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Preface

With the ratification of the Paris Agreement, we are now committing our-
selves to achieving a temperature target of below 2°C, which represents a 
significant mitigation challenge. Going below 1.5 °C increases immensely 
this mitigation challenge. CCS has been identified as a key mitigation tech-
nology option and the IPCC 5th Assessment report showed that the least 
cost mitigation portfolio needs to include CCS. Unfortunately CCS has not 
been deployed as quickly as expected: the current global CO

2
 capture and 

storage capacity is only 40 million tons per year, which is a tiny fraction of 
the 36 billion tons per year of CO

2
 emitted around the globe. Nevertheless, 

important demonstration projects are emerging such as Boundary Dam & 
Quest projects in Canada and Petranova project in Texas. In Norway, three 
projects have also been preselected for a demonstrator to be launched in 
2022.

The application of CCS to industrial sectors other than power (e.g., steel, 
cement, refining) is expected to deliver half of the global emissions reduc-
tion from CCS by 2050. In the near future, these industrial applications will 
open up, especially in Europe; there will be new opportunities and avenues 
for CCS that can accelerate its deployment. For these process industries, 
no possible alternatives for CO

2
 mitigation exist that could be new energies 

for fossil fuels.
In North America, Enhanced Oil Recovery (EOR) is the main appli-

cation considered as it allows CO
2
 valorization. EOR contributes also to 

GHG mitigation as 40 to 50 % of the injected CO
2
 remains stored. At the 

end of the oil production, it is also possible to continue CO
2
 injection to 

store it in the depleted reservoirs. CO
2
-EOR has been used for over 40 

years, particularly in West Texas and New Mexico.
In Europe and China CO

2
 EOR will also be considered but it has to be 

deployed, and storage in deep saline aquifers might also play an important 
role when a CCS business model exists, which needs to have legislation 
more operative, a real incentive to finance the first CCS demonstrators, and 
finally a CO

2
 price higher than 50 €/t and not at 5 €/t as today.



xvi Preface

CO
2
 Utilization may also be considered for specific applications but it 

will not play an important role.
A lot of research efforts have still to be made to develop the affordable 

technologies allowing generalization of CO
2
 capture facilities throughout 

the world. Amine processes have been used since 1920 in order to decar-
bonize natural gas but progress has to be made in reducing CO

2
 capture 

cost, which represents 85% of the CCS final cost.
This book contains the papers presented during the CETCCUS confer-

ence which was hosted by ICCF in Clermont-Ferrand from 25th to 27th 
September 2017. This conference was dedicated to CO

2
 Capture Utilization 

and Storage technologies.
We hope that it will enable as many people as possible to have a bet-

ter understanding of the mechanisms involved as well as the technological 
and economic challenges still to be taken up to deploy CCUS technologies 
around the globe.

Paul Broutin
CO

2
 Capture Manager

IFP Energies nouvelles
Solaize, France
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Introduction

A conference with the name Cutting Edge Technology for Carbon Capture, 
Utilization, and Storage (CETCCUS) was held in Clermont-Ferrand, 
France, in September 2017. The conference attract both academic, indus-
try, and government representatives to discuss the latest technology related 
to carbon capture, utilization, and storage (CCUS).

Presenters came from France, Spain, Switzerland, Italy, Denmark, the 
United Kingdom, Canada and China with co-authors from several other 
countries, showing the worldwide interest in this topic. This book is a col-
lection of the papers presented at the conference.

The tone for the meeting was set by our keynote speaker M. Paul Broutin 
and his comments are briefly summarized in the preface to this volume.

Many excellent papers were presented that included new relevant exper-
imental data, models for the data, molecular simulations, new processes 
for removing carbon dioxide from gas streams, and discussion of enhanced 
oil recovery (EOR), which is still the main method for utilization of CO

2
. 

This book is a collection of the papers from the conference. We believe 
these papers shows the quality of the research in this field.

We were pleased to have had several students present at the confer-
ence. And we would like to note Ms. Marie Poulain (Chapter 9) who was 
awarded the ProSim Prize for Best Student Paper.

Finally, we would like to thank our sponsors: Axelera, Gas Liquids 
Engineering. ProSim, Swagelok, Club CO

2
, Société française de physique, 

Société Chimique de France, The National Center for Scientific Research, 
Université Clermont Auvergne, Clermont-Ferrand Chemistry Institute, 
Auvergne Rhône Alpes Region, and The City of Clermont-Ferrand.

K.B., J.J.C., & Y.W.
September 2017
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Karine Ballerat-Busserolles, Ying Wu, and John J. Carroll (eds.) Cutting-Edge Technology 

for Carbon Capture, Utilization, and Storage, (3–18) © 2018 Scrivener Publishing LLC

1

Carbon Capture Storage 
Monitoring (“CCSM”)

E.D. Rode1,*, L.A. Schaerer1, Stephen A. Marinello1 and G. v. Hantelmann2

1Marmot Passive Monitoring Technologies SA, Morges, Switzerland  
2Ronnenberg, Germany

Abstract
It is a matter of fact that the manmade emission of CO

2
 is contributing to global 

warming. In the public discussion, the CO
2
 emission seems to be attributed mostly 

to energy generation – this is only partially true because the emissions from other 

industrial activities make significant contributions too.

In the light of current knowledge and technical developments the only way to 

reduce those emissions is to separate CO
2
 and store it underground. There is no 

other solution – and this solution is technically possible. At least in Europe public 

awareness is considering CO
2
 storage as a “Final Waste Material Deposit” similar 

to a deposit of “Nuclear Waste”.

The main technical concern for such an underground storage is that no ade-

quate monitoring method is available to permanently monitor the fluid behavior 

in the underground storage.

