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Preface

In the late 2000s, a novel formulation of Kirchhoff’s celebrated rod theory was
published by Bergou et al. [4]. In this formulation, an elastic rod is discretized into
a series of segments (or edges) connecting vertices (or nodes). The edges are free to
stretch and rotate relative to their adjacent neighbors. The relative rotations of the
cross sections of the rod are modeled with the help of a pair of material vectors
that are associated with each edge. The original formulation has been extended
in a variety of directions including an extension to viscous threads and sound
generation. The discrete elastic rod formulation is computationally cheap and, as
a result, is used in computer graphics to render images of hairs and trees and is
the technical underpinning behind the Bristle Brush feature in Adobe Illustrator and
Adobe Photoshop.

Bergou et al.’s discrete elastic rod (DER) formulation uses ideas from the nascent
field of discrete differential geometry and concepts such as holonomy from classic
differential geometry. As a result, understanding the DER formulation (even for
students who have exceptional backgrounds in continuum mechanics) can be chal-
lenging. Indeed, initially we were unable to rederive many of the key results in the
papers by Bergou et al. [3, 4] and the related works by Audoly et al. [2] and Kaldor
et al. [29]. The remarkable simulations in these four papers provided sufficient
motivation for us to eventually prove the main results contained in [2—4, 29].

The present Brief is a result of our efforts to understand the DER formulation and
we hope that it provides an accessible introduction to this remarkable formulation.
We assume that the reader has a background in continuum mechanics at the level
of Chadwick [8] or Gurtin [20]. The Brief starts with a pair of motivational
examples. We then proceed to give a rapid summary of Kirchhoff’s rod theory before
discussing a discretized space curve and three frames that can be associated with
it. Next, derivations of gradients and variations for various kinematical quantities
that have appeared in the literature are discussed. One unusual feature of the DER
formulation is the use of holonomy to help determine the twist of the rod. We
devote an entire chapter to discussing results from differential geometry of spherical
triangles and spherical quadrilaterals that are used to determine the twist of the rod.
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viii Preface

The final chapter synthesizes the kinematical results and shows how they are used
to formulate a set of ordinary differential equations for the position vectors of the
nodes of the rod and the twisting of the edges. To help the reader, we present several
examples of classic problems in the theory of rods that are solved using the discrete
elastic rod formulation.

The C++ source code for the discrete elastic rod formulation discussed in this
Brief can be found at

http://www.cs.columbia.edu/cg/elastic_coiling/

Source code for the input files used for the examples discussed in the Brief can be
accessed at

http://dynamics.berkeley.edu/

We received a total of $500 from Springer-Nature for publishing this Brief. These
funds have been donated to an organization that supports LGBTQ people who are
held in immigrant detention in the United States: Mariposas Sin Fronteras.

Los Angeles, CA, USA M. Khalid Jawed
Berkeley, CA, USA Alyssa Novelia
Berkeley, CA, USA Oliver M. O’Reilly


http://www.cs.columbia.edu/cg/elastic_coiling/
http://dynamics.berkeley.edu/
https://mariposassinfronteras.org/

Acknowledgments

The discrete elastic rod formulation discussed in these pages was first brought to
the attention of Oliver O’Reilly by Arun Srinivasa (Texas A&M University) during
the Annual Meeting of the Society of Engineering Science at the University of
Maryland in the fall of 2016. The formulation’s capability of modeling knotted
structures and potential application to simulating soft robot locomotion were the
primary reasons that O’Reilly and Alyssa Novelia then began studying the papers
by Bergou et al. [3, 4]. They had the good fortune at the time to be collaborating
with Carmel Majidi’s group at Carnegie Mellon University on soft robots. The third
author, M. Khalid Jawed, was a postdoctoral researcher with Majidi’s group whose
Ph.D. thesis [25] at the MIT used Bergou et al.’s discrete elastic rod formulation
to solve a variety of problems. Thus, by a series of fortunate coincidences and
the support of colleagues, work on this Brief commenced. Our initial goal was to
write a set of notes explaining all of the technical details in Bergou et al. [3, 4] but
as the notes expanded substantially beyond our original expectations, we realized
they would make a Brief that researchers on Bergou et al’s discrete elastic rod
formulation might hopefully find useful.

