	Two Decision Maker Case	240
		6.5.3	Reachability Matrix Under Strength of Preference	244
		6.5.4	<i>n</i> -Decision Maker Case	248
	6.6	Applic	cation: The Garrison Diversion Unit (GDU) Conflict	251
		6.6.1	Model of the GDU Conflict	252
		6.6.2	Stability Analysis Under Four-Degree Preference	254
	6.7	Import	ant Ideas	257
	6.8	Proble	ms	257
	Refer	ences .		259
7	Stabi	litv Def	initions: Hybrid Preference	261
	7.1	Hybrid	Preference and Reachable Lists	262
	7.2	Logica	al Representation of Stability Definitions Under	
		Hvbrid	l Preference	263
		7.2.1	Two Decision Maker Case	264
		7.2.2	Reachable List of a Coalition of Decision Makers	
			Under Hybrid Preference	268
		7.2.3	<i>n</i> -Decision Maker Case	269
		7.2.4	Interrelationships Among Stabilities Under	
			Hybrid Preference	273
	7.3	Some	Important Matrices Under Hybrid Preference.	275
		7.3.1	Preference Matrices Including Uncertainty	
			and Strength	275
		7.3.2	Reachability Matrices Under Hybrid Preference	277
	7.4	Matrix	Representation of Stabilities Under Hybrid	
		Prefere	ence	279
		7.4.1	Matrix Representation of General Stabilities	279
		7.4.2	Matrix Representation of Strong and Weak	,
			Stabilities	282
	7.5	Applic	ation.	285

	7.6	Important Ideas	288
	7.7	Problems	289
	Refei	rences	290
8	Coal	itional Stabilities	293
	8.1	Coalition Movement Definitions	294
	8.2	Logical Representation of Coalitional Stabilities Under	
		Simple Preference	295
	8.3	Logical Representation of Coalitional Stabilities Under	
		Unknown Preference	297
		8.3.1 Logical Representation of Coalitional Stabilities	
		Indexed <i>l</i>	298
	8.4	Logical Representation of Coalitional Stabilities Under	
		Three Degrees of Preference	300
		8.4.1 General Coalitional Stabilities	300
		8.4.2 Strong or Weak Coalitional Stabilities	302
	8.5	Logical Representation of Coalitional Stability	
		with Hybrid Preference	303
		8.5.1 General Coalitional Stabilities with Hybrid	
		Preference	303
		8.5.2 Strong Coalitional Stabilities with Hybrid	
		Preference	305
	8.6	Matrix Representation of Coalitional Stability Under	
		Simple Preference	307
		8.6.1 Coalitional Improvement Matrix	307
		8.6.2 Matrix Representation of Coalitional Stabilities	308
	8.7	Matrix Representation of Coalitional Stabilities Under	
		Unknown Preference	312
		8.7.1 Matrix Representation of Coalitional Improvement	
		or Uncertain Move	312
		8.7.2 Matrix Representation of Coalitional Stabilities	
		Indexed <i>l</i>	314
	8.8	Matrix Representation of Coalitional Stability with Three	
		Degrees of Preference	322
		8.8.1 Matrix Representation of Mild or Strong	
		Coalitional Improvement	322
		8.8.2 Matrix Representation of General Coalitional	
		Stabilities	323
		8.8.3 Matrix Representation of Strong Coalitional	
		Stabilities	327
	8.9	Matrix Representation of Coalitional Stability with Hybrid	
		Preference	330
		8.9.1 Matrix Representation of Coalitional Improvement	
		Under Hybrid Preference	330

