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Preface

Making the best possible decision according to some desired set of criteria is always
difficult. Such decisions are even more difficult when there are time constraints and
can be impossible when there is uncertainty in the system model. Yet, the ability to
make such decisions can enable higher levels of autonomy in robotic systems and,
as a result, have dramatic impacts on society. Given this motivation, various
mathematical theories have been developed related to concepts such as optimality,
feedback control, and adaptation/learning. This book describes how such theories
can be used to develop optimal (i.e., the best possible) controllers/policies (i.e., the
decision) for a particular class of problems. Specifically, this book is focused on the
development of concurrent, real-time learning and execution of approximate opti-
mal policies for infinite-horizon optimal control problems for continuous-time
deterministic uncertain nonlinear systems.

The developed approximate optimal controllers are based on reinforcement
learning-based solutions, where learning occurs through an actor–critic-based
reward system. Detailed attention to control-theoretic concerns such as convergence
and stability differentiates this book from the large body of existing literature on
reinforcement learning. Moreover, both model-free and model-based methods are
developed. The model-based methods are motivated by the idea that a system can
be controlled better as more knowledge is available about the system. To account
for the uncertainty in the model, typical actor–critic reinforcement learning is
augmented with unique model identification methods. The optimal policies in this
book are derived from dynamic programming methods; hence, they suffer from the
curse of dimensionality. To address the computational demands of such an
approach, a unique function approximation strategy is provided to significantly
reduce the number of required kernels along with parallel learning through novel
state extrapolation strategies.

The material is intended for readers that have a basic understanding of nonlinear
analysis tools such as Lyapunov-based methods. The development and results may
help to support educators, practitioners, and researchers with nonlinear
systems/control, optimal control, and intelligent/adaptive control interests working
in aerospace engineering, computer science, electrical engineering, industrial
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engineering, mechanical engineering, mathematics, and process engineering
disciplines/industries.

Chapter 1 provides a brief introduction to optimal control. Dynamic
programming-based solutions to optimal control problems are derived, and the
connections between the methods based on dynamic programming and the methods
based on the calculus of variations are discussed, along with necessary and suffi-
cient conditions for establishing an optimal value function. The chapter ends with a
brief survey of techniques to solve optimal control problems. Chapter 2 includes a
brief review of dynamic programming in continuous time and space. In particular,
traditional dynamic programming algorithms such as policy iteration, value itera-
tion, and actor–critic methods are presented in the context of continuous-time
optimal control. The role of the optimal value function as a Lyapunov function is
explained to facilitate online closed-loop optimal control. This chapter also high-
lights the problems and limitations of existing techniques, thereby motivating the
development in this book. The chapter concludes with some historic remarks and a
brief classification of the available dynamic programming techniques.

In Chap. 3, online adaptive reinforcement learning-based solutions are devel-
oped for infinite-horizon optimal control problems for continuous-time uncertain
nonlinear systems. A novel actor–critic–identifier structure is developed to
approximate the solution to the Hamilton–Jacobi–Bellman equation using three
neural network structures. The actor and the critic neural networks approximate the
optimal controller and the optimal value function, respectively, and a robust
dynamic neural network identifier asymptotically approximates the uncertain sys-
tem dynamics. An advantage of using the actor–critic–identifier architecture is that
learning by the actor, critic, and identifier is continuous and concurrent, without
requiring knowledge of system drift dynamics. Convergence is analyzed using
Lyapunov-based adaptive control methods. The developed actor–critic method is
extended to solve trajectory tracking problems under the assumption that the system
dynamics are completely known. The actor–critic–identifier architecture is also
extended to generate approximate feedback-Nash equilibrium solutions to N-player
nonzero-sum differential games. Simulation results are provided to demonstrate the
performance of the developed actor–critic–identifier method.

Chapter 4 introduces the use of an additional adaptation strategy called con-
current learning. Specifically, a concurrent learning-based implementation of
model-based reinforcement learning is used to solve approximate optimal control
problems online under a finite excitation condition. The development is based on
the observation that, given a model of the system, reinforcement learning can be
implemented by evaluating the Bellman error at any number of desired points in the
state space. By exploiting this observation, a concurrent learning-based parameter
identifier is developed to compensate for uncertainty in the parameters.
Convergence of the developed policy to a neighborhood of the optimal policy is
established using a Lyapunov-based analysis. Simulation results indicate that the
developed controller can be implemented to achieve fast online learning without the
addition of ad hoc probing signals as in Chap. 3. The developed model-based
reinforcement learning method is extended to solve trajectory tracking problems for
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uncertain nonlinear systems and to generate approximate feedback-Nash equilib-
rium solutions to N-player nonzero-sum differential games.

