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PREFACE 

When we agreed to edit this book we established some guidelines for the au­
thors who were asked to contribute. The authors were asked to include all relevant 
material currently available, but to be critical of the methodology used to obtain 
the various types of data. In addition to evaluating the methodology used in each 
quoted study, they were asked to suggest the optimal state of the art methodology 
which should be used for each type of investigation. Thus Denton et al (Ch. 9) 
considered the optimal way (conscious and undisturbed) and length of time for 
which blood pressure should be measured, for the results to be most meaningful. 
They also considered all the components of the cardiovascular system which re­
quired examination if the full impact of some programming stimulus were to be 
investigated fully. This is continued in the examination of other aspects of cardio­
vascular dysfunction (Poston et al, Ch. 10) The same criteria were applied to as­
sessment of nephron number (Moritz and Cullen-McEwen, Ch.ll) and optimal 
methodology (unbiased stereology) suggested. All authors paid attention to the 
type of statistics to be used and stressed where appropriate the importance of studying 
both sexes of offspring. Equal rigor was used in assessing metabolic changes in­
duced by pre/perinatal conditions (Gatford et al, Ch.l3). Simon Langley-Evans 
(Ch. 8) was asked to make sure that readers would appreciate that not all low-
protein diets are equivalent. Ruth Morley (Ch. 3) was commissioned to make it 
clear that not all monozygotic twins share one placenta and to give a critical evalu­
ation of what can or cannot be learned from a study of twins. In short, any investi­
gator planning a study of the early life origins of health and disease, having read 
this book, should be able to devise the best possible experiment, using optimal 
methodology, to give the utmost reliable outcomes. 

The book covers data relevant to humans (Chs. 1-5), and various animal mod­
els (Chs. 8-14). After the whole background to the concept is set by the current 
president and secretary of the international society devoted to this area (DOHaD), 
an expert in epidemiology (Fall, Ch. 2) gives a masterly summation of the past 
findings. In a timely reminder the peri-implantation embryo is considered as a 
vulnerable stage (Thompson et al, Ch. 5). In addition, the potential mechanisms by 
which such programming might occur are covered in the two chapters on 
epigenetics (Chs. 6, 7). 

Finally there are four chapters which cover emerging areas of great potential 
interest (Chs. 15-18). In all these areas (vitamin D deficiency, hypoxia, alcohol 



exposure, adult mental health) there are limited data which suggest that an influ­
ence exerted during development might have long-term consequences for adult 
offspring, but much more investigation is required. 

This should be a most valuable resource book for all those currently engaged 
in the study of the influences of the prenatal environment on future health, as well 
as for those who are just contemplating beginning work in this area. 

E. Marelyn Wintour and Julie A. Owens 
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CHAPTER 1 

The Developmental Origins of Health 
and Disease: 
The Breadth and Importance of the Concept 

Peter D. Gluckman* and Mark A. Hanson 

Fetal Origins of Adult Disease (FOAD) 

The concept of a Tetal origins of adult disease' (FOAD) or 'fetal programming' was 
developed by Barker and colleagues to describe the relationship between birth size and 
subsequent risks of cardiovascular disease and insulin resistance/Type 2 diabetes melli-

tus. As a concept, FOAD was initially received with criticism. Some held the view that the 
answers lay within genetics and the gene; for others that the original epidemiological interpre­
tations were flawed. 

It is now nearly two decades since these landmark observations and concepts first appeared. 
It is apparent that those original findings have had far-reaching implications regarding human 
health and lifestyle choices, not only explaining the rapid societal rise in diabetes and obesity, 
but also covering areas as diverse as osteoporosis, depression and sedentary behaviour. With the 
wisdom of hindsight, we can see that some of the reluctance to accept the FOAD concept arose 
precisely from the problem which FOAD addressed: namely that the underlying causes of the 
common chronic diseases of adulthood (heart disease, diabetes, stroke) could not be explained 
purely in terms of genetic inheritance or lifestyle factors, such as diet or exercise. That instead, 
gene-environment interactions would hold the clues. 