		8.9.2	Matrix Representation of General Coalitional	
			Stabilities with Hybrid Preference	332
		8.9.3	Matrix Representation of Strong Coalitional	
			Stabilities with Hybrid Preference	340
	8.10	Applica	ation: Coalition Analysis for Lake Gisborne Conflict	
		with Si	mple Preference	344
		8.10.1	Reachability Matrices in the Lake Gisborne Model	346
		8.10.2	Coalitional Stability Results in the Lake Gisborne	
			Model	347
	8.11	Importa	ant Ideas	349
	8.12	Probler	ns	350
	Refer	ences		351
0	Falle		naturia, Canfliat Frankian	252
9	F 0110	w-Up Al	Degreesestation of Conflict Evolution	252
	9.1		Course Desferments	254
		9.1.1		254
		9.1.2	Unknown Preference	333
		9.1.3	Infree Degrees of Preference	357
	0.0	9.1.4		339
	9.2	Matrix	Representation of Conflict Evolution Based	261
		on Adj		361
		9.2.1	t-Legal Unilateral Move Matrix Under Various	262
		0.0.0	Preference Structures	362
		9.2.2	Status Quo Matrices Under Various Preference	264
		0.0.0	Structures.	364
		9.2.3	Application: Status Quo Analysis for Elmira	244
	0.0		Conflict Under Simple Preference	366
	9.3	Matrix	Representation of Conflict Evolution Based	2.00
		on Edg	e Consecutive Matrix	369
		9.3.1	Weighted Conversion Function for Finding	
			Colored Paths.	370
		9.3.2	Computer Implementation	377
		9.3.3	Procedures of Employing the Algebraic Approach	
			Based on Edge Consecutive Matrix	385
		9.3.4	Applications: Analysis of Conflict Evolution	
		_	Based on Edge Consecutive Matrix	386
	9.4	Importa	ant Ideas	397
	9.5	Probler	ns	398
	Refer	ences		399
10	Desig	n of a L	Decision Support System for Conflict Resolution	401
-	10.1	Decisio	on Support Systems	402
		10.1.1	Introduction	402
		10.1.2	Existing Decision Support Systems for the Graph	
			Model	404

Contents

10.2	2 Univers	sal Design of a Decision Support System	
	for the	Graph Model	05
	10.2.1	Overall Design 4	05
	10.2.2	Input Subsystem	06
	10.2.3	Analysis Engine 4	10
	10.2.4	Output Subsystem 4	13
10.3	Ongoin	g and Future Developments in the Graph Model	
	Method	lology	14
	10.3.1	Ongoing Expansions of the Graph Model 4	15
	10.3.2	Expansions of Systems Investigations in Conflict	
		Resolution	18
10.4	Probler	ns 4	21
Refe	erences		22
Index		4	27

About the Authors

Haiyan Xu is *Professor* with the College of Economics and Management, Nanjing University of Aeronautics and Astronautics, China. She received her B.Sc. degree from Nanjing University, China, and her Master's of Mathematics and Ph.D. degree in Systems Design Engineering from the University of Waterloo in Canada. Her current research interests in Game Theory and Optimization include the development of normal algebraic techniques for conflict resolution and methods for optimization with applications in environmental management and finance. She is *recipient* of the Excellent Professor Award from the Province of Jiangsu, China.

Keith W. Hipel is University Professor of Systems Design Engineering at the University of Waterloo, Officer of the Order of Canada, former President of the Academy of Science (Royal Society of Canada), Senior Fellow of the Centre for International Governance Innovation, Fellow of the Balsillie School of International Affairs, and Coordinator of the Conflict Analysis Group at Waterloo. He is globally renowned for his interdisciplinary research in Systems Engineering on the development of conflict resolution, multiple objective decisionmaking, and time series analysis for addressing complex system of systems problems lying at the confluence of society, technology, and the environment, with applications in water resources, environmental engineering, energy, and sustainable development.

D. Marc Kilgour is *Professor* of Mathematics at Wilfrid Laurier University and *Adjunct Professor* of Systems Design Engineering at the University of Waterloo. Most of his many publications provide a mathematical analysis of multiparty decision problems. He has contributed innovative applications of game theory and related methodologies to international relations, arms control, environmental management, negotiation, arbitration, voting, fair division, and coalition formation, and pioneered the application of decision support systems to strategic conflict. He was *Co-editor* of the Springer *Handbook of Group Decision and Negotiation* (2010), *President* of the Peace Science Society in 2012–2013, and *President* of the INFORMS Section on Group Decision and Negotiation in 2014–2017.

Liping Fang is *Professor* of Mechanical and Industrial Engineering, former *Chair* of his Department, and *Associate Dean*, Undergraduate Programs and Student Affairs, Faculty of Engineering and Architectural Science at Ryerson University and *Adjunct Professor* of Systems Design Engineering at the University of Waterloo. His research interests in Industrial and Systems Engineering include conflict resolution, agent-based modeling and simulation, e-services, environmental and water resources management, and decision support systems. He is *Fellow* of the Canadian Academy of Engineering (FCAE), Institute of Electrical and Electronics Engineers (FIEEE), Engineering Institute of Canada (FEIC), and Canadian Society for Mechanical Engineering (FCSME).

