Jean-Michel Muller
Nicolas Brunie

Florent de Dinechin
Claude-Pierre Jeannerod

Mioara Joldes
Vincent Leféevre
Guillaume Melquiond
Nathalie Revol

Serge Torres

Handbook
of Floating-Point

Arithmetic

Second Edition

B Birkhiuser

) Birkhauser

Jean-Michel Muller ¢ Nicolas Brunie

Florent de Dinechin ¢ Claude-Pierre Jeannerod
Mioara Joldes ¢ Vincent Lefevre

Guillaume Melquiond ¢ Nathalie Revol

Serge Torres

Handbook of Floating-Point
Arithmetic

Second Edition

Birkhauser

Jean-Michel Muller
CNRS - LIP
Lyon, France

Florent de Dinechin
INSA-Lyon - CITI
Villeurbanne, France

Mioara Joldes
CNRS - LAAS
Toulouse, France

Guillaume Melquiond
Inria - LRI
Orsay, France

Nicolas Brunie
Kalray
Grenoble, France

Claude-Pierre Jeannerod
Inria - LIP
Lyon, France

Vincent Lefevre
Inria - LIP
Lyon, France

Nathalie Revol
Inria - LIP
Lyon, France

Serge Torres
ENS-Lyon - LIP
Lyon, France

ISBN 978-3-319-76525-9 ISBN 978-3-319-76526-6 (eBook)
https:/ /doi.org/10.1007 /978-3-319-76526-6

Library of Congress Control Number: 2018935254
Mathematics Subject Classification: 65Y99, 68N30

© Springer International Publishing AG, part of Springer Nature 2010, 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This book is published under the imprint Birkhduser, www.birkhauser-science.com by the registered

company Springer International Publishing AG part of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-76526-6
http://www.birkhauser-science.com

Contents

List of Figures XV
List of Tables Xix
Preface xxiii
PartI Introduction, Basic Definitions, and Standards 1

1 Introduction 3
1.1 SomeHistory 4

1.2 Desirable Properties. 7

1.3 Some Strange Behaviors 8
131 Somefamousbugs, 8

1.3.2 Difficult problems, 9

2 Definitions and Basic Notions 15
2.1 Floating-Point Numbers 15
21.1 Maindefinitions 15

2.1.2 Normalized representations, normal and subnormal
numbers 17
213 Anoteonunderflow 19
214 Special floating-pointdata 21
22 Rounding. 22
221 Rounding functions 22
222 Useful properties 24
2.3 Tools for Manipulating Floating-Point Errors 25
23.1 Relative error duetorounding 25
232 Theulpfunction 29
2.3.3 Link between errors in ulps and relative errors 34
234 Anexample:iterated products 35

Vi

Contents

2.4 The Fused Multiply-Add (FMA) Instruction 37
25 Exceptions o 37
2.6 Lost and Preserved Properties of Real Arithmetic. 40
2.7 Note on the Choiceof theRadix 41
2.7.1 Representationerrors. 41

272 Acaseforradix10 43

2.8 Reproducibility 00 L 44
Floating-Point Formats and Environment 47
3.1 ThelEEE 754-2008 Standard 48
311 Formats 0 .. 48

3.1.2 Attributesandrounding L. 66

3.1.3 Operations specified by the standard 70

314 Comparisons 72

3.1.5 Conversions to/from string representations 73

3.1.6 Default exception handling 74

3.1.7 Specialvalues 77

3.1.8 Recommended functions 79

3.2 On the Possible Hidden Use of a Higher Internal Precision . . 79
3.3 Revision of the IEEE 754-2008 Standard 82
3.4 Floating-Point Hardware in Current Processors 83
34.1 The common hardware denominator 83

3.4.2 Fused multiply-add 84

3.4.3 Extended precision and 128-bit formats 85

3.44 Rounding and precisioncontrol 85

34.5 SIMDinstructions 86

3.4.6 Binaryl6 (half-precision) support 87
3.4.7 Decimal arithmetic 87

3.48 Thelegacy x87 processor. 88

3.5 Floating-Point Hardware in Recent Graphics Processing Units 89
3.6 1EEE Support in Programming Languages 90
3.7 Checking the Environment 91
371 MACHAR 91

372 Paranoia oo 92

373 UCBTest 92

374 TestFloat 92

3.75 Miscellaneous 93

Contents vii

Part II Cleverly Using Floating-Point Arithmetic 95
4 Basic Properties and Algorithms 97
41 Testing the Computational Environment 97
411 Computingtheradix 97
412 Computing the precision. 99
42 ExactOperations 100
421 Exactaddition............... 100
422 Exact multiplications and divisions 103
4.3 Accurate Computation of the Sum of Two Numbers 103
43.1 TheFast2Sum algorithm 104
432 The2Sumalgorithm 107
43.3 If we donot use rounding tonearest 109
44 Accurate Computation of the Product of Two Numbers 111
441 The 2MultFMA Algorithm 112
442 1If no FMA instruction is available: Veltkamp splitting
and Dekker product 113
45 Computation of Residuals of Division and Square Root with
anFEMAo 120
4.6 Another splitting technique: splitting around a
powerof2 123
47 Newton-Raphson-Based Division withan FMA 124
471 Variants of the Newton-Raphson iteration 124
4.7.2 Using the Newton—-Raphson iteration for correctly
rounded division withanFMA 129
4.7.3 Possible double roundings in division algorithms . . . 136
4.8 Newton-Raphson-Based Square Root withan FMA 138
48.1 Thebasiciterations 138
4.8.2 Using the Newton-Raphson iteration for correctly
rounded squareroots 138
49 RadixConversion 142
491 Conditionsontheformats 142
49.2 Conversion algorithms 146
4.10 Conversion Between Integers and Floating-Point Numbers . . 153
4.10.1 From 32-bit integers to floating-point numbers 153
4.10.2 From 64-bit integers to floating-point numbers 154
4.10.3 From floating-point numbers to integers 155
4.11 Multiplication by an Arbitrary-Precision Constant with an FMA 156