Chapter 5 discusses the formulation and online approximate feedback-Nash
equilibrium solution for an optimal formation tracking problem. A relative control
error minimization technique is introduced to facilitate the formulation of a feasible
infinite-horizon total-cost differential graphical game. A dynamic programming-
based feedback-Nash equilibrium solution to the differential graphical game is
obtained via the development of a set of coupled Hamilton–Jacobi equations. The
developed approximate feedback-Nash equilibrium solution is analyzed using a
Lyapunov-based stability analysis to yield formation tracking in the presence of
uncertainties. In addition to control, this chapter also explores applications of dif-
ferential graphical games to monitoring the behavior of neighboring agents in a
network.

Chapter 6 focuses on applications of model-based reinforcement learning to
closed-loop control of autonomous vehicles. The first part of the chapter is devoted
to online approximation of the optimal station keeping strategy for a fully actuated
marine craft. The developed strategy is experimentally validated using an autono-
mous underwater vehicle, where the three degrees of freedom in the horizontal
plane are regulated. The second part of the chapter is devoted to online approxi-
mation of an infinite-horizon optimal path-following strategy for a unicycle-type
mobile robot. An approximate optimal guidance law is obtained through the
application of model-based reinforcement learning and concurrent learning-based
parameter estimation. Simulation results demonstrate that the developed method
learns an optimal controller which is approximately the same as an optimal con-
troller determined by an off-line numerical solver, and experimental results
demonstrate the ability of the controller to learn the approximate solution in real
time.

Motivated by computational issues arising in approximate dynamic program-
ming, a function approximation method is developed in Chap. 7 that aims to
approximate a function in a small neighborhood of a state that travels within a
compact set. The development is based on the theory of universal reproducing
kernel Hilbert spaces over the n-dimensional Euclidean space. Several theorems are
introduced that support the development of this State Following (StaF) method. In
particular, it is shown that there is a bound on the number of kernel functions
required for the maintenance of an accurate function approximation as a state moves
through a compact set. Additionally, a weight update law, based on gradient des-
cent, is introduced where good accuracy can be achieved provided the weight
update law is iterated at a high enough frequency. Simulation results are presented
that demonstrate the utility of the StaF methodology for the maintenance of accurate
function approximation as well as solving the infinite-horizon optimal regulation
problem. The results of the simulation indicate that fewer basis functions are
required to guarantee stability and approximate optimality than are required when a
global approximation approach is used.
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Chapter 1
Optimal Control

1.1 Introduction

The ability to learn behaviors from interactions with the environment is a desirable
characteristic of a cognitive agent. Typical interactions between an agent and its
environment can be described in terms of actions, states, and rewards (or penalties).
Actions executed by the agent affect the state of the system (i.e., the agent and the
environment), and the agent is presented with a reward (or a penalty). Assuming that
the agent chooses an action based on the state of the system, the behavior (or the
policy) of the agent can be described as amap from the state-space to the action-space.

Desired behaviors can be learned by adjusting the agent-environment interaction
through the rewards/penalties. Typically, the rewards/penalties are qualified by a cost.
For example, in many applications, the correctness of a policy is often quantified in
terms of the Lagrange cost and the Mayer cost. The Lagrange cost is the cumulative
penalty accumulated along a path traversed by the agent and the Mayer cost is the
penalty at the boundary. Policies with lower total cost are considered better and
policies that minimize the total cost are considered optimal. The problem of finding
the optimal policy that minimizes the total Lagrange and Meyer cost is known as the
Bolza optimal control problem.

1.2 Notation

Throughout the book, unless otherwise specified, the domain of all the functions is
assumed to beR≥0. Function names corresponding to state and control trajectories are
reused to denote elements in the range of the function. For example, the notation u (·)
is used to denote the function u : R≥t0 → R

m , the notation u is used to denote an arbi-
trary element ofRm , and the notation u (t) is used to denote the value of the function
u (·) evaluated at time t. Unless otherwise specified, all the mathematical quanti-
ties are assumed to be time-varying, an equation of the form g (x) = f + h (y, t)
is interpreted as g (x (t)) = f (t) + h (y (t) , t) for all t ∈ R≥0, and a definition of
the form g (x, y) � f (y) + h (x) for functions g : A × B → C , f : B → C and
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h : A → C is interpreted as g (x, y) � f (y) + h (x) , ∀ (x, y) ∈ A × B. The nota-
tion ‖h‖χ

denotes supξ∈χ ‖h (ξ)‖, for a continuous function h : Rn → R
k and a

compact set χ . When the compact set is clear from the context, the notation ‖h‖ is
utilized.

