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Preface

FLOATING-POINT ARITHMETIC is by far the most widely used way of
approximating real-number arithmetic for performing numerical cal-
culations on modern computers. A rough presentation of floating-point
arithmetic requires only a few words: a number z is represented in radix
floating-point arithmetic with a sign s, a significand m, and an exponent e,
such that z = s xm x 3°. Making such arithmetic reliable, fast, and portable is
however a very complex task. Although it could be argued that, to some ex-
tent, the concept of floating-point arithmetic (in radix 60) was invented by the
Babylonians, or that it is the underlying arithmetic of the slide rule, its first
modern implementation appeared in Konrad Zuse’s Z1 and Z3 computers.

A vast quantity of very diverse arithmetics was implemented between
the 1960s and the early 1980s. The radix (radices 2, 4, 8, 16, and 10, and even
radix 3, were then considered), and the sizes of the significand and exponent
fields were not standardized. The approaches for rounding and for handling
underflows, overflows, or “forbidden operations” (such as 5/0 or /—3) were
significantly different from one machine to another. This lack of standardiza-
tion made it difficult to write reliable and portable numerical software.

Pioneering scientists including Brent, Cody, Kahan, and Kuki high-
lighted the relevant key concepts for designing an arithmetic that could be
both useful for programmers and practical for implementers. These efforts
resulted in the IEEE 754-1985 standard for radix-2 floating-point arithmetic.
The standardization process was expertly orchestrated by William Kahan.
The IEEE 754-1985 standard was a key factor in improving the quality of the
computational environment available to programmers. A new version, the
IEEE 754-2008 standard, was released in August 2008. It specifies radix-2 and
radix-10 floating-point arithmetic. At the time of writing these lines, a work-
ing group is preparing a new version of IEEE 754, which should be released
in 2018. It will not be very different from the 2008 version.

By carefully specifying the behavior of the arithmetic operators, the IEEE
754-1985 and 754-2008 standards allowed researchers and engineers to design
extremely powerful yet portable algorithms, for example, to compute very
accurate sums and dot products, and to formally prove some critical parts of

xxiii



XXV Preface

programs. Unfortunately, the subtleties of the standard are little known by
the nonexpert user. Even more worrying, they are sometimes overlooked by
compiler designers. As a consequence, floating-point arithmetic is sometimes
conceptually misunderstood and is often far from being exploited to its full
potential.

This led us to the decision to compile into a book selected parts of
the vast knowledge of floating-point arithmetic. This book is designed for
programmers of numerical applications, compiler designers, programmers
of floating-point algorithms, designers of arithmetic operators (floating-
point adders, multipliers, dividers, ...), and more generally students and
researchers in numerical analysis who wish to more accurately understand
a tool that they manipulate on an everyday basis. During the writing, we
tried, whenever possible, to illustrate the techniques described by an actual
program, in order to allow a more direct practical use for coding and design.

The first part of the book presents the history and basic concepts of
floating-point arithmetic (formats, exceptions, correct rounding, etc.) and var-
ious aspects of the 2008 version of the IEEE 754 standard. The second part
shows how the features of the standard can be used to develop effective
and nontrivial algorithms. This includes summation algorithms, and division
and square root relying on a fused multiply-add. This part also discusses is-
sues related to compilers and languages. The third part then explains how
to implement floating-point arithmetic, both in software (on an integer pro-
cessor) and in hardware (VLSI or reconfigurable circuits). It also surveys the
implementation of elementary functions. The fourth part presents some ex-
tensions: complex numbers, interval arithmetic, verification of floating-point
arithmetic, and extension of the precision. In the Appendix, the reader will
find an introduction to relevant number theory tools and a brief presentation
of the standards that predated IEEE 754-2008.
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Chapter 1

Introduction

EPRESENTING AND MANIPULATING real numbers efficiently is required
R in many fields of science, engineering, finance, and more. Since the
early years of electronic computing, many different ways of approximating
real numbers on computers have been introduced. One can cite (this list
is far from being exhaustive): fixed-point arithmetic, logarithmic [337, 585]
and semi-logarithmic [444] number systems, intervals [428], continued frac-
tions [349, 622], rational numbers [348] and possibly infinite strings of ratio-
nal numbers [418], level-index number systems [100, 475], fixed-slash and
floating-slash number systems [412], tapered floating-point arithmetic [432,
22], 2-adic numbers [623], and most recently unums and posits [228, 229].