4.12

Evaluation of the Errorofan FMA 160

viii

Contents

5 Enhanced Floating-Point Sums, Dot Products,

and Polynomial Values 163
51 Preliminaries. 164
5.1.1 Floating-point arithmeticmodels 165
5.1.2 Notation for error analysis and classical error
estimates L oL 166
51.3 Some refined error estimates 169
5.1.4 Properties for deriving validated running error
bounds o 174
5.2 Computing Validated Running Error Bounds 175
5.3 Computing Sums More Accurately 177
53.1 Reordering the operands, and a bitmore 177
532 Compensatedsums. 178
5.3.3 Summation algorithms that somehow imitate
a fixed-point arithmetic 184
5.3.4 On the sum of three floating-point numbers 187
54 Compensated Dot Products 189
5.5 Compensated Polynomial Evaluation 190
6 Languages and Compilers 193
6.1 APlaywithMany Actors 193
6.1.1 Floating-point evaluation in programming
languages L 194
6.1.2 Processors, compilers, and operating systems 196
6.1.3 Standardization processes 197
6.1.4 In the hands of the programmer 199
6.2 Floating Point in the C Language 200
6.2.1 Standard C11 headers and IEEE 754-1985 support . . . 201
622 Types 202
6.2.3 Expressionevaluation 204
6.24 Code transformations 209
6.2.5 Enabling unsafe optimizations 210
6.2.6 Summary: a few horror stories 211
6.2.7 The CompCert Ccompiler. 214
6.3 Floating-Point Arithmetic in the C++ Language 215
6.3.1 Semantics 215
6.3.2 Numericlimits 215
6.3.3 Overloaded functions 217
6.4 FORTRAN Floating Pointina Nutshell 218
6.4.1 Philosophy. 218
6.42 IEEE 754 supportin FORTRAN 220
6.5 Java Floating Pointina Nutshell 222
6.5.1 Philosophy. 222

6.52 Typesandclasses 222

Contents

6.6

6.5.3 Infinities, NaNs, and signed zeros
6.54 Missingfeatures.
6.5.5 Reproducibility
6.5.6 The BigDecimal package
Conclusion e

Part III Implementing Floating-Point Operators

7 Algorithms for the Basic Operations

7.1
7.2

7.3

7.4

7.5

7.6

7.7

Overview of Basic Operation Implementation
Implementing IEEE 754-2008 Rounding
7.2.1 Rounding a nonzero finite value with unbounded

exponentrange
722 Overflow o o o
7.2.3 Underflow and subnormal results
724 Theinexactexception
7.2.5 Rounding for actual operations
Floating-Point Addition and Subtraction.
73.1 Decimal addition
7.3.2 Decimal addition using binary encoding
7.3.3 Subnormal inputs and outputs in binary addition . . .
Floating-Point Multiplication
741 Normalcase
7.4.2 Handling subnormal numbers in binary

multiplication o 0oL
743 Decimalspecifics
Floating-Point Fused Multiply-Add
751 Case analysis for normalinputs
7.5.2 Handling subnormalinputs
7.53 Handling decimal cohorts
7.54 Overview of a binary FMA implementation
Floating-Point Division
7.6.1 Overview and specialcases
7.6.2 Computing the significand quotient
7.6.3 Managing subnormal numbers
7.64 Theinexactexception
7.6.5 Decimalspecifics
Floating-Point SquareRoot.
771 Overview and specialcases
7.7.2 Computing the significand squareroot
7.7.3 Managing subnormal numbers
774 Theinexactexception
7.7.5 Decimal specifics

ix

224
225
226
227
229

231

233
233
235

Contents

7.8 Nonhomogeneous Operators 261
7.8.1 A software algorithm around double rounding 262
7.8.2 The mixed-precision fused multiply-and-add 264
783 Motivation Lo 265
7.84 Implementationissues 265
Hardware Implementation of Floating-Point Arithmetic 267
8.1 Introductionand Context 267
8.1.1 Processor internal formats 267
8.1.2 Hardware handling of subnormal numbers 268
8.1.3 Full-custom VLSI versus reconfigurable circuits
(FPGAs) 269
8.1.4 Hardware decimal arithmetic 270
815 Pipelining 271
8.2 The Primitives and TheirCost 272
82.1 Integeradders. 272
8.2.2 Digit-by-integer multiplication in hardware 278
8.2.3 Using nonstandard representations of numbers 278
8.2.4 Binary integer multiplication 280
8.2.5 Decimal integer multiplication 280
82.6 Shifters 282
8.2.7 Leading-zerocounters 283
8.2.8 Tables and table-based methods for fixed-point function
approximation 0L 285
8.3 Binary Floating-Point Addition 287
831 Overviewo . 287
8.3.2 A first dual-path architecture 288
8.3.3 Leading-zero anticipation 290
8.3.4 Probing further on floating-point adders 294
8.4 Binary Floating-Point Multiplication 295
8.4.1 Basicarchitecture, ... 295
8.4.2 FPGA implementation 296
8.4.3 VLSIimplementation optimized for delay 297
844 Managingsubnormals 300
8.5 Binary Fused Multiply-Add 301
8.5.1 Classicarchitecture 301
852 Toprobefurther. 302
8.6 Divisionand SquareRoot 304
8.6.1 Digit-recurrence division 305
8.6.2 Decimaldivision 308
8.7 Beyond the Classical Floating-Point Unit. 309
8.7.1 More fused operators. 309
8.7.2 Exactaccumulation and dot product 309