1.3 The Bolza Problem

Consider a controlled dynamical system described by the initial value problem

ẋ (t) = f (x (t) , u (t) , t) , x (t0) = x0, (1.1)

where t0 is the initial time, x : R≥t0 → R
n denotes the system state and u : R≥t0 →

U ⊂ R
m denotes the control input, and U denotes the action-space.

To ensure local existence and uniqueness of Carathéodory solutions to (1.1), it is
assumed that the function f : Rn ×U × R≥t0 → R

n is continuous with respect to
t and u, and continuously differentiable with respect to x . Furthermore, the control
signal, u (·), is restricted to be piecewise continuous. The assumptions stated here are
sufficient but not necessary to ensure local existence and uniqueness of Carathéodory
solutions to (1.1). For further discussion on existence anduniqueness ofCarathéodory
solutions, see [1, 2]. Further restrictions on the dynamical system are stated, when
necessary, in subsequent chapters.

Consider a fixed final time optimal control problem where the optimality of a
control policy is quantified in terms of a cost functional

J (t0, x0, u (·)) =
t f∫

t0

L (x (t; t0, x0, u (·)) , u (t) , t) dt + Φ
(
x f
)
, (1.2)

where L : Rn ×U × R≥0 → R is the Lagrange cost, Φ : Rn → R is the Mayer
cost, and t f and x f � x

(
t f
)
denote the final time and state, respectively. In (1.2),

the notation x (t; t0, x0, u (·)) is used to denote a trajectory of the system in (1.1),
evaluated at time t , under the controller u (·), starting at the initial time t0, and with
the initial state x0. Similarly, for a given policy φ : Rn → R

n , the short notation
x (t; t0, x0, φ (x (·))) is used to denote a trajectory under the feedback controller
u (t) = φ (x (t; t0, x0, u (·))). Throughout the book, the symbol x is also used to
denote generic initial conditions in Rn . Furthermore, when the controller, the initial
time, and the initial state are understood from the context, the shorthand x (·) is used
when referring to the entire trajectory, and the shorthand x (t) is used when referring
to the state of the system at time t.

The two most popular approaches to solve Bolza problems are Pontryagin’s max-
imum principle and dynamic programming. The two approaches are independent,
both conceptually and in terms of their historic development. Both the approaches
are developed on the foundation of calculus of variations, which has its origins in
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Newton’s Minimal Resistance Problem dating back to 1685 and Johann Bernoulli’s
Brachistochrone problem dating back to 1696. The maximum principle was devel-
oped by the Pontryagin school at the Steklov Institute in the 1950s [3]. The devel-
opment of dynamic programming methods was simultaneously but independently
initiated by Bellman at the RAND Corporation [4]. While Pontryagin’s maximum
principle results in optimal control methods that generate optimal state and control
trajectories starting from a specific state, dynamic programming results in methods
that generate optimal policies (i.e., they determine the optimal decision to be made
at any state of the system).

Barring some comparative remarks, the rest of this monograph will focus on the
dynamic programming approach to solve Bolza problems. The interested reader is
directed to the books by Kirk [5], Bryson and Ho [6], Liberzon [7], and Vinter [8]
for an in-depth discussion of Pontryagin’s maximum principle.

1.4 Dynamic Programming

Dynamic programming methods generalize the Bolza problem. Instead of solving
the fixed final time Bolza problem for particular values of t0, t f , and x , a family of
Bolza problems characterized by the cost functionals

J (t, x, u (·)) =
t f∫

t

L (x (τ ; t, x, u (·)) , u (τ ) , τ ) dτ + Φ
(
x f
)

(1.3)

is solved, where t ∈ [t0, t f ], t f ∈ R≥0, and x ∈ R
n . A solution to the family of Bolza

problems in (1.3) can be characterized using the optimal cost-to-go function (i.e.,
the optimal value function) V ∗ : Rn × R≥0 → R, defined as

V ∗ (x, t) � inf
u[t,t f ]

J (t, x, u (·)) , (1.4)

where the notation u[t,τ ] for τ ≥ t ≥ t0 denotes the controller u (·) restricted to the
time interval [t, τ ].

1.4.1 Necessary Conditions for Optimality

In the subsequent development, a set of necessary conditions for the optimality of
the value function are developed based on Bellman’s principle of optimality.