The concept of FOAD has expanded since the initial observations. The term Tetal origins 
of adult disease' has now been replaced with 'developmental origins of adult disease' (DOHaD) 
to take into account its influence over an expanded developmental time-frame. Moreover, it 
has launched a new way of thinking about the evolution of human health and disease, which 
we refer to as the 'predictive adaptive response' and will be discussed further. 

Early Clues 
The linkages between early developmental events and eventual adult susceptibilities had 

been noted before, and in some rather unexpected ways. Kawahata and Sakamoto noted that 
of those soldiers stationed in the tropics during WWII, those born in hotter climates had more 
sweat glands and were least at risk for heat stroke than soldiers born in cooler climates. More­
over, Roland reported on anecdotal evidence that WWII prisoners of war who were smaller in 
size—presumably of smaller birth size—were more likely to survive the conditions of their 
captivity, such as starvation, than larger prisoners. 

•Corresponding Author: Peter D. Gluckman—Liggins Institute, University of Auckland 
and National Research Centre for Growth and Development; 2-6 Park Avenue, Grafton, 
Private Bag 92019, Auckland, New Zealand. Email: pd.gluckman@auckland.ac.nz 
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Early Life Origins of Health and Disease 

In the 1970s, Forsdahl reported on the relationship between poor childhood living condi­
tions in Norway and later adult heart disease.^' But it wasn't until the landmark studies of 
Barker and coUeagues '̂̂  that these linkages received renewed attention. Their observations 
have since been supported by other large cohort studies in the USA, '̂̂ ^ Jamaica^ ̂  and India.^^ 

As a marker of early life conditions, birth size had never really been considered causal in the 
pathway to disease risk, an element often misunderstood by critics and supporters alike. Namely, 
birth size as a parameter has limitations—it is a reflection of maturation (i.e., gestational age) 
and growth, and both are influenced by environmental and genetic factors. Also, not all ad­
verse events that occur in utero result in reduced birth size. Nevertheless, birth size and, in 
particular, birth weight, remain the most accessible parameters to consider when assessing the 
impact of early developmental factors. 

The Importance of Timing 
The FOAD concept focused attention on environmental factors operating during^Wlife. 

However, both experimental and clinical data suggest that adult disease risk may well be influ­
enced by events that occur prior to conception until well after birth, and that there is an 
interaction between the prenatal and postnatal environments. For instance, it has been shown 
that those most at risk for insulin resistance and cardiovascular disease have evidence of an 
impaired fetal environment and put on weight rapidly in childhood,^ '̂ ^ though there are 
other data that suggest simply the altered pattern of infant and/or childhood growth alone is 
enough. '^'^ More recendy, data regarding the premature infant^^ ftirther confirm the linkages 
between pre and postnatal life. Not much is known about the optimal level of nutrition for 
these infants or the required dietary components, but it has been a long-held view that 
nutrient-enriched formula is beneficial in promoting growth and brain development. Alan 
Lucas and colleagues have shown that in adolescents born premature and fed nutrient-enriched 
formula, their likelihood for insulin resistance and heart disease in later life is increased than if 
fed a lower-nutrient diet. ' ^ Hence, metabolic regulation and nutritional compartmentaliza-
tion at one stage in life can be influenced by events earlier in life. 

There is also increasing focus on the consequences of the peri-conceptual status of the 
mother (her diet, body composition, level of physical activity, for example) for the health out­
come of her offspring. In the Dutch winter famine of 1944-45, those who were conceived 
during the famine were not necessarily of smaller birth weight, but as adults became prone to 
insulin resistance and obesity. Similar observations have been reported in sheep, in which 
periconceptual undernutrition has been shown to reset the HPA axis,^^ and in rodents where 
the conditions in which the preimplantation embryo develops later influence fetal growth and 
postnatal cardiovascular phenotype. In humans, similar considerations are likely to apply as 
rVF is associated with a greater incidence of anomalies,"^ and in embryo donation the birthweight 
of the resulting offspring relates more closely to the birthweight of the recipient than the do­
nor. For these reasons, the earlier terminology Tetal origins' has been replaced by 'develop­
mental origins'. Moreover, it is clear that greater awareness of the importance of this time of life 
will not only have an impact in reducing the incidence of disease, but will provide an impor­
tant platform for new measures aimed at promoting a healthy lifestyle. FOAD has therefore 
been replaced by DOHaD (Developmental Origins of Health and Disease) and an interna­
tional society was formed in 2003 to promote this endeavour (www.dohadsoc.org). 