8.7.3 Hardware-accelerated compensated algorithms 311

Contents xi

8.8 Floating-Point for FPGAs 312
8.8.1 Optimization in context of standard operators 312
8.8.2 Operations with a constant operand 314
8.8.3 Computing large floating-pointsums 315
8.8.4 Block floatingpoint. 319
8.8.5 Algebraicoperators. 319
8.8.6 Elementary and compound functions 320
89 ProbingFurther 320
9 Software Implementation of Floating-Point Arithmetic 321
9.1 ImplementationContext 322
9.1.1 Standard encoding of binary floating-point data 322
9.1.2 Available integer operators 323
913 Firstexamples 326
9.14 Design choices and optimizations 328
9.2 Binary Floating-Point Addition 329
9.21 Handling specialvalues 330
9.22 Computing the signof theresult 332

9.2.3 Swapping the operands and computing the alignment
shift. o 333
9.24 Getting the correctly rounded result 335
9.3 Binary Floating-Point Multiplication 341
9.3.1 Handling specialvalues 341
9.3.2 Sign and exponent computation 343
9.33 Overflowdetection 345
9.3.4 Getting the correctly rounded result 346
9.4 Binary Floating-Point Division 349
941 Handlingspecialvalues 350
9.42 Sign and exponent computation 351
9.43 Opverflowdetection 354
9.44 Getting the correctly rounded result 355
9.5 Binary Floating-Point Square Root 362
9.5.1 Handling special values 362
9.5.2 Exponentcomputation 363
9.5.3 Getting the correctly rounded result 365
9.6 CustomOperators. 372
10 Evaluating Floating-Point Elementary Functions 375
10.1 Introduction oL oo 375
10.1.1 Which accuracy? 375
10.1.2 The various steps of function evaluation. 376
10.2 Range Reduction 379
10.2.1 Basic range reduction algorithms 379

10.2.2 Bounding the relative error of range reduction 382

xii Contents
10.2.3 More sophisticated range reduction algorithms 383
10.2.4 Examples 386

10.3 Polynomial Approximations 389
103.1 L*case . .. oov i 390
10.3.2 L°°,or minimax, Case « « v v v v v v e e 391
10.3.3 “Truncated” approximations 394
10.3.4 Inpractice: using the Sollya tool to compute constrained

approximations and certified error bounds 394

10.4 Evaluating Polynomials 396
10.4.1 Evaluationstrategies 396
10.4.2 Evaluationerror. 397

10.5 The Table Maker’s Dilemma 397
10.5.1 When there is no need to solvethe TMD 400
10.5.2 Onbreakpoints 400
10.5.3 Finding the hardest-to-round points 404

10.6 Some Implementation Tricks Used in the CRlibm Library . . . 427
10.6.1 Roundingtest 428
10.6.2 Accuratesecondstep, 429
10.6.3 Error analysis and the accuracy/performance

tradeoffo 429
10.6.4 The point with efficientcode 430

Part IV Extensions 435

11 Complex Numbers 437

11.1 Introduction L L 437

11.2 Componentwise and Normwise Errors 439

11.3 Computing ad £ bc withanFMA 440

11.4 Complex Multiplication 442
11.4.1 Complex multiplication without an FMA

instruction o oo 442
11.4.2 Complex multiplication with an FMA instruction . .. 442

11.5 ComplexDivision 443
11.5.1 Error bounds for complex division 443
11.5.2 Scaling methods for avoiding over-/underflow

in complexdivision. o 0L 444

11.6 Complex Absolute Value 447
11.6.1 Error bounds for complex absolute value 447
11.6.2 Scaling for the computation of complex absolute

value L 447

11.7 ComplexSquareRoot, 449
11.7.1 Error bounds for complex squareroot 449
11.7.2 Scaling techniques for complex square root 450

11.8 An Alternative Solution: Exception Handling 451

Contents

12 Interval Arithmetic

12.1 Introduction to Interval Arithmetic
12.1.1 Definitions and the inclusion property
12.1.2 Loss of algebraic properties

12.2 The IEEE 1788-2015 Standard for Interval Arithmetic
12.2.1 Structurationintolevels
1222 Flavors oo
12.2.3 Decorations,
12.2.4 Level 2: discretization issues
12.2.5 Exactdotproduct.
12.2.6 Levels 3 and 4: implementation issues
12.2.7 Libraries implementing IEEE 1788-2015

12.3 Intervals with Floating-Point Bounds
12.3.1 Implementation using floating-point arithmetic
12.3.2 Difficulties oo
12.3.3 Optimized rounding

12.4 Interval Arithmetic and Roundoff Error Analysis . . .
12.4.1 Influence of the computing precision.

12.4.2 A more efficient approach: the mid-rad
representation L.

12.4.3 Variants: affine arithmetic, Taylor models . . .
12.5 Further Readings

13 Verifying Floating-Point Algorithms
13.1 Formalizing Floating-Point Arithmetic
13.1.1 Defining floating-point numbers
13.1.2 Simplifying the definition
13.1.3 Defining rounding operators
13.1.4 Extending the set of numbers
13.2 Formalisms for Verifying Algorithms
13.2.1 Hardwareunits
13.2.2 Floating-point algorithms
13.2.3 Automating proofs
13.3 Roundoff Errors and the Gappa Tool
13.3.1 Computingonbounds
13.3.2 Counting digits
13.3.3 Manipulating expressions
13.3.4 Handling the relativeerror
13.3.5 Example: toy implementation of sine.
13.3.6 Example: integer division on Itanium

xiii

453
454
454
456
457
457
458
460
463
464
464
464
465
465
465
467
468
468

471
475
476

Xiv

14 Extending the Precision

14.1

14.2

14.3

14.4

Double-Words, Triple-Words...
14.1.1 Double-word arithmetic
14.1.2 Static triple-word arithmetic.
Floating-Point Expansions
14.2.1 Renormalization of floating-point expansions . . .
14.2.2 Addition of floating-point expansions
14.2.3 Multiplication of floating-point expansions
14.2.4 Division of floating-point expansions
Floating-Point Numbers with Batched Additional