Theorem 1.1 [7, p. 160] The value function, V ∗, satisfies the principle of optimality.
That is, for all (x, t) ∈ R

n × [
t0, t f

)
, and for all Δt ∈ (0, t f − t

]
,
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V ∗ (x, t) = inf
u[t,t+Δt]

⎧⎨
⎩

t+Δt∫

t

L (x (τ ) , u (τ ) , τ ) dτ + V ∗ (x (t + Δt) , t + Δt)

⎫⎬
⎭ .

(1.5)

Proof Consider the function V : Rn × [
t0, t f

) → R defined as

V (x, t) � inf
u[t,t+Δt]

⎧⎨
⎩

t+Δt∫

t

L (x (τ ) , u (τ ) , τ ) dτ + V ∗ (x (t + Δt) , t + Δt)

⎫⎬
⎭ .

Based on the definition in (1.4)

V (x, t) = inf
u[t,t+Δt]

{ t+Δt∫

t

L (x (τ ) , u (τ ) , τ ) dτ + inf
u[

t+Δt,t f

] J (t + Δt, x (t + Δt) , u (·))
}
.

Using (1.3) and combining the integrals,

V (x, t) = inf
u[t,t+Δt]

{
inf

u[t+Δt,t f ]
J (t, x, u (·))

}
≥ inf

u[t,t f ]
J (t, x, u (·)) = V ∗ (x, t) .

(1.6)
Thus, V (x, t) ≥ V ∗ (x, t). On the other hand, by the definition of the infimum, for
all ε > 0, there exists a controller uε (·) such that

V ∗ (x, t) + ε ≥ J (t, x, uε (·)) .

Let xε denote the trajectory corresponding to uε . Then,

J (t, x, uε) =
t+Δt∫

t

L (xε (τ ) , uε (τ ) , τ ) dτ + J (t + Δt, xε (t + Δt) , uε) ,

≥
t+Δt∫

t

L (xε (τ ) , uε (τ ) , τ ) dτ + V (xε (t + Δt) , t + Δt) ≥ V (x, t) .

Thus, V (x, t) ≤ V ∗ (x, t), which, along with (1.6), implies V (x, t) = V ∗ (x, t). 
�
Under the assumption that V ∗ ∈ C1

(
R

n × [
t0, t f

)
,R
)
, the optimal value function

can be shown to satisfy

0 = −∇t V
∗ (x, t) − inf

u∈U
{
L (x, u, t) + ∇x V

∗T (x, t) f (x, u, t)
}
,
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for all t ∈ [t0, t f ) and all x ∈ R
n , with the boundary condition V ∗ (x, t f ) = Φ (x),

for all x ∈ R
n . In fact, the Hamilton–Jacobi–Bellman equation along with a Hamil-

tonian maximization condition completely characterize the solution to the family of
Bolza problems.

1.4.2 Sufficient Conditions for Optimality

Theorem 1.2 presents necessary and sufficient conditions for a function to be the
optimal value function.

Theorem 1.2 Let V ∗ ∈ C1
(
R

n × [
t0, t f

]
,R
)
denote the optimal value function.

Then, a function V : Rn × [
t0, t f

] → R is the optimal value function (i.e., V (x, t) =
V ∗ (x, t) for all (x, t) ∈ R

n × [
t0, t f

]
) if and only if:

1. V ∈ C1
(
R

n × [
t0, t f

]
,R
)
and V satisfies the Hamilton–Jacobi–Bellman equa-

tion

0 = −∇t V (x, t) − inf
u∈U

{
L (x, u, t) + ∇x V

T (x, t) f (x, u, t)
}
, (1.7)

for all t ∈ [t0, t f ) and all x ∈ R
n , with the boundary condition V

(
x, t f

) =
Φ (x), for all x ∈ R

n .
2. For all x ∈ R

n , there exists a controller u (·), such that the function V , the con-
troller u (·), and the trajectory x (·) of (1.1) under u (·) with the initial condition
x (t0) = x , satisfy the equation

L (x (t) , u (t) , t)+∇x V
T (x (t) , t) f (x (t) , u (t) , t)