DOHaD—Underlying Mechanisms 
This book is very much concerned with mechanisms, so only general comments are appro­

priate here. Despite the plethora of epidemiological and experimental animal observations, it is 
clear that only a limited niunber of mechanisms can drive a long-term change in phenotype. 
One likely mechanism may be epigenetic regulation. 

While epigenetic regulation is more generally understood in terms of parental imprinting of 
certain genes, it is also the basis of many other changes in gene expression. Recendy, clear 
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evidence has emerged, bodi with respect to parentally imprinted and nonimprinted genes, of 
environmentally-induced epigenetic change. In ruminant embryos subject to prolonged cul­
ture in vitro and then reimplanted, there are long-term changes in the expression of imprinted 
components of the IGF-2 system. In the agouti mouse, the degree of imprinting can be 
influenced by the folate/B12 status of mother at the time of conception. In the rat subject to 
experimental reduction of uterine blood flow, altered methylation of the p53 gene has been 
described in the kidney.'̂ ^ And in rat pups, Meaney and colleagues have shown that an altered 
neonatal behavioural environment results in altered methylation patterns in the promotor re­
gion of the glucocorticoid receptor gene."̂ ^ If the latter could be generalized, it would suggest 
that there are a number of yet to be discovered mechanisms by which epigenetic change at very 
specific sites in the genome have evolved. Their specificity means these have not have been 
selected by evolution randomly, but rather because they have adaptive value. Mitochondrial 
DNA has been suggested as a particular target for epigenetic change and this would explain 
the nongenomic inheritance of the phenomenon via the maternal lineage (as mitochondrial 
DNA is only of maternal origin); it also provides a potent way in which cellular metabolism 
and the response to nutritional stress can be programmed, complementing the well-known 
effects on growth. 

At the next level, the DOHaD phenomenon involves changes in the growth and function 
of tissues and organs in relation to overall body size. These changes may be induced during 
development to reduce energy consumption by these tissues and organs during development 
itself, and also in expectation of a deprived postnatal environment (see Fig. 1). Much interest in 
the field concerns such effects on the developing kidney,^^ pancreas '̂̂  and heart.^^ These or­
gans are particularly interesting for several reasons. First, changes induced in them in early life, 
such as reduced numbers of nephrons, pancreatic beta cells or cardiomyocytes, may limit the 
individual's ability to respond adequately to a physiological challenge in later life, especially in 
the face of declining function of these organs with age, and may explain the link between 
developmental factors and diseases occurring after middle age, rather than in adolescence. Fur­
thermore, cell number within these organs is set prenatally in the human, so that prenatal 
environment can exert permanent effects on their development. 

The DOHaD phenomenon also involves changes in vascularity and, indeed, in vascular 
endothelial cell function,^ with vascularity reduced in several tissues of the rat pup exposed to 
a low protein diet in utero.^^'^ Skeletal muscle mass may also be reduced.^^ It may be that 
these observations are adaptive responses to survive a poor intrauterine environment. However, 
it can also be viewed as a 'thrifty' adaptive response to a poor environment postnatally, staying 
small and trading off growth for reproduction and survival of the genotype. Because skeletal 
muscle is a major determinant of peripheral insulin sensitivity, these adaptive responses can 
also play a part in the aetiology of Type 2 diabetes and the metabolic syndrome. Endothelial 
fimction is now increasingly realized to be linked to organ and tissue growth, including that of 
adipocytes, and endothelial dysfunction is linked to Type 2 diabetes, hypertension and athero-
genesis. A range of animal studies support the concept that this dysfunction can be induced 
before glucose intolerance, elevated blood pressure or obesity set in. 