Exponent

Large Precision Based on a High-Radix Representation

14.4.1 Specifications
14.4.2 Using arbitrary-precision integer arithmetic
for arbitrary-precision floating-point arithmetic
14.4.3 A brief introduction to arbitrary-precision integer
arithmetic Lo L.
1444 GNUMPER

Appendix A. Number Theory Tools for Floating-Point Arithmetic

Al
A2

Continued Fractions
Euclidean Lattices

Appendix B. Previous Floating-Point Standards

B.1 ThelEEE 754-1985Standard
B.1.1 Formats specified by IEEE 754-1985
B.1.2 Rounding modes specified by IEEE 754-1985
B.1.3 Operations specified by IEEE 754-1985
B.1.4 Exceptions specified by IEEE 754-1985
B.2 TheIEEE 854-1987 Standard
B.2.1 Constraints internaltoaformat
B.2.2 Various formats and the constraints between them . . .
B23 Rounding
B24 Operations.
B.25 Comparisons
B26 Exceptions
B.3 TheNeed foraRevision
B.4 TheIEEE 754-2008 Revision
Bibliography
Index

Contents

List of Figures

2.1
2.2
2.3
24

25
2.6
2.7

2.8
29

3.1
3.2

41
4.2
4.3

44
4.5

4.6
4.7

51

6.1

Positive floating-point numbers for 5 =2andp=3. 20
Underflow before and after rounding. 21
The standard rounding functions. 23
Relative error introduced by rounding a real number to nearest
floating-pointnumber. Lo o L 26
Values of ulp according to Harrison’s definition. 30
Values of ulp according to Goldberg’s definition. 31
Counterexample in radix 3 for a property of Harrison’s

ulp. . 32
Conversion from ulps to relative errors. 36
Conversion from relative errorstoulps. 36
Binary interchange floating-point formats. 50
Decimal interchange floating-point formats. 55
Independent operations in Dekker’s product. 120
Convergence of iteration (4.7). 126
The various values that should be returned in round-to-nearest
mode, assuming ¢ is within one ulp(b/a) fromb/a. 133
Converting from binary to decimal, and back. 145
Possible values of the binary ulp between two powers

of 10. . . . 146
[lustration of the conditions (4.34) in the case b =2°. 150
Position of Cz with respect to the result of Algorithm 4.13. . . 160

Boldo and Melquiond’s algorithm for computing RN(a+b+c)
in radix-2 floating-point arithmetic. 192

The tangled standardization timeline of floating-point and C
language. 199

XV

Xvi

7.1
7.2
7.3
74
7.5

7.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

8.11
8.12

8.13
8.14

8.15

8.16
8.17

8.18
8.19

8.20
8.21

10.1

10.2

10.3

List of Figures

Specification of the implementation of a FP operation.
Product-anchored FMA computation for normal inputs.
Addend-anchored FMA computation for normal inputs. . .
Cancellationinthe FMA.
FMA ab — ¢, where a is the smallest subnormal, ab

is nevertheless in the normal range, |c| < |ab|,

and we have an effective subtraction.
Significand alignment for the single-path algorithm.

Carry-rippleadder.
Decimal addition.
An implementation of the decimal DAbox.
An implementation of the radix-16 DAbox.
Binary carry-save addition., .
Partial carry-save addition.
Carry-selectadder.
Binary integer multiplication.
Partial product array for decimal multiplication.
A multipartite table architecture for the initial approximation

A dual-path floating-pointadder.
Possible implementations of significand subtraction in the
closepath.
A dual-path floating-point adder with LZA.
Basic architecture of a floating-point multiplier without
subnormal handling.
A floating-point multiplier using rounding by injection,
without subnormal handling
The classic single-path FMA architecture.
An unrolled SRT4 floating-point divider without subnormal
handling. o o
The 2S5um and 2Mult operators.
Iterative accumulator. o L
Accumulator and post-normalization unit.
Accumulation of floating-point numbers into a large
fixed-point accumulator o o 0oL

The difference between In and its degree-5 Taylor
approximation in the interval [1,2].
The difference between In and its degree-5 minimax
approximation in the interval [1,2].
The L? approximation p* is obtained by projecting f

on the subspace generated by By, By,..., Bp.

252
255

273
274
274
275
276
276
278
281
281

287
288

289
291

296

299
303

306
311
315
317

318

389

390

List of Figures

10.4

10.5
10.6

12.1

Al
A2

The exp(cos(x)) function and its degree-4 minimax
approximationon [0,5].. L L L
A situation where we can return f(z) correctly rounded.

A situation where we cannot return f(x) correctly

rounded. L L

Comparison of the relative widths of matrices computed
usingMMul3and MMul5

The lattice Z(2,0) Z(1,2).
Two bases of the lattice Z(2,0) ® Z(1,2).

Xvii

List of Tables

1.1

21

2.2

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

Results obtained by running Program 1.1 on a Macintosh with

Rounding a significand using the “round” and “sticky”
bits.
ARRE and MRRE for various formats.