= min
û∈U

{
L
(
x (t) , û, t

)+ ∇x V
T (x (t) , t) f

(
x (t) , û, t

)}
,

(1.8)

for all t ∈ [t0, t f ].
Proof See [7, Sect. 5.1.4]. 
�

1.5 The Unconstrained Affine-Quadratic Regulator

The focus of this monograph is on unconstrained infinite-horizon total cost Bolza
problems for nonlinear systems that are affine in the controller and cost functions that
are quadratic in the controller. That is, optimal control problems where the system
dynamics are of the form
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ẋ (t) = f (x (t)) + g (x (t)) u (t) , (1.9)

where f : Rn → R
m and g : Rn → R

n×m are locally Lipschitz functions, and the
cost functional is of the form

J (t0, x0, u (·)) =
∞∫

t0

r (x (τ ; t0, x0, u (·)) , u (τ )) dτ, (1.10)

where the local cost r : Rn × R
m → R is defined as

r (x, u) � Q (x) + uT Ru, (1.11)

where Q : Rn → R is a positive definite function and R ∈ R
m×m is a symmetric

positive definite matrix.
To ensure that the optimal control problem is well-posed, the minimization prob-

lem is constrained to the set of admissible controllers (see [9, Definition 1]), and the
existence of at least one admissible controller is assumed. It is further assumed that
the optimal control problem has a continuously differentiable value function. This
assumption is valid for a large class of problems. For example, most unconstrained
infinite horizon optimal control problems with smooth data have smooth value func-
tions. However, there is a large class of relevant optimal control problems for which
the assumption fails. For example, problems with bounded controls and terminal
costs typically have nondifferentiable value functions. Dynamic programming-based
solutions to such problems are characterized by viscosity solutions to the correspond-
ing Hamilton–Jacobi–Bellman equation. For further details on viscosity solutions to
Hamilton–Jacobi–Bellman equations, the reader is directed to [10] and [11].

Provided the aforementioned assumptions hold, the optimal value function is
time-independent, That is,

V ∗ (x) � inf
u[t,∞]

J (t, x, u (·)) , (1.12)

for all t ∈ R≥t0 . Furthermore, the Hamiltonian minimization condition in (1.8) is sat-
isfied by the controller u (t) = u∗ (x (t)) ,where the policy u∗ : Rn → R

m is defined
as

u∗ (x) = −1

2
R−1gT (x)

(∇x V
∗ (x)

)T
. (1.13)

Hence, assuming that an optimal controller exists, a complete characterization of the
solution to the optimal control problem can be obtained using the Hamilton–Jacobi–
Bellman equation.

Remark 1.3 While infinite horizon optimal control problems naturally arise in feed-
back control application where stability is of paramount importance, path planning
applications often involve finite-horizon optimal control problems. The method of
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dynamic programming has extensively been studied for finite horizon problems [12–
20], although such problems are out of the scope of this monograph.

Remark 1.4 The control-affine model in (1.9) is applicable to a wide variety of
electro-mechanical systems. In particular, any linear system and any Euler-Lagrange
nonlinear system that has a known and invertible inertia matrix can be modeled
using a control-affine model. Examples include industrial manipulators, fully actu-
ated autonomous underwater and air vehicles (where the range of operation does not
include singular configurations), kinematic wheels, etc. Computation of the policy
in (1.13) exploits the control-affine nature of the dynamics, and knowledge of the
control effectiveness function, g, is required to implement the policy. The meth-
ods detailed in this monograph can be extended to systems with uncertain control
effectiveness functions and to nonaffine systems (cf. [21–28]).

The following theorem fully characterizes solutions to optimal control problems
for affine systems.

Theorem 1.5 For a nonlinear system described by (1.9), V ∗ ∈ C1 (Rn,R) is the
optimal value function corresponding to the cost functional (1.10) if and only if it
satisfies the Hamilton–Jacobi–Bellman equation

r
(
x, u∗ (x)

)+ ∇x V
∗ (x)

(
f (x) + g (x) u∗ (x)

) = 0, ∀x ∈ R
n, (1.14)

with the boundary condition V (0) = 0. Furthermore, the optimal controller can be
expressed as the state-feedback law u (t) = u∗ (x (t)) .

Proof For each x ∈ R
n we have

∂ (r (x, u) + ∇x V ∗ (x) ( f (x) + g (x) u))

∂u
= 2uT R + ∇x V

∗ (x) g (x) .

hence, u = − 1
2 R

−1gT (x) (∇x V ∗ (x))T = u∗ (x) extremizes r (x, u) + ∇x V ∗ (x)
( f (x) + g (x) u). Furthermore, the Hessian

∂2 (r (x, u) + ∇x V ∗ (x) ( f (x) + g (x) u))

∂2u
= 2R

is positive definite. Hence, u = u∗ (x) minimizes r (x, u) + ∇x V ∗ (x) ( f (x) + g
(x) u). Hence, Eq. (1.14) is equivalent to the conditions in (1.7) and (1.8). 
�

1.6 Input Constraints

The Bolza problem detailed in the previous section is an unconstrained optimal
control problem. In practice, actuators are limited in the amount of control effort
they can produce. Let ui denote the i th component of the control vector u. The
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affine-quadratic formulation can be extended to systems with actuator constraints
of the form |ui (t)| ≤ u, ∀t ∈ R≥t0 , ∀i = 1, . . . ,m using a non-quadratic penalty
function first introduced in [29].