Lasdy, there is considerable evidence both from human and from experimental animal studies 
that the early environment can induce permanent changes in homeostatic regulatory fiinction. 
In humans born small for gestational age, there is often an altered feedback of the HPA axis, 
leading towards a tendency of hypercortisolemia;^ similar changes are noted in experimental 
animal models, as in Meaney's behavioural model, or following exposure to maternal under­
nutrition or glucocorticoids in utero. Overall, these changes are underpinned by alterations 
in the glucocorticoid receptors of the central nervous system via processes that are not necessar­
ily distinct from the epigenetic processes referred to above. Other changes to homeostatic regu­
latory fiinction include altered regulation of insulin release and action, altered hepatic han­
dling of glucose, ^ and altered muscular sensitivity, both to insulin and to insulin like growth 
4-0 ^^+-/-v f o -^ factors.' 
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Figure 1. Diagram of the DOHaD concept. The oflFspring s genome inherited from both parents is subjected 
to a range of environmental influences in early life, which determine its phenotype. These include epigenetic 
processes and utilize the normal processes of developmental plasticity. Some of these effects may have 
predictive advantage in the postnatal environment. The processes involved can be categorized as changes 
in cell allocation and differentiation, tissue and organ growth and homeostatic control, and to an extent 
these occur sequentially as shown. If the environmental effects are severe (e.g., famine, excess, maternal or 
placental disease), they may induce clear disruption of development (equivalent to teratogenesis, dotted 
line) of reduaion in developmental trajeaory such that the oflfepring only copes' and is at risk both pre and 
postnatally. Even within the normal physiological range of adaptive responses, the risk of health vs. disease 
in the post-reproductive period depends on the extent of matching between the prenatal and the postnatal 
environments, or between the predicted and the aaual environment in the post-plastic phase. 

A Conceptual Framework 
Some of the earliest concepts of the ^programming' of human disease have focused on the 

processes of mutation, genetic drift and selection, which may have created genotypes that were 
thrifty—the so called "thrifty genotype" hypothesis. The thrifty genotype would have created 
a level of insulin resistance which allowed a population to cope in times of nutritional stress, 
but in times of plenty would have led to insulin resistance. As insulin is important to fetal 
growth, a genotypic change in insulin secretion or action woidd lead to smaller fetuses. The 
glucokinase mutation has been suggested as one such thrifty mutation. ^ Nevertheless, there is 
much that the thrifty genotype model cannot explain, such as the broader range of conse­
quences of early life events (i.e., osteoporosis), the fact that the induction of these responses 
need not involve altered fetal growth, or the rapid appearance of increased risk of disease in a 
population subject to a brief environmental challenge (i.e., Dutch winter famine). 

We think that some of these questions can be answered by a developing concept we refer to 
as ^predictive adaptive responses' (PARs). PARS are responses made by the developing, plastic 
organism, not for immediate advantage but as an adaptive strategy aimed at thriving in the 
environment predicted to be experienced as an adult. In other words, if the environmental 
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stimuli are suggestive of a deprived future environment, the fetus adjusts its physiology accord­
ingly. The biology of PARs has been the subject of several recent reviews. 

Examples of PARs in nature include the setting of the HPA axis in response to glucocorticoid 
exposure during development. There may be no immediate advantage to having a hyper-responsive 
HPA axis, but clearly if the developing organism interprets a surge in glucocorticoids as a sign of 
a stressful environment, there may be survival advantage in having a hyper-responsive HPA 
postnatally. Another clear-cut example is that of coat thickness in the meadow vole. This 
phenomenon (reviewed in re£ 50) shows that coat thickness in the vole at birth is determined by 
the thermal environment anticipated some weeks later. PARs provide an evolutionary compat­
ible explanation of why the DOHaD phenomenon has evolved and is maintained. 

The fetus has a genetically determined repertoire of responses for responding to its immedi­
ate environment in order to ensure either its immediate or its future survival. If it needs to 
ensure its immediate survival it may select a developmental strategy which, for example, re­
duces growth even though this has postnatal costs which may become manifest as disease. Yet it 
appears increasingly that most normally grown fetuses set their development and their homeo-
static control not so much for immediate advantage but rather in expectation of assisting post­
natal survival to reproduction. If the fetal prediction of its future environment is correct, then 
the developmental path chosen in utero should lead to health in adult life. But if the fetal 
prediction is wrong for some reason then as an adult it will not have physiological settings 
appropriate for its environment and disease risk is enhanced. In other words, the risk of disease 
is determined by the degree of match between the environment the developing organism an­
ticipates, on the basis of cues from its mother and placenta, and the environment it actually 
faces as an adult. 