And yet, floating-point arithmetic is by far the most widely used way
of representing real numbers in modern computers. Simulating an infinite,
continuous set (the real numbers) with a finite set (the “machine numbers”)
is not a straightforward task: preserving all properties of real arithmetic is
not possible, and clever compromises must be found between, e.g., speed,
accuracy, dynamic range, ease of use and implementation, and memory cost.
It appears that floating-point arithmetic, with adequately chosen parameters
(radix, precision, extremal exponents, etc.), is a very good compromise for
most numerical applications.

We will give a complete, formal definition of floating-point arithmetic in
Chapter 3, but roughly speaking, a radix-3, precision-p, floating-point num-
ber is a number of the form

e
+mo.mima - -mp_1 X 55,

where e, called the exponent, is an integer, and mg.mims - - - m,_1, called the
significand, is represented in radix 5. The major purpose of this book is to
explain how these numbers can be manipulated efficiently and safely.

© Springer International Publishing AG, part of Springer Nature 2018 3
J.-M. Muller et al., Handbook of Floating-Point Arithmetic,
https://doi.org/10.1007 /978-3-319-76526-6_1
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1.1 Some History

Even if the implementation of floating-point arithmetic on electronic com-
puters is somewhat recent, floating-point arithmetic itself is an old idea. In
The Art of Computer Programming [342], Knuth presents a short history. He
views the radix-60 number system of the Babylonians as some kind of early
floating-point system. That system allowed the Babylonians to perform arith-
metic operations rather efficiently [498]. Since the Babylonians did not invent
the number zero, if the ratio of two numbers is a power of 60, then their rep-
resentation in the Babylonian system is the same. In that sense, the number
represented is the significand of a radix-60 floating-point representation.

A famous tablet from the Yale Babylonian Collection (YBC 7289) gives
an approximation to v/2 with four sexagesimal places (the digits represented
on the tablet are 1, 24, 51, 10). A photo of that tablet can be found in [633],
and a very interesting analysis of the Babylonian mathematics used for com-
puting square roots, related to YBC 7289, was carried out by Fowler and Rob-
son [205].

Whereas the Babylonians invented the significands of our floating-point
numbers, one may reasonably argue that Archimedes invented the exponents:
in his famous treatise Arenarius (The Sand Reckoner) he invents a system of
naming very large numbers that, in a way, “contains” an exponential repre-
sentation [259]. The notation a™ for a xaxax- - - X a seems to have been coined
much later by Descartes (it first appeared in his book La Géométrie [169]).

The arithmetic of the slide rule, invented around 1630 by William
Oughtred [632], can be viewed as another kind of floating-point arithmetic.
Again, as with the Babylonian number system, we only manipulate signifi-
cands of numbers (in that case, radix-10 significands).

The two modern co-inventors of floating-point arithmetic are probably
Quevedo and Zuse. In 1914 Leonardo Torres y Quevedo described an electro-
mechanical implementation of Babbage’s Analytical Engine with floating-
point arithmetic [504]. Yet, the first real, modern implementations of floating-
point arithmetic were in Konrad Zuse’s Z1 [514] and Z3 [92] computers. The
73, builtin 1941, used a radix-2 floating-point number system, with 15-bit sig-
nificands (stored on 14 bits, using the leading bit convention, see Section 2.1.2),
7-bit exponents, and a 1-bit sign. It had special representations for infinities
and indeterminate results. These characteristics made the real number arith-
metic of the Z3 much ahead of its time.