Part of the reason the notes expanded beyond our original horizon lay in our
difficulty comprehending the holonomy results (7.1) and (7.2). These results play a
central role in computing the torsional strain in the discrete elastic rod formulations
presented in the papers [3, 4] and discussed in this Brief. We would not be able to
explain the holonomy results were it not for the exceptionally helpful comments [65]
and feedback provided by Etienne Vouga (University of Texas at Austin). Khalid
Jawed is also grateful to Fang Da (Columbia University), Eitan Grinspun (Columbia
University), Jungseock Joo (UCLA), Noor Khouri (MIT), and Pedro Reis (EPFL)
who were involved in the adaptation, implementation, and experimental validation
of the discrete elastic rod formulation with application to engineering problems.

As mentioned earlier, our primary motivation to study the discrete elastic rod
formulation came from a desire to simulate the locomotion of soft robots. This
research on soft robots is supported by grant number W911NF-16-1-0242 from the
U.S. Army Research Organization administered by Dr. Samuel C. Stanton. Alyssa

ix



X Acknowledgments

Novelia is also grateful for the support of a Zee Fellowship from the Department of
Mechanical Engineering at the University of California at Berkeley.

It has been a pleasure working with Michael Luby at Springer US on this Brief,
and we are delighted that he chose to publish our work. We are also grateful that
digital copies of this work will be freely available to students and faculty from the
publisher’s website.

It is impossible to remove all grammatical and typographical errors in a
manuscript of the present size. We thank Evan Hemingway (University of Cali-
fornia, Berkeley) for his careful proofreading and comments on an earlier draft of
this Brief. The responsibility for all remaining errors, typographical and technical,
rests on our shoulders and we would be most grateful if you could bring them to our
attention.

Los Angeles, CA, USA M. Khalid Jawed
Berkeley, CA, USA Alyssa Novelia
Berkeley, CA, USA Oliver M. O’Reilly



Contents

1 Introduction .......... ..o 1
1.1 Opening Remarks...........cooiiiiiiiiiiiiiiii i 1
1.2 ACantilevered Rod..........ccooiiiiiiiiiiiiii 2
1.2.1 Euler’s Theory of the Elastica ...........ccccevvvvviiiiiiinnn. 3
1.2.2 Discrete Elastic Rod...........ooooooiiiiiiiiiiiii.. 4
1.3 Bending a Rod into a Helical Form..................oooooiiiiiia., 4
1.3.1 Kirchhoff’s Rod Theory...........ccooviiiiiiiiiiiiiii. .. 4
1.3.2 Discrete Elastic Rod...........oooooeiiiiiiiiiii .. 6
1.4 Summary of Terminology .........ccoeeiiiiiiiiiiiiiiiiiiiiieenn. 7
1.5 Background on Vector and Tensor Notations ........................ 7
2 Kirchhoff’s Theory of an ElasticRod ..................................... 11
2.1 INtrodUCHON .ottt 11

2.2 The Frenet, Bishop, and Director Framings of the Material
CUIVE et 12
2.3 Angular Velocity and Darboux Vectors....................coeeeenn... 14
2.3.1 An Identity Pertaining to TWist .........ccovviiiinnnnnnn. 17
2.3.2 An Identity for a Relative Angular Velocity ................. 18
24 AHelical Space CUIVe ....ovviiiiiiiiiii e 19
2.4.1 Computing a Bishop Frame for a Helical Space Curve ..... 21
2.5  Governing Equations for the Kirchhoff Rod ......................... 22
3 The Discretized Curve: Vertices, Edges, and Curvature ................ 25
3.1 INtrodUCtION .....uveetei e 25
3.2 A Turning Angle and Curvatures ...............ccooeevuuuunnnnnnnnn. 26
3.3 An Orthogonal Triad at @ VerteX ..........cccoeeiiuiiiiinnnnnn. 28
3.4  The Discretized Helical Space Curve.............cooveviinnnnnnn. 29
3.5 Closing Remarks. ... .....uuuu e 32

xi



xii

4 Bishop Frames and Reference Frames Along the Discretized

1| o
4.1 INtrodUCHION ..vvvtittttttitt s
4.2 Space-Parallel and Time-Parallel Transport Operators ...........
4.2.1 The Operator Ptt:,l and Its Associated Darboux

VeCtor Kpbr oo

422 The Operator P¥ (¢, At) and Its Associated Angular
Velocity Vector POX (1) o
4.3 Bishop Frames and Reference Frames............................
4.3.1 The Discretized Circular Space Curve ....................
4.4 An Additional Representation for the Operator Ptt,{k_1 .............
4.5  Computation of Reference Twist in a Simple Rod ................
5 Material Frames and Measures of Twists ..............................
5.1 INtrodUCtion .......oeeieiiiiii et
5.2 The Material Triad.........ccooeiiiiiiiii it
5.2.1 The Operators Mtt,]:_l and MK (1, At) oo
5.3  Bending Strains and Curvatures .................ooeviiiiiiiin....
5.4  Discrete Integrated Twist ...
5.5 Decompositions of the Rotation Mtt,f,l ............................
5.6  Discrete Integrated Twist and Induced Reference Twist..........