Such a model explains why so called life-style diseases appear in high frequency in popula­
tions undergoing rapid nutritional transition; why the relationship between birth size and the 
risk of adult disease is influenced by measures of the postnatal environment, such as rapid 
adiposity rebound; as well as why the phenomenon is not limited to those of small size, but 
occurs across the full range of birth sizes. 

The Influence of DOHaD in Human Health 
We are left with the challenge of identifying how important this phenomenon might be for 

human medicine. The only human estimate suggests that avoiding a developmental mismatch 
could reduce the incidence of heart disease and diabetes by over 50%—but caution must be 
applied to a single estimate. However evolutionary, developmental and experimental consid­
erations all suggest that environmental influences acting in early development can permanendy 
alter the trajectory of development and determine the risk of later disease. Together with the 
human data, these approaches suggest that a mismatch between the environment as perceived 
during the phase of developmental plasticity and the actual environment the organism is ex­
posed to later in life will increase the risk of disease. 

Clinical practice will increasingly have to address issues of maternal health prior to and 
during pregnancy. The periconceptual period may be particularly critical. Sadly we still do not 
know the optimal nutritional recommendations for women at different stages in the reproduc­
tive cycle. Postnatal management may need to become increasingly individualized to match the 
postnatal environment more closely to the phenotype induced in early life. The research effort 
is likely to focus on a search for epigenetic processes and markers which could be prognostic, 
and on achieving a greater understanding of the processes of developmental plasticity and its 
potential reversibility. 
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Developmental Origins of Cardiovascular 
Disease, Type 2 Diabetes and Obesity 
in Humans 
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Abstract 

F etal growth restriction and low weight gain in infancy are associated with an increased 
risk of adult cardiovascular disease, type 2 diabetes and the Metabolic Syndrome. The 
fetal origins of adult disease hypothesis proposes that these associations reflect perma­

nent changes in metabolism, body composition and tissue structure caused by undernutrition 
during critical periods of early development. An alternative hypothesis is that both small size at 
birth and later disease have a common genetic aetiology. These two hypotheses are not mutu­
ally exclusive. In addition to low birthweight, fetal *overnutrition* caused by maternal obesity 
and gestational diabetes leads to an increased risk of later obesity and type 2 diabetes. There is 
consistent evidence that accelerated BMI gain during childhood, and adult obesity, are addi­
tional risk factors for cardiovascular disease and diabetes. These effects are exaggerated in people 
of low birthweight. Poor fetal and infant growth combined with recent increases in childhood 
adiposity may underlie the high rates of disease in developing countries undergoing nutritional 
transition. Sub-optimal maternal nutritional status is a major cause of low birthweight globally 
but its impact on fetal growth in *well-nourished' western populations has been inadequately 
studied. In experimental animals hypertension and insulin resistance can be programmed in 
the offspring by restricting maternal diet in pregnancy but there are currently insufficient data 
to determine whether maternal nutritional status and diet programme cardiovascular disease 
risk in humans. 

Low Birthweight and Adult Cardiovascular Disease 
The concept that events in early life have long-term effects on human health life is not new. 

In 1934, Kermack showed that death rates from all causes in the UK and Sweden fell between 
1751 and 1930 with each successive year-of-birth cohort. He rejected one possible explana­
tion, that babies were born healthier in successive generations, and concluded that it was the 
result of social reforms and better childhood living conditions. In 1977, Forsdahl discovered a 
geographical correlation in Norway between coronary heart disease (CHD) mortality in 1964-67 
and infant mortality rates 70 years earlier (1896-1925).^ He suggested that growing up in 
poverty caused 'permanent damage' perhaps due to a 'nutritional deficit', which resulted in 
*life-long vulnerability' to an affluent adult lifestyle. Studies in the UK a decade later shifted the 
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