Acronyms

CCA	Council of Canadian Academies
CDO	Canadian Opposition
CIUM	Coalition Improvement or Uncertain Move
CWAM	Cooperative Water Allocation Model
DBMS	Database Management System
DGMS	Dialog Generation and Management System
DM	Decision Maker
DSS	Decision Support System
GCGMR	General Coalitional General Metarationality
GCGS	General Coalitional Graph Model Stability
GCNash	General Coalitional Nash Stability
GCSEQ	General Coalitional Sequential Stability
GCSMR	General Coalitional Symmetric Metarationality
GDU	Garrison Diversion Unit
GGMR	General General Metarationality
GGS	General Graph Model Stability
GHG	Greenhouse Gases
GMCR	Graph Model for Conflict Resolution
GMCR II	GMCR (Graph Model for Conflict Resolution) II
GMR	General Metarationality
GNash	General Nash Stability
GS	Graph Model Stability
GSEQ	General Sequential Stability
GSMR	General Symmetric Metarationality
GWP	Global Water Partnership
IG	Integrated Graph
INBO	International Network of Basin Organizations
INFOR	Information Systems and Operational Research
MBMS	Model-base Management System
MCDA	Multiple Criteria Decision Analysis

MRCR	Matrix Representation for Conflict Resolution
MRSC	Matrix Representation of Solution Concepts
MRSCU	Matrix Representation of Solution Concepts with Preference
	Uncertainty
MSUI	Mild or Strong Unilateral Improvement
MSUIUM	Mild or Strong Unilateral Improvement or Uncertain Move
OR	Operations Research
SCGS	Strong Coalitional Graph Model Stability
SCGMR	Strong Coalitional General Metarationality
SCSEQ	Strong Coalitional Sequential Stability
SCSMR	Strong Coalitional Symmetric Metarationality
SEQ	Sequential Stability
SGMR	Strong General Metarationality
SGS	Strong Graph Model Stability
SMR	Symmetric Metarationality
SoS	System of Systems
SSEQ	Strong Sequential Stability
SSMR	Strong Symmetric Metarationality
UI	Unilateral Improvement
UIUM	Unilateral Improvement or Uncertain Move
UM	Unilateral Move
USS	United States Support
UUM	Unilateral Uncertain Move
WCGMR	Weak Coalitional General Metarationality
WCGS	Weak Coalitional Graph Model Stability
WCSEQ	Weak Coalitional Sequential Stability
WCSMR	Weak Coalitional Symmetric Metarationality
WGMR	Weak General Metarationality
WGS	Weak Graph Model Stability
WSEQ	Weak Sequential Stability
WSMR	Weak Symmetric Metarationality
WWI	World War I
WWII	World War II

List of Figures

Fig. 1.1	Main steps for applying GMCR to a specific conflict	7
Fig. 1.2	Location of the Elmira groundwater contamination dispute	
	in Southern Ontario, Canada	9
Fig. 1.3	An example of transitive and intransitive preferences	15
Fig. 1.4	Integrated graph of the Elmira conflict	20
Fig. 1.5	Flow of the contents provided in the book	32
Fig. 2.1	Genealogy of formal multiple participant decision-making	
	models	46
Fig. 2.2	Model-based decision support system for conflict	
	resolution	57
Fig. 2.3	Systems thinking in responsible governance	59
Fig. 2.4	Kinds of multiple participant-multiple objective systems	
	of systems	60
Fig. 2.5	Societal and environmental systems of systems	60
Fig. 3.1	Graph model for the sustainable development conflict	85
Fig. 3.2	Integrated graph model for the sustainable development	
	conflict	86
Fig. 3.3	A graph model	87
Fig. 3.4	Movements from state s_1 to state s_3 for the sustainable	
	development conflict	90
Fig. 3.5	Integrated graph for the Elmira model	91
Fig. 3.6	Directed graphs	93
Fig. 3.7	A directed graph and its line graph	94
Fig. 3.8	a_k and a_h are consecutive in order $a_k a_h \ldots \ldots \ldots \ldots \ldots$	99
Fig. 3.9	The labels of edges	101
Fig. 3.10	Labeled graph model for the sustainable development	
	conflict	101
Fig. 3.11	Different representations of a graph model	104
Fig. 3.12	The graph model of the superpower nuclear confrontation	
	conflict	108