5.7  Representations for the Operator M¥ (¢, Ar) and the Vector
OF (1) e
5.8  Velocity Vectors of the Material Vectors mlf and mé .............
5.9  Uncoiling of a Twisted Rod ............cooiiiiiiiiiiiiiiiiii...
6 Variations, Gradients, and Hessians ..........................coooo
6.1  INtroducCtion .........ooiiiiiiiiiiii e
6.2  Notation for Gradients and Hessians ..............................
6.3 Variations of the Tangent Vectors ............c.ooviiiiiieeiinnnnn.
6.4  Variation of the Turning Angle Between Two Edge Vectors .....
6.5  Variation of the Vector (kb)g......coooviiiiiiiiiiii i,
6.6 Variation of the Material Vectors mll‘ and mg .....................
6.7  Variations and Gradients of the Curvatures kt, and kg, ...........
6.8  Gradients and Time Derivative of the Reference Twist mfef ......

6.9  Preliminary Results for Computing Hessians .....................

6.10 Hessians of the Reference Twist m]r‘ef

6.11 Hessians of the Curvatures kg, and Kj, ..........cooooeiiiiiinnn.

6.12 Closing Remarks...........ooouuiiiiiiiiiiiii i
7 Spherical Excess and Reference Twist..................................
7.1 INtrodUCHON «.oune ettt
7.2 Background from Spherical Geometry ...............cceviiiin

7.2.1 An Expression for the Variation in the Spherical Excess....

Contents



Contents xiii

7.3 Spherical Excess and an Angle of Rotation for a Compound
ROTALION ...ttt 81
7.3.1 A Composition of Parallel Transports........................ 81
7.3.2 Computing the Angle £ (€).........ccocoiiiiiiiiiii. 84
7.4  The Angle f k (¢) and the Reference Twist m’r‘ef (e) — m’r‘ef ©0)...... 85
7.4.1 A Related Result Featuring the Bishop Frame Vectors...... 87
7.5  Variations of the Twist mj and Reference Twist Smfef ............... 88
7.5.1 Variation of an Angle of TWiSt ¥ ....covvviiiiiiiinn. 89
7.6 A Rod with Three Vertices ..........oooviiiiiiiiiiiiiiiniiiiiee... 89
7.6.1 Spherical Excess and Reference Twist .................o..ee 90
7.6.2  Variation of the Spherical EXcess...........oooeeeiiiiiiinn. 92
8 Equations of Motion and Energetic Considerations ..................... 93
8.1 INtrodUuCtion ........cooviuiiiiii it e 93
8.2  Kinetic Energies, Momenta, and Inertias............................. 94
8.2.1 Masses and Inertias...........oooeeeeiiiiiiiiiieeiiiiiieee... 94

8.2.2 Linear Momentum, Angular Momentum,

and Kinetic Energy ...........ooooiiiiiiiiiiiiiiiiiiii, 97
8.3 Elastic ENergies ... ..uuuee e 98
8.4  Forces, Moments, and Gradients of Elastic Energies ................ 99
8.5  Hessians of the Elastic Energies ..........c.ooooiiiiiiiiiiiiiiian. 101
8.5.1 Validating the Expressions for the Hessians ................. 105
8.6 ViSCOUS DiSSIPAtION . ...t 106
8.7  Composing the Generalized Force Vector Fipg ovvvvvvvviiinii.an. 107

8.8  Composing the Generalized Force Vector Fex; from Applied
Forces and Applied MOMEeNtS ..........uuuuuuuunniiiinnnnns 107
8.8.1 Prescribing Terminal Moments: An Example................ 108
8.9  Work-Energy Theorem ...........coooiiiiiiiiiiiiiiiiiiiiiiiiiiinn, 109
8.10 Displacement Boundary Conditions .............ccooviiiiiinnnnnnn. 110
8.11 A Vibrating Sagged Cable............ccceiiiiiiiiiiiiiiiiiiiiiinn. 110
8.12  Closing Remarks . ... ....uuuu e 111
References....... ... 113
Index . ... e 117