Main parameters of the binary interchange formats of size
up to 128 bits specified by the 754-2008 standard [267]. In
some articles and software libraries, 128-bit formats were
sometimes called “quad precision.” However, quad precision
was not specified by IEEE 754-1985.
Main parameters of the decimal interchange formats of size
up to 128 bits specified by the 754-2008 standard [267].
How to interpret the encoding of an IEEE 754 binary
floating-point number.o L
Parameters of the encodings of binary interchange formats
[267]. As stated above, in some articles and software
libraries, 128-bit formats were called “quad precision.”
However, quad precision was not specified by IEEE
754-1985. . L L
Extremal values of the IEEE 754-2008 binary interchange
formats.
Binary encoding of various floating-point data in the binary32
format.o
Width (in bits) of the various fields in the encodings of the
decimal interchange formats of size up to 128 bits [267]. . . .
Decimal encoding of a decimal floating-point number (IEEE
754-2008). . . .
Binary encoding of a decimal floating-point number (IEEE
754-2008).

11

24
43

49

49

51

51

52

52

56

58

Xix

XX

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

4.1
4.2

4.3

51
52

6.1
6.2
6.3

7.1

7.2

7.3

7.4

7.5
7.6

List of Tables

Decoding the declet byb1bs - - - by of a densely packed decimal
encoding to three decimal digits dodidz. 60
Encoding the three consecutive decimal digits dod;da, each of
them being represented in binary by four bits, into a 10-bit

declet bpb1 b2 - - - bg of a densely packed decimal encoding. . . 60
Parameters of the interchange formats. 64
Parameters of the binary256 and binary1024 interchange
formats deduced from Table 3.12. 64
Parameters of the decimal256 and decimal512 interchange
formats deduced from Table 3.12. 65
Extended format parameters in the IEEE 754-2008

standard. Lo Lo 65

Minimum number of decimal digits in the decimal external
character sequence that allows for an error-free write-read

cycle, for the various basic binary formats of the standard. . . 74
Results returned by Program 3.1 on a 64-bit Intel

platform. 80
Execution times of decimal operations on the IBM z10. 88
Quadratic convergence of iteration (4.7). 126
Converting from binary to decimal and back without

EITOL. . . o o vt i it e e e e e e 146
Comparison of various methods for checking

Algorithm 4.13. L oo 161
Errors of various methods for) x; with z; = RN(cos(z)). . . 184
Errors of various methods for > x; with 2; = RN(1/7). 185
FLT_EVAL_METHOD macro values. 205
FORTRAN allowable alternatives. 220
FORTRAN forbidden alternatives. 220
Specification of addition/subtraction when both x and y are

ZETO. © v v v e e e e e e 241
Specification of addition for floating-point data of positive

SIgN. 241
Specification of subtraction for floating-point data of positive

SIZIL . . v 242
Specification of multiplication for floating-point data of
positivesign. L Lo 246
Special values for |z|/[y]. 257

Special values for sqrt(z). 259

List of Tables XX1

8.1

9.1
9.2
9.3

10.1
10.2

10.3

104

10.5

10.6

10.7

10.8

10.9

10.10

10.11

10.12

10.13

10.14

10.15

10.16

10.17

10.18

Minimum size of an exact accumulator for the main IEEE

formats 310
Standard integer encoding of binary32 data. 324
Some floating-point data encoded by X. 330
Speedups for some binary32 custom operators in

software L 374
Some worst cases for range reduction. 385
Degrees of minimax polynomial approximations for various
functions and approximationranges. 385
Some results for small values in the binary32 format, assuming
rounding tonearest. L L L. 401
Some results for small values in the binary64 format, assuming
rounding tonearest. L L. 402
Some results for small values in the binary64 format, assuming
rounding toward —oco. oL 403
Hardest-to-round points for functions e” and e”—1 in binary32
arithmetic. L Lo 406
Hardest-to-round points for functions 2* and 10" in binary32
arithmetic. o . 407
Hardest-to-round points for functions In(x) and In(1 + z) in
binary32 arithmetic. 408
Hardest-to-round points for functions log,(z) and log;,(x) in
binary32 arithmetic. o0 L 409
Hardest-to-round points for functions sinh(z), cosh(z) and
tanh(z) in binary32 arithmetic. 410
Hardest-to-round points for the inverse hyperbolic functions

in binary32 arithmetic. 411
Hardest-to-round points for functions sin(z) and cos(x) in
binary32 arithmetic. o0 412
Hardest-to-round points for functions tan(x), asin(z), acos(z)

and atan(x) in binary32 arithmetic. 413
Hardest-to-round points for functions erf(z) and erfc(z) in
binary32 arithmetic. 414
Hardest-to-round points for function I'(x) in binary32

arithmetic. o L 415
Hardest-to-round points for function In(|I'(z)|) in binary32
arithmetic. o L L 416
Hardest-to-round points for the Bessel functions in binary32
arithmetic. L o o 417

Hardest-to-round points for functions e”, e* — 1, 2%, and 10*
in binary64 arithmetic. 420

xxii

10.19

10.20

10.21

10.22

10.23

10.24

12.1

141

B.1

B.2

B.3

List of Tables

Hardest-to-round points for functions In(z) and In(1 + z) in
binary64 arithmetic. 0 L
Hardest-to-round points for functions log,(z) and log;,(x) in
binary64 arithmetic. 00 L
Hardest-to-round points for functions sinh(z) and cosh(z) in
binary64 arithmetic.o 0 L
Hardest-to-round points for the inverse hyperbolic functions
in binary64 arithmetic.
Hardest-to-round points for the trigonometric functions in
binary64 arithmetic.
Hardest-to-round points for the inverse trigonometric

functions in binary64 arithmetic.

Difference of the interval evaluation of Machin’s formula for
Various precisions.

Asymptotic complexities of some multiplication
algorithms.o o L.

Main parameters of the formats specified by the IEEE 754-1985
standard. Lo oo
The thresholds for conversion from and to a decimal string,
as specified by the IEEE 754-1985 standard.
Correctly rounded decimal conversion range, as specified by
the IEEE 754-1985 standard.