	•	٠	٠
XXVI	l	1	1

Fig. 4.1	Relations among the subsets of S and the corresponding	
•	reachable lists	113
Fig. 4.2	Graph model for a two DM model	114
Fig. 4.3	Graph model with four DMs and six states	120
Fig. 4.4	Interrelationships among the solution concepts	122
Fig. 4.5	a_k incident on a_h in $IG(G)$	135
Fig. 4.6	The arc-by-arc and the state-by-state UM paths	136
Fig. 4.7	The arc-by-arc evolutionary paths from a_1 to a_4	137
Fig. 4.8	Integrated graph model for the Elmira conflict	147
Fig. 4.9	The labeled graph for the Elmira conflict	149
Fig. 4.10	The graph model of the superpower nuclear confrontation	
0	conflict	157
Fig. 4.11	The graph model of the Rafferty-Alameda dams conflict	158
Fig. 5.1	Relations among subsets of S and reachable lists including	
0	preference uncertainty	163
Fig. 5.2	Graph model for the extended sustainable development	
0	conflict	166
Fig. 5.3	Graph model for Example 5.3	171
Fig. 5.4	Colored paths from s_1 by coalition $N \setminus \{1\}$	172
Fig. 5.5	Relationships among four stabilities indexed <i>l</i>	175
Fig. 5.6	Relationships among stabilities indexed <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> ,	176
Fig. 5.7	Graph model for the Gisborne conflict	195
Fig. 5.8	Graph model for the BC salmon aquaculture conflict	203
Fig. 6.1	Relationships among subsets of S and reachable lists from s	214
Fig. 6.2	Graph model for the extended sustainable development	
8	conflict under three-degree preference.	219
Fig. 6.3	Nash stability at degree k for DM i	224
Fig. 6.4	GMR stability at degree k for DM i	225
Fig. 6.5	SMR stability at degree k^+ for DM <i>i</i>	227
Fig. 6.6	SEQ stability at degree k for DM i	228
Fig. 6.7	General metarationality at degree k for DM i	231
Fig. 6.8	Symmetric metarationality at degree k^+ for DM <i>i</i>	232
Fig. 6.9	Sequential stability at degree k for DM i	234
Fig. 6.10	Interrelationships among four stabilities at level k	235
Fig. 6.11	The legal sequence of UM from state s_k	237
Fig. 6.12	Graph model for the extended sustainable development	
8	conflict under three-degree preference.	245
Fig. 6.13	Garrison Diversion Unit (GDU)	252
Fig. 6.14	The integrated graph model for movement in the GDU	
119. 0.11	conflict	254
Fig. 71	Relations among subsets of S and reachable lists including	201
- 15. /.1	hybrid preference	263
Fig 72	Interrelationships among strong GMR stabilities indexed	205
- 16. 7.2	as a b c and d	275
	us u, o, o und u	215

Fig.	7.3	Interrelationships among general GMR stabilities indexed	
		as a, b, c and d	275
Fig.	7.4	Graph model for the Gisborne conflict	286
Fig.	8.1	Graph model of moves for the Lake Gisborne conflict	345
Fig.	9.1	The colored multidigraph G	376
Fig.	9.2	Transformed graphs of G	377
Fig.	9.3	The weighted colored graph for the Elmira conflict	387
Fig.	9.4	Conversion graph for finding evolutionary UM paths	
		for the Elmira conflict.	389
Fig.	9.5	Graph conversion for finding evolutionary UI paths	
		for the Elmira conflict.	390
Fig.	9.6	Evolutionary paths by UIs with status quo state s_2	391
Fig.	9.7	Conversion graph for finding the evolutionary UI paths	
		for the Gisborne conflict	393
Fig.	9.8	Conversion graph for finding the evolutionary UIUM paths	
		for the Gisborne conflict	394
Fig.	9.9	Transformation of the graph model for the GDU conflict	395
Fig.	9.10	The reduced graph allowing MSUIs only for the GDU	
		conflict	396
Fig.	10.1	The framework of a general DSS	403
Fig.	10.2	The overall structure of a graph model based DSS	406
Fig.	10.3	Input subsystem	407
Fig.	10.4	Analysis engine of a graph model based DSS	410
Fig.	10.5	The output subsystem of a graph model based DSS	413
Fig.	10.6	The perspective of future development in GMCR	419
Fig.	10.7	The "black box system" of ground penetrating radar	420