Let ψ : R → R be a strictly monotonically increasing continuously differen-
tiable function such that the sgn (ψ (a)) = sgn (a) , ∀a ∈ R, and |ψ (a)| ≤ u (e.g.,
ψ (a) = tanh (a)). Consider a cost function of the form r (x, u) = Q (x) +U (u),
where

U (u) � 2
m∑
i=1

ri

⎛
⎝

ui∫

0

ψ−1 (ξ) dξ

⎞
⎠ , (1.15)

and ri denotes the i th diagonal element of the matrix R.
The following theorem characterizes the solutions to optimal control problems

for affine systems with actuation constraints.

Theorem 1.6 For a nonlinear system described by (1.9), V ∗ ∈ C1 (Rn,R) is the
optimal value function corresponding to the cost functional in (1.10), with the control
penalty in (1.15), if and only if it satisfies the Hamilton–Jacobi–Bellman equation

r (x, φ (x)) + ∇x V
∗ (x) ( f (x) + g (x) φ (x)) = 0, ∀x ∈ R

n, (1.16)

with the boundary condition V ∗ (0) = 0, where φ (x) � −ψ
(
1
2 R

−1gT (x) (∇x V ∗

(x))T
)
. Furthermore, the optimal controller can be expressed as the state-feedback

law u (t) = u∗ (x (t)) , where

u∗ (x) � −ψ

(
1

2
R−1gT (x)

(∇x V
∗ (x)

)T)
.

Proof For each x ∈ R
n ,

∂ (r (x, u) + ∇x V ∗ (x) ( f (x) + g (x) u))

∂u
= 2ψ−1

(
uT
)
R + ∇x V

∗ (x) g (x) .

hence,u= − ψ
(
1
2 R

−1gT (x) (∇x V ∗ (x))T
)
extremizes r (x, u) +∇x V ∗ (x) ( f (x) +

g (x) u). Furthermore, the Hessian is

∂2 (r (x, u) + ∇x V ∗ (x) ( f (x) + g (x) u))

∂2u
= 2R

⎡
⎢⎣

∇u1ψ
−1 (u1) 0 0

0
. . . 0

0 0 ∇umψ−1 (um)

⎤
⎥⎦ .

Provided the function ψ is strictly monotonically increasing, the Hessian is positive
definite. Hence, u = −ψ

(
1
2 R

−1gT (x) (∇x V ∗ (x))T
)
minimizes r (x, u) + ∇x V ∗

(x) ( f (x) + g (x) u). 
�
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1.7 Connections with Pontryagin’s Maximum Principle

To apply Pontryagin’s maximum principle to the unconstrained affine-quadratic reg-
ulator, define the Hamiltonian H : Rn ×U × R

n → R as

H (x, u, p) = pT ( f (x) + g (x) u) − r (x, u) .

Pontryagin’s maximum principle provides the following necessary condition for
optimality.

Theorem 1.7. [3, 5, 7] Let x∗ : R≥t0 → R
n and u∗ : R≥t0 → U denote the opti-

mal state and control trajectories corresponding to the optimal control problem in
Sect.1.5. Then there exists a trajectory p∗ : R≥t0 → R

n such that p∗ (t) �= 0 for some
t ∈ R≥t0 and x∗ and p∗ satisfy the equations

ẋ∗ (t) = (∇pH
(
x∗ (t) , u∗ (t) , p∗ (t)

))T
,

ṗ∗ (t) = − (∇x H
(
x∗ (t) , u∗ (t) , p∗ (t)

))T
,

with the boundary condition x∗ (t0) = x0. Furthermore, the Hamiltonian satisfies

H
(
x∗ (t) , u∗ (t) , p∗ (t)

) ≥ H
(
x∗ (t) , u, p∗ (t)

)
, (1.17)

for all t ∈ R≥t0 and u ∈ U, and

H
(
x∗ (t) , u∗ (t) , p∗ (t)

) = 0, (1.18)

for all t ∈ R≥t0 .