421

422

423

424

425

426

470

539

562

563

Preface

FLOATING-POINT ARITHMETIC is by far the most widely used way of
approximating real-number arithmetic for performing numerical cal-
culations on modern computers. A rough presentation of floating-point
arithmetic requires only a few words: a number z is represented in radix
floating-point arithmetic with a sign s, a significand m, and an exponent e,
such that z = s xm x 3°. Making such arithmetic reliable, fast, and portable is
however a very complex task. Although it could be argued that, to some ex-
tent, the concept of floating-point arithmetic (in radix 60) was invented by the
Babylonians, or that it is the underlying arithmetic of the slide rule, its first
modern implementation appeared in Konrad Zuse’s Z1 and Z3 computers.

A vast quantity of very diverse arithmetics was implemented between
the 1960s and the early 1980s. The radix (radices 2, 4, 8, 16, and 10, and even
radix 3, were then considered), and the sizes of the significand and exponent
fields were not standardized. The approaches for rounding and for handling
underflows, overflows, or “forbidden operations” (such as 5/0 or /—3) were
significantly different from one machine to another. This lack of standardiza-
tion made it difficult to write reliable and portable numerical software.

Pioneering scientists including Brent, Cody, Kahan, and Kuki high-
lighted the relevant key concepts for designing an arithmetic that could be
both useful for programmers and practical for implementers. These efforts
resulted in the IEEE 754-1985 standard for radix-2 floating-point arithmetic.
The standardization process was expertly orchestrated by William Kahan.
The IEEE 754-1985 standard was a key factor in improving the quality of the
computational environment available to programmers. A new version, the
IEEE 754-2008 standard, was released in August 2008. It specifies radix-2 and
radix-10 floating-point arithmetic. At the time of writing these lines, a work-
ing group is preparing a new version of IEEE 754, which should be released
in 2018. It will not be very different from the 2008 version.

By carefully specifying the behavior of the arithmetic operators, the IEEE
754-1985 and 754-2008 standards allowed researchers and engineers to design
extremely powerful yet portable algorithms, for example, to compute very
accurate sums and dot products, and to formally prove some critical parts of

xxiii

XXV Preface

programs. Unfortunately, the subtleties of the standard are little known by
the nonexpert user. Even more worrying, they are sometimes overlooked by
compiler designers. As a consequence, floating-point arithmetic is sometimes
conceptually misunderstood and is often far from being exploited to its full
potential.

This led us to the decision to compile into a book selected parts of
the vast knowledge of floating-point arithmetic. This book is designed for
programmers of numerical applications, compiler designers, programmers
of floating-point algorithms, designers of arithmetic operators (floating-
point adders, multipliers, dividers, ...), and more generally students and
researchers in numerical analysis who wish to more accurately understand
a tool that they manipulate on an everyday basis. During the writing, we
tried, whenever possible, to illustrate the techniques described by an actual
program, in order to allow a more direct practical use for coding and design.

The first part of the book presents the history and basic concepts of
floating-point arithmetic (formats, exceptions, correct rounding, etc.) and var-
ious aspects of the 2008 version of the IEEE 754 standard. The second part
shows how the features of the standard can be used to develop effective
and nontrivial algorithms. This includes summation algorithms, and division
and square root relying on a fused multiply-add. This part also discusses is-
sues related to compilers and languages. The third part then explains how
to implement floating-point arithmetic, both in software (on an integer pro-
cessor) and in hardware (VLSI or reconfigurable circuits). It also surveys the
implementation of elementary functions. The fourth part presents some ex-
tensions: complex numbers, interval arithmetic, verification of floating-point
arithmetic, and extension of the precision. In the Appendix, the reader will
find an introduction to relevant number theory tools and a brief presentation
of the standards that predated IEEE 754-2008.

Acknowledgments

Some of our colleagues around the world, in academia and industry, and sev-
eral students from Ecole normale supérieure de Lyon and Université de Lyon
greatly helped us by discussing with us, giving advice and reading prelimi-
nary versions of this edition, or by giving comments on the previous one that
(hopefully) helped us to improve it: Nicolas Brisebarre, Jean-Yves L'Excellent,
Warren Ferguson, Christian Fleck, John Harrison, Nicholas Higham, Tim
Leonard, Dan Liew, Nicolas Louvet, David Lutz, Peter Markstein, Marc Mez-
zarobba, Kai Torben Ohlhus, Antoine Plet, Valentina Popescu, Guillaume
Revy, Siegfried Rump, Damien Stehlé, and Nick Trefethen. We thank them
all for their suggestions and interest.

Preface XXV

Our dear colleague and friend Peter Kornerup left us recently. The com-
puter arithmetic community misses one of its pioneers, and we miss a very
kind and friendly person.

Grenoble, France Nicolas Brunie
Villeurbanne, France Florent de Dinechin
Lyon, France Claude-Pierre Jeannerod
Toulouse, France Mioara Joldes
Lyon, France Vincent Lefevre
Orsay, France Guillaume Melquiond
Lyon, France Jean-Michel Muller
Lyon, France Nathalie Revol

Lyon, France Serge Torres

Part I

Introduction, Basic Definitions,
and Standards

®

Check for
updates

Chapter 1

Introduction

EPRESENTING AND MANIPULATING real numbers efficiently is required
R in many fields of science, engineering, finance, and more. Since the
early years of electronic computing, many different ways of approximating
real numbers on computers have been introduced. One can cite (this list
is far from being exhaustive): fixed-point arithmetic, logarithmic [337, 585]
and semi-logarithmic [444] number systems, intervals [428], continued frac-
tions [349, 622], rational numbers [348] and possibly infinite strings of ratio-
nal numbers [418], level-index number systems [100, 475], fixed-slash and
floating-slash number systems [412], tapered floating-point arithmetic [432,
22], 2-adic numbers [623], and most recently unums and posits [228, 229].