List of Tables

Table 1.1	Decision makers and options in the Elmira conflict	11
Table 1.2	Feasible states for the Elmira conflict.	11
Table 1.3	Ranking of states for MoE in the Elmira conflict from	
	most to least preferred	13
Table 1.4	Option prioritization for MoE in the Elmira conflict	14
Table 1.5	Ranking of states for the three decision makers	
	in the Elmira conflict	14
Table 1.6	Solution concepts describing human behavior under	
	conflict (based on Table 1 in Hipel et al. 1997)	18
Table 1.7	Evolution of the Elmira conflict from the status quo	
	to a transitional noncooperative equilibrium	
	and to a final cooperative coalition equilibrium	19
Table 1.8	Application areas	26
Table 1.9	Descriptions of the cases used in this book	29
Table 1.10	Key contents in the book	33
Table 2.1	Classification of decision-making models	51
Table 2.2	Two levels of decision-making	53
Table 3.1	2×2 game in normal form	77
Table 3.2	Sustainable development game in normal form	78
Table 3.3	Sustainable development game in option form	82
Table 3.4	Options for the Elmira model	88
Table 3.5	Feasible states for the Elmira model	89
Table 3.6	Prisoners Dilemma in normal form	106
Table 3.7	The game of Chicken in normal form	106
Table 3.8	Decision makers, options and feasible states	
	for the superpower nuclear confrontation conflict	108
Table 4.1	Nash stability of the sustainable development game	
	with simple preferences	116
Table 4.2	GMR stability of the sustainable development game	
	with simple preferences	117

Table 4.3	SMR stability of the sustainable development game	
	with simple preferences	118
Table 4.4	SEQ stability of the sustainable development game	
	with simple preferences	118
Table 4.5	Summary of stability results for the sustainable	
	development game with simple preferences	123
Table 4.6	The computational complexity of GMR stability	
	using MRSC	145
Table 4.7	Options and feasible states for the Elmira model	146
Table 4.8	Stability results of the Elmira conflict	148
Table 4.9	Adjacency matrices for the Elmira conflict	150
Table 4.10	Preference matrices for the Elmira conflict	151
Table 4.11	Reachability matrices for the Elmira conflict	152
Table 4.12	Stability matrices for the Elmira conflict	153
Table 4.13	Diagonal entries of stability matrices for the Elmira	
	conflict	153
Table 4.14	The airline conflict in normal form	155
Table 4.15	Decision makers, options and feasible states for the	
	superpower nuclear confrontation conflict	157
Table 4.16	Feasible states for the Rafferty-Alameda dams conflict	158
Table 5.1	Options and feasible states for the extended sustainable	
	development conflict	166
Table 5.2	Stabilities indexed a of the extended sustainable	
	development game with uncertain preference	167
Table 5.3	Stability results of the extended sustainable development	
	game with uncertain preference	170
Table 5.4	Preference information for the graph model shown	
	in Fig. 5.3	172
Table 5.5	Stability matrices for two-DM conflicts with preference	
	uncertainty	184
Table 5.6	Diagonal entries of stability matrices for the extended	
	sustainable development game with uncertain preference	185
Table 5.7	Options and feasible states for the Gisborne conflict	195
Table 5.8	Certain preference information for the Gisborne model	195
Table 5.9	UM reachability matrices for the Gisborne model	198
Table 5.10	UI reachability matrices for the Gisborne model	198
Table 5.11	UIUM reachability matrices for the Gisborne model	199
Table 5.12	Stability analysis of the Gisborne model	200
Table 5.13	The features of the explicit matrix method	201
Table 5.14	DMs and options of the BC salmon aquaculture conflict	204
Table 5.15	Feasible state for the BC salmon aquaculture conflict	205
Table 5.16	Relative preference for DMs in the BC salmon	
	aquaculture conflict	206