Proof See, e.g., [7, Sect. 4.2]. 
�
Under further assumptions on the state and the control trajectories, and on the

functions f, g, and r , the so-called natural transversality condition limt→∞ p (t) = 0
can be obtained (cf. [30–32]). The natural transversality condition does not hold in
general for infinite horizon optimal control problems. For some illustrative coun-
terexamples and further discussion, see [30–35].

A quick comparison of Eq. (1.14) and (1.18) suggests that the optimal costate
should satisfy

p∗ (t) = − (∇x V
(
x∗ (t)

))T
. (1.19)

Differentiation of (1.19) with respect to time yields

ṗ∗ (t) = −∇x
(∇x V

(
x∗ (t)

))T (
f
(
x∗ (t)

)+ g
(
x∗ (t)

)
u (t)

)
.

Differentiation of (1.14) with respect to the state yields
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(
f
(
x∗)+g

(
x∗) u)T ∇x

(∇x V
(
x∗))T = −∇x V

(
x∗) (∇x f

(
x∗)+∇x g

(
x∗) u)− ∇x r

(
x∗, u∗) .

Provided the second derivatives are continuous, then ∇x (∇x V (x∗))T =(∇x (∇x V (x∗))T
)T
. Hence, the time derivative of the costate can be computed as

ṗ∗ (t) = − (∇x
(
f
(
x∗ (t)

)+ g
(
x∗ (t)

)
u (t)

))T (∇x V
(
x∗ (t)

))T − (∇xr
(
x∗ (t) , u∗ (t)

))T
,

= − (∇x H
(
x∗ (t) , u∗ (t) , p∗ (t)

))T
.

Therefore, the expression of the costate in (1.19) satisfies Theorem 1.7. The relation-
ship in (1.19) implies that the costate is the sensitivity of the optimal value function to
changes in the system state trajectory. Furthermore, the Hamiltonian maximization
conditions in (1.8) and (1.17) are equivalent. Dynamic programming and Pontrya-
gin’s maximum principle methods are therefore closely related. However, there are
a few key differences between the two methods.

The solution in (1.13) obtained using dynamics programming is a feedback law.
That is, dynamic programming can be used to generate a policy that can be used to
close the control loop. Furthermore, once the Hamilton–Jacobi–Bellman equation is
solved, the resulting feedback law is guaranteed to be optimal for any initial condi-
tion of the dynamical system. On the other hand, Pontryagin’s maximum principle
generates the optimal state, costate, and control trajectories for a given initial condi-
tion. The controller must be implemented in an open-loop manner. Furthermore, if
the initial condition changes, the optimal solution is no longer valid and the optimal
control problem needs to be solved again.

Since dynamic programming generates a feedback law, it provides much more
information than the maximum principle. However, the added benefit comes at a
heavy computational cost. To generate the optimal policy, the Hamilton–Jacobi–
Bellman partial differential equation must be solved. In general, numerical methods
to solve the Hamilton–Jacobi–Bellman equation grow exponentially in numerical
complexity with increasing dimensionality. That is, dynamic programming suffers
from the so-called Bellman’s curse of dimensionality.

1.8 Further Reading

1.8.1 Numerical Methods

One way to develop optimal controllers for general nonlinear systems is to use
numerical methods [5]. A common approach is to formulate the optimal control
problem in terms of aHamiltonian and then to numerically solve a twopoint boundary
value problem for the state and co-state equations [36, 37]. Another approach is to
cast the optimal control problem as a nonlinear programming problem via direct
transcription and then solve the resulting nonlinear program [30, 38–42]. Numerical
methods are offline, do not generally guarantee stability, or optimality, and are often
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open-loop. These issuesmotivate the desire to find an analytical solution. Developing
analytical solutions to optimal control problems for linear systems is complicated
by the need to solve an algebraic Riccati equation or a differential Riccati equation.
Developing analytical solutions for nonlinear systems is even further complicated by
the sufficient condition of solving a Hamilton–Jacobi–Bellman partial differential
equation, where an analytical solution may not exist in general. If the nonlinear
dynamics are exactly known, then the problem can be simplified at the expense of
optimality by solving an algebraic Riccati equations through feedback-linearization
methods (cf. [43–47]).