And yet, floating-point arithmetic is by far the most widely used way
of representing real numbers in modern computers. Simulating an infinite,
continuous set (the real numbers) with a finite set (the “machine numbers”)
is not a straightforward task: preserving all properties of real arithmetic is
not possible, and clever compromises must be found between, e.g., speed,
accuracy, dynamic range, ease of use and implementation, and memory cost.
It appears that floating-point arithmetic, with adequately chosen parameters
(radix, precision, extremal exponents, etc.), is a very good compromise for
most numerical applications.

We will give a complete, formal definition of floating-point arithmetic in
Chapter 3, but roughly speaking, a radix-3, precision-p, floating-point num-
ber is a number of the form

e
+mo.mima - -mp_1 X 55,

where e, called the exponent, is an integer, and mg.mims - - - m,_1, called the
significand, is represented in radix 5. The major purpose of this book is to
explain how these numbers can be manipulated efficiently and safely.

© Springer International Publishing AG, part of Springer Nature 2018 3
J.-M. Muller et al., Handbook of Floating-Point Arithmetic,
https://doi.org/10.1007 /978-3-319-76526-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76526-6_1&domain=pdf
https://doi.org/10.1007/978-3-319-76526-6_1

4 Chapter 1. Introduction

1.1 Some History

Even if the implementation of floating-point arithmetic on electronic com-
puters is somewhat recent, floating-point arithmetic itself is an old idea. In
The Art of Computer Programming [342], Knuth presents a short history. He
views the radix-60 number system of the Babylonians as some kind of early
floating-point system. That system allowed the Babylonians to perform arith-
metic operations rather efficiently [498]. Since the Babylonians did not invent
the number zero, if the ratio of two numbers is a power of 60, then their rep-
resentation in the Babylonian system is the same. In that sense, the number
represented is the significand of a radix-60 floating-point representation.

A famous tablet from the Yale Babylonian Collection (YBC 7289) gives
an approximation to v/2 with four sexagesimal places (the digits represented
on the tablet are 1, 24, 51, 10). A photo of that tablet can be found in [633],
and a very interesting analysis of the Babylonian mathematics used for com-
puting square roots, related to YBC 7289, was carried out by Fowler and Rob-
son [205].

Whereas the Babylonians invented the significands of our floating-point
numbers, one may reasonably argue that Archimedes invented the exponents:
in his famous treatise Arenarius (The Sand Reckoner) he invents a system of
naming very large numbers that, in a way, “contains” an exponential repre-
sentation [259]. The notation a™ for a xaxax- - - X a seems to have been coined
much later by Descartes (it first appeared in his book La Géométrie [169]).

The arithmetic of the slide rule, invented around 1630 by William
Oughtred [632], can be viewed as another kind of floating-point arithmetic.
Again, as with the Babylonian number system, we only manipulate signifi-
cands of numbers (in that case, radix-10 significands).

The two modern co-inventors of floating-point arithmetic are probably
Quevedo and Zuse. In 1914 Leonardo Torres y Quevedo described an electro-
mechanical implementation of Babbage’s Analytical Engine with floating-
point arithmetic [504]. Yet, the first real, modern implementations of floating-
point arithmetic were in Konrad Zuse’s Z1 [514] and Z3 [92] computers. The
73, builtin 1941, used a radix-2 floating-point number system, with 15-bit sig-
nificands (stored on 14 bits, using the leading bit convention, see Section 2.1.2),
7-bit exponents, and a 1-bit sign. It had special representations for infinities
and indeterminate results. These characteristics made the real number arith-
metic of the Z3 much ahead of its time.

The Z3 was rebuilt recently [515]. Photographs of Konrad Zuse and the
73 can be viewed at http:/ /www.konrad-zuse.de/.

Readers interested in the history of computing devices should have a
look at the excellent books by Aspray et al. [20] and Ceruzzi [93].

When designing a floating-point system, the first thing one must think
about is the choice of the radix 5. Radix 10 is what humans use daily for rep-
resenting numbers and performing paper and pencil calculations. Therefore,

http://www.konrad-zuse.de/

1.1. Some History 5

to avoid input and output radix conversions, the first idea that springs to
mind for implementing automated calculations is to use the same radix.

And yet, since most of our computers are based on two-state logic,
radix 2 (and, more generally, radices that are a power of 2) is by far the eas-
iest to implement. Hence, choosing the right radix for the internal represen-
tation of floating-point numbers was not obvious. Indeed, several different
solutions were explored in the early days of automated computing.

Various early machines used a radix-8 floating-point arithmetic: the
PDP-10 and the Burroughs 570 and 6700 for example. The IBM 360 had a
radix-16 floating-point arithmetic (and on its mainframe computers, IBM
still offers hexadecimal floating-point, along with more conventional radix-2
and radix-10 arithmetics [213, 387]). Radix 10 has been extensively used in
financial calculations' and in pocket calculators, and efficient implemen-
tation of radix-10 floating-point arithmetic is still a very active domain of
research [87, 89, 116, 121, 122, 124, 191, 614, 613, 627, 628]. The computer
algebra system Maple also uses radix 10 for its internal representation of the
“software floats.” It therefore seems that the various radices of floating-point
arithmetic systems that have been implemented so far have almost always
been either 10 or a power of 2.

There was a very odd exception. The Russian SETUN computer, built at
Moscow State University in 1958, represented numbers in radix 3, with digits
—1, 0, and 1 [630]. This “balanced ternary” system has several advantages.
One of them is the fact that rounding to a nearest number the sum or product
of two numbers is equivalent to truncation [342]. Another one [250] is the fol-
lowing. Assume you use a radix-3 fixed-point system, with p-digit numbers.
A large value of 3 makes the implementation complex: the system must be
able to “recognize” and manipulate different symbols. A small value of
means that more digits are needed to represent a given number: if 3 is small,
p has to be large. To find a compromise, we can try to minimize 5 x p, while
having the largest representable number 37 —1 (almost) constant. The optimal
solution? will almost always be 3 = 3. See http:/ /www.computer-museum.
ru/english/setun.htm for more information on the SETUN computer.