The Z3 was rebuilt recently [515]. Photographs of Konrad Zuse and the
73 can be viewed at http:/ /www.konrad-zuse.de/.

Readers interested in the history of computing devices should have a
look at the excellent books by Aspray et al. [20] and Ceruzzi [93].

When designing a floating-point system, the first thing one must think
about is the choice of the radix 5. Radix 10 is what humans use daily for rep-
resenting numbers and performing paper and pencil calculations. Therefore,
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to avoid input and output radix conversions, the first idea that springs to
mind for implementing automated calculations is to use the same radix.

And yet, since most of our computers are based on two-state logic,
radix 2 (and, more generally, radices that are a power of 2) is by far the eas-
iest to implement. Hence, choosing the right radix for the internal represen-
tation of floating-point numbers was not obvious. Indeed, several different
solutions were explored in the early days of automated computing.

Various early machines used a radix-8 floating-point arithmetic: the
PDP-10 and the Burroughs 570 and 6700 for example. The IBM 360 had a
radix-16 floating-point arithmetic (and on its mainframe computers, IBM
still offers hexadecimal floating-point, along with more conventional radix-2
and radix-10 arithmetics [213, 387]). Radix 10 has been extensively used in
financial calculations' and in pocket calculators, and efficient implemen-
tation of radix-10 floating-point arithmetic is still a very active domain of
research [87, 89, 116, 121, 122, 124, 191, 614, 613, 627, 628]. The computer
algebra system Maple also uses radix 10 for its internal representation of the
“software floats.” It therefore seems that the various radices of floating-point
arithmetic systems that have been implemented so far have almost always
been either 10 or a power of 2.

There was a very odd exception. The Russian SETUN computer, built at
Moscow State University in 1958, represented numbers in radix 3, with digits
—1, 0, and 1 [630]. This “balanced ternary” system has several advantages.
One of them is the fact that rounding to a nearest number the sum or product
of two numbers is equivalent to truncation [342]. Another one [250] is the fol-
lowing. Assume you use a radix-3 fixed-point system, with p-digit numbers.
A large value of 3 makes the implementation complex: the system must be
able to “recognize” and manipulate  different symbols. A small value of
means that more digits are needed to represent a given number: if 3 is small,
p has to be large. To find a compromise, we can try to minimize 5 x p, while
having the largest representable number 37 —1 (almost) constant. The optimal
solution? will almost always be 3 = 3. See http:/ /www.computer-museum.
ru/english/setun.htm for more information on the SETUN computer.

Johnstone and Petry have argued [306] that radix 210 could be a sensible
choice because it would allow exact representation of many rational numbers.

Various studies (see references [63, 104, 352] and Chapter 2) have shown
that radix 2 with the implicit leading bit convention gives better worst-case and
average accuracy than all other radices. This and the ease of implementation
explain the current prevalence of radix 2.

!For legal reasons, financial calculations frequently require special rounding rules that
are very tricky to implement if the underlying arithmetic is binary: this is illustrated in [320,
Section 2].

2If p and 8 were real numbers, the value of 3 that would minimize 8 x p while letting 5”7
be constant would be e = 2.7182818 - - - .
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The world of numerical computation changed a great deal in 1985, when
the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic was pub-
lished [12]. This standard specifies various formats, the behavior of the basic
operations and conversions, and exception conditions. As a matter of fact,
the Intel 8087 mathematics co-processor, built a few years before (in 1980)
to be paired with the Intel 8088 and 8086 processors, was already extremely
close to what would later become the IEEE 754-1985 standard. And the HP35
pocket calculator (a landmark: it was the machine that killed the slide rule!),
launched in 1972, already implemented related ideas. Now, most systems of
commercial significance offer compatibility® with IEEE 754-1985 or its suc-
cessor IEEE 754-2008. This has resulted in significant improvements in terms
of accuracy, reliability, and portability of numerical software. William Ka-
han [553] played a leading role in the conception of the IEEE 754-1985 stan-
dard and in the development of smart algorithms for floating-point arith-
metic. His website* contains much useful information. He received the Tur-
ing award in 1989.