Alternatively, some investigators temporarily assume that the uncertain system
could be feedback-linearized, solve the resulting optimal control problem, and then
use adaptive/learning methods to asymptotically learn the uncertainty [48–51] (i.e.,
asymptotically converge to the optimal controller). The nonlinear optimal control
problem can also be solved using inverse optimal control [52–61] by circumvent-
ing the need to solve the Hamilton–Jacobi–Bellman equation. By finding a control
Lyapunov function, which can be shown to also be a value function, an optimal
controller can be developed that optimizes a derived cost. However, since the cost is
derived rather than specified bymission/task objectives, this approach is not explored
in this monograph. Optimal control-based algorithms such as state dependent Ric-
cati equations [62–65] and model-predictive control [66–72] have been widely uti-
lized for control of nonlinear systems. However, both state dependent Riccati equa-
tions and model-predictive control are inherently model-based. Furthermore, due
to nonuniqueness of state dependent linear factorization in state dependent Riccati
equations-based techniques, and since the optimal control problem is solved over a
small prediction horizon inmodel-predictive control, they generally result in subopti-
mal policies. Furthermore, model-predictive control approaches are computationally
intensive, and closed-loop stability of state dependent Riccati equations-based meth-
ods is generally impossible to establish a priori and has to be established through
extensive simulation.

1.8.2 Differential Games and Equilibrium Solutions

A multitude of relevant control problems can be modeled as multi-input systems,
where each input is computed by a player, and each player attempts to influence the
system state to minimize its own cost function. In this case, the optimization problem
for each player is coupled with the optimization problem for other players. Hence,
in general, an optimal solution in the usual sense does not exist for such problems,
motivating the formulation of alternative optimality criteria.

Differential game theory provides solution concepts for manymulti-player, multi-
objective optimization problems [73–75]. For example, a set of policies is called
a Nash equilibrium solution to a multi-objective optimization problem if none of
the players can improve their outcome by changing their policy while all the other
players abide by theNash equilibriumpolicies [76]. Thus,Nash equilibrium solutions
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provide a secure set of strategies, in the sense that noneof the players have an incentive
to diverge from their equilibrium policy. Hence, Nash equilibrium has been a widely
used solution concept in differential game-based control techniques. For an in-depth
discussion onNash equilibrium solutions to differential game problems, see Chaps. 3
and 4.

Differential game theory is also employed in multi-agent optimal control, where
each agent has its own decentralized objective and may not have access to the entire
system state. In this case, graph theoretic models of the information structure are
utilized in a differential game framework to formulate coupled Hamilton–Jacobi
equations (c.f. [77]). Since the coupled Hamilton–Jacobi equations are difficult to
solve, reinforcement learning is often employed to get an approximate solution.
Results such as [77, 78] indicate that adaptive dynamic programming can be used
to generate approximate optimal policies online for multi-agent systems. For an in-
depth discussion on the use of graph theoretic models of information structure in a
differential game framework, see Chap.5

1.8.3 Viscosity Solutions and State Constraints

A significant portion of optimal control problems of practical importance require
the solution to satisfy state constraints. For example, autonomous vehicles operating
in complex contested environments are required to observe strict static (e.g., due to
policy or mission objectives or known obstacles/structures in the environment) and
dynamic (e.g., unknownand then sensedobstacles,movingobstacles) no-entry zones.
The value functions corresponding to optimal control problems with state constraints
are generally not continuously differentiable, and may not even be differentiable
everywhere. Hence, for these problems, theHamilton–Jacobi–Bellman equation fails
to admit classical solutions, and alternative solution concepts are required. A naive
generalizationwould be to require a function to satisfy theHamilton–Jacobi–Bellman
equation almost everywhere. However, the naive generalization is not useful for
optimal control since such generalized solutions are often unrelated to the value
function of the corresponding optimal control problem.

An appropriate notion of generalized solutions to the Hamilton–Jacobi–Bellman
equation, called viscosity solutions, was developed in [10]. It has been established
that under the condition that the value function is continuous, it is a solution to
the Hamilton–Jacobi–Bellman equation. Some uniqueness results are also available
under further assumptions on the value function. For a detailed treatment of viscosity
solutions to Hamilton–Jacobi–Bellman equations, see [79].

Various methods have been developed to approximate viscosity solutions to
Hamilton–Jacobi–Bellman equations [79–81]; however, these methods are offline,
require knowledge of the system dynamics, and are computationally expensive.
Online computation of approximate classical solutions to the Hamilton–Jacobi–
Bellman equation is achieved through dynamic programming methods. Dynamic
programming methods in continuous state and time rely on a differential [82] or an
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integral [83] formulation of the temporal difference error (called the Bellman error).
The corresponding reinforcement learning algorithms are generally designed to min-
imize the Bellman error. Since such minimization yields estimates of generalized
solutions, but not necessarily viscosity solutions, to the Hamilton–Jacobi–Bellman
equation, reinforcement learning in continuous time and space for optimal control
problems with state constraints has largely remained an open area of research.
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