Johnstone and Petry have argued [306] that radix 210 could be a sensible
choice because it would allow exact representation of many rational numbers.

Various studies (see references [63, 104, 352] and Chapter 2) have shown
that radix 2 with the implicit leading bit convention gives better worst-case and
average accuracy than all other radices. This and the ease of implementation
explain the current prevalence of radix 2.

!For legal reasons, financial calculations frequently require special rounding rules that
are very tricky to implement if the underlying arithmetic is binary: this is illustrated in [320,
Section 2].

2If p and 8 were real numbers, the value of 3 that would minimize 8 x p while letting 5”7
be constant would be e = 2.7182818 - - - .

http://www.computer-museum.ru/english/setun.htm
http://www.computer-museum.ru/english/setun.htm

6 Chapter 1. Introduction

The world of numerical computation changed a great deal in 1985, when
the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic was pub-
lished [12]. This standard specifies various formats, the behavior of the basic
operations and conversions, and exception conditions. As a matter of fact,
the Intel 8087 mathematics co-processor, built a few years before (in 1980)
to be paired with the Intel 8088 and 8086 processors, was already extremely
close to what would later become the IEEE 754-1985 standard. And the HP35
pocket calculator (a landmark: it was the machine that killed the slide rule!),
launched in 1972, already implemented related ideas. Now, most systems of
commercial significance offer compatibility® with IEEE 754-1985 or its suc-
cessor IEEE 754-2008. This has resulted in significant improvements in terms
of accuracy, reliability, and portability of numerical software. William Ka-
han [553] played a leading role in the conception of the IEEE 754-1985 stan-
dard and in the development of smart algorithms for floating-point arith-
metic. His website* contains much useful information. He received the Tur-
ing award in 1989.

IEEE 754-1985 only dealt with radix-2 arithmetic. Another standard, re-
leased in 1987, the IEEE 854-1987 Standard for Radix Independent Floating-
Point Arithmetic [13], was devoted to both binary (radix-2) and decimal
(radix-10) arithmetic.

In 1994, a number theorist, Thomas Nicely, who was working on the twin
prime conjecture,’ noticed that his Pentium-based computer delivered very
inaccurate results when performing some divisions. The reason was a flaw
in the choice of tabulated constants needed by the division algorithm [108,
183, 437]. For instance, when dividing 4195835.0 by 3145727.0, one would
get 1.333739068902 instead of 1.3338204491. This announcement of a “Pen-
tium FDIV bug” provoked a great deal of discussion at the time but has had
very positive long-term effects: most arithmetic algorithms used by the man-
ufacturers are now published (for instance a few years after, the division al-
gorithm used on the Intel/HP Itanium [120, 242] was made public) so that
everyone can check them, and everybody understands that a particular effort
must be made to build formal proofs of the arithmetic algorithms and their
implementation [240, 243].

A revision of the standard, which replaced both IEEE 754-1985 and 854-
1987, was adopted in 2008 [267]. That IEEE 754-2008 standard brought signifi-
cant improvements. It specified the Fused Multiply-Add (FMA) instruction—
which makes it possible to evaluate ab + ¢, where q, b, and c are floating-
point numbers, with one final rounding only. It resolved some ambiguities
in IEEE 754-1985, especially concerning expression evaluation and exception

3Even if sometimes you need to dive into the compiler documentation to find the right
options; see Chapter 6.

*http:/ /www.cs.berkeley.edu/~wkahan/.

>That conjecture asserts that there are infinitely many pairs of prime numbers that differ
by 2.

http://www.cs.berkeley.edu/~wkahan/

1.2. Desirable Properties 7

handling. It also included “quadruple precision” (now called binary128 or
decimal128), and recommended (yet did not mandate) that some elementary
functions should be correctly rounded (see Chapter 10).

At the time of writing these lines, the IEEE 754 Standard is again under
revision: the new standard is to be released in 2018.

1.2 Desirable Properties

Specifying a floating-point arithmetic (formats, behavior of operators, etc.)
demands that one find compromises between requirements that are seldom
fully compatible. Among the various properties that are desirable, one can
cite:

e Speed: Tomorrow’s weather must be computed in less than 24 hours;

e Accuracy: Even if speed is important, getting a wrong result right now
is not better than getting the correct one too late;

e Range: We may need to represent large as well as tiny numbers;

e Portability: The programs we write on a given machine should run on
different machines without requiring modifications;

e Ease of implementation and use: If a given arithmetic is too arcane,
almost nobody will use it.

With regard to accuracy, the most accurate current physical measure-
ments allow one to check some predictions of quantum mechanics or general
relativity with a relative accuracy better than 1071 [99].

This means that in some cases, we must be able to represent numerical
data with a similar accuracy (which is easily done, using formats that are
implemented on almost all current platforms: for instance, with the binary64
format of IEEE 754-2008, one represents numbers with relative error less than
2753 ~ 1.11 x 10716). But this also means that we must sometimes be able
to carry out long computations that end up with a relative error less than
or equal to 10~ 1, which is much more difficult. Sometimes, one will need
a significantly larger floating-point format or clever “tricks” such as those
presented in Chapter 4.

An example of a huge calculation that requires great care was carried out
by Laskar’s team at the Paris Observatory [369]. They computed long-term
numerical solutions for the insolation quantities of the Earth (very long-term,
ranging from —250 to +250 millions of years from now).

In other domains, such as number theory, some multiple-precision com-
putations are indeed carried out using a very large precision. For instance, in