IEEE 754-1985 only dealt with radix-2 arithmetic. Another standard, re-
leased in 1987, the IEEE 854-1987 Standard for Radix Independent Floating-
Point Arithmetic [13], was devoted to both binary (radix-2) and decimal
(radix-10) arithmetic.

In 1994, a number theorist, Thomas Nicely, who was working on the twin
prime conjecture,’ noticed that his Pentium-based computer delivered very
inaccurate results when performing some divisions. The reason was a flaw
in the choice of tabulated constants needed by the division algorithm [108,
183, 437]. For instance, when dividing 4195835.0 by 3145727.0, one would
get 1.333739068902 instead of 1.3338204491. This announcement of a “Pen-
tium FDIV bug” provoked a great deal of discussion at the time but has had
very positive long-term effects: most arithmetic algorithms used by the man-
ufacturers are now published (for instance a few years after, the division al-
gorithm used on the Intel/HP Itanium [120, 242] was made public) so that
everyone can check them, and everybody understands that a particular effort
must be made to build formal proofs of the arithmetic algorithms and their
implementation [240, 243].

A revision of the standard, which replaced both IEEE 754-1985 and 854-
1987, was adopted in 2008 [267]. That IEEE 754-2008 standard brought signifi-
cant improvements. It specified the Fused Multiply-Add (FMA) instruction—
which makes it possible to evaluate ab + ¢, where q, b, and c are floating-
point numbers, with one final rounding only. It resolved some ambiguities
in IEEE 754-1985, especially concerning expression evaluation and exception

3Even if sometimes you need to dive into the compiler documentation to find the right
options; see Chapter 6.

*http:/ /www.cs.berkeley.edu/~wkahan/.

>That conjecture asserts that there are infinitely many pairs of prime numbers that differ
by 2.
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handling. It also included “quadruple precision” (now called binary128 or
decimal128), and recommended (yet did not mandate) that some elementary
functions should be correctly rounded (see Chapter 10).

At the time of writing these lines, the IEEE 754 Standard is again under
revision: the new standard is to be released in 2018.

1.2 Desirable Properties

Specifying a floating-point arithmetic (formats, behavior of operators, etc.)
demands that one find compromises between requirements that are seldom
fully compatible. Among the various properties that are desirable, one can
cite:

e Speed: Tomorrow’s weather must be computed in less than 24 hours;

e Accuracy: Even if speed is important, getting a wrong result right now
is not better than getting the correct one too late;

e Range: We may need to represent large as well as tiny numbers;

e Portability: The programs we write on a given machine should run on
different machines without requiring modifications;

e Ease of implementation and use: If a given arithmetic is too arcane,
almost nobody will use it.

With regard to accuracy, the most accurate current physical measure-
ments allow one to check some predictions of quantum mechanics or general
relativity with a relative accuracy better than 1071 [99].

This means that in some cases, we must be able to represent numerical
data with a similar accuracy (which is easily done, using formats that are
implemented on almost all current platforms: for instance, with the binary64
format of IEEE 754-2008, one represents numbers with relative error less than
2753 ~ 1.11 x 10716). But this also means that we must sometimes be able
to carry out long computations that end up with a relative error less than
or equal to 10~ 1, which is much more difficult. Sometimes, one will need
a significantly larger floating-point format or clever “tricks” such as those
presented in Chapter 4.

An example of a huge calculation that requires great care was carried out
by Laskar’s team at the Paris Observatory [369]. They computed long-term
numerical solutions for the insolation quantities of the Earth (very long-term,
ranging from —250 to +250 millions of years from now).

In other domains, such as number theory, some multiple-precision com-
putations are indeed carried out using a very large precision. For instance, in