Therefore the public awareness is afraid of unexpected and uncalculated 

HAZARDS which may cause severe damage in the storage environment.

This paper describes a method to control the storage environment and the 

dynamic behavior of the fluids in storage. This method uses the omnipresent seis-

mic background noise as a tool for monitoring the underground storage, regarded 

as a Technical Dynamic System.

The proposed method is based on the buildup of a “Forensic Event Space” cal-

culating the near future of the system. The method can be used as a HAZARD 

assessment system for storage operations.

Keywords: permanent monitoring, Forensic Event Space

*Corresponding author: paul.rode@passive-monitoring.com



4 Cutting-Edge Technology for CCUS

1.1  Introduction

One of the key problems of our industrialized civilization and social eco-
nomic systems is the destabilization of the biosphere by manmade emis-
sions, which can no more be controlled and absorbed by natural processes.

Increasing emission of carbon dioxide (CO
2
) has a major impact on 

global warning.
Significantly large quantities are created as exhaust gases from global 

industrial production – such as cement and steel industries, but mainly 
from fossil fuel driven electric power plants – but also as associated gas from 
oil and gas production. CO

2
 has not only a negative impact on the environ-

ment as the so-called “Greenhouse Gas” – CO
2 
at higher concentration is 

directly “lethal” for the human body.
The increase of energy consumption goes hand in hand with the 

increase of CO
2
 emissions, and especially the decision to build more and 

more coal power plants is in contradiction to the overall demand to reduce 
CO

2
 emissions.

Therefore – to reduce the emission of CO
2
 into the atmosphere – the 

industry is aiming for a method to extract CO
2
 from the exhaust gases and 

capture it in large quantities in artificial storages in subsurface geological 
formations. Such underground storages are already geologically very well 
known and sometimes applied as storages for natural gas in subsurface 
underground formations, e.g., saline aquifers. The problem with such nat-
ural storages even for temporary deposition of waste and toxic gases is to 
take sufficient measures to secure the stability of such storages and to avoid 
uncontrolled “escapes” of the captured media. The “sealing conditions” 
of such natural/artificial formations have to be properly investigated and 
determined but the most important tool to secure uncontrolled events is to 
install a powerful technical control and monitoring system which can help 
to identify hazardous and unpredicted events and predict deviations from 
normal operating conditions – in advance: An “Early Warning System” 
and “Risk Assessement System” for hazardous waste disposals.

The problem with those storages is the uncertainty of the cap rocks and 
the uncertainty of the geological and lithological sealing boundaries of the 
storage as well as the uncertainty of the inter-reactivity of different CO

2
 

phases with boundary spaces (Figure 1.1).
To minimize the risk of unpredictable events it is mandatory to develop 

methods which are able to monitor the flow and behavior of fluids inside 
the Carbon Capture Storage as well as lithological changes and induced 
boundary changes.
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In the public awareness, an artificial Carbon Capture Storage in sub-
surface geological formations is considered as “Waste Disposal of hazard-
ous material” and consequently there is a very high degree of resistivity 
against such underground carbon capture storages – especially “not in my 
backyard”. To achieve public acceptance, it is at least necessary to apply 
transparent monitoring technologies to reduce the uncertainty about the 
behavior of the technical storage conditions and the dynamics of the stored 
media.

Such method must be able to monitor any kind of “change of condi-
tions” over the entire storage space and its boundaries continuously 
and permanently during the whole lifetime of the storage.

There is a fundamental difference – philosophically – in monitoring 
the fluid behavior in a tank or even in an oil reservoir – where operating 
parameters are monitored and measured – and monitoring the fluid 
behavior in an artificial storage of hazardous waste material where it is 
not enough to monitor the prevailing operating parameters because what 
actually has to be monitored is the “unpredictable” since it is assumed that 
something might happen beyond the operating parameters; something 
neither expected nor predicted. Nobody knows what will happen, or how/
when/where, but everybody expects that something could happen.

1.2  State of the Art Practice

Currently in Carbon Capture Storages observation wells are drilled mainly 
for permanent observation purposes and they are equipped with downhole 
sensors to measure pressure, temperature and other physical, chemical and 
electrical properties of the media surrounding the borehole.

Figure 1.1 Phase Diagram CO
2
. (Source: www.chemistry-blog.com).
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From the total data and gradients relating to all these parameters, mod-
els of the behavior of the stored media inside the storage are derived – and 
of course such models do not cater for the “unpredictable”, which after all 
is the reason for monitoring and modeling.

These methods in connection with modeling techniques are very well 
known and very useful in application as long as the storage is a known 
system with stable physical and chemical properties and well defined stable 
boundary conditions.

A Carbon Capture Storage however represents a spatial distributed 
“dynamic system” with uncertain boundary conditions and the “test well 
monitoring concept” alone does not meet the given requirements.

The results of such monitoring methods are only reliable as long as the 
storage mechanism in the entire corpus behave “as modeled” but they are 
not able to detect phenomena beyond the models. For this reason, the 
classical parametric methods satisfy the control of “storage tank” working 
conditions but they are not suited to measure or predict the “unpredicted”. 
Also the number of test wells is limited and so is the spatial resolution.

Another class of methods can be seen in ground penetrating radar or 
sonar systems but unfortunately the penetration depth and spectral prop-
erties of such methods are not suited for such applications.

A further method to identify structural and impedance changes could 
be seen in the application of time lapse reflection seismic (4D) – however, 
the penetration features and also the limited information as well as the 
requisite controlled source do not allow this method as a permanent and 
continuous monitoring tool for Carbon Capture Storages – not to mention 
the operation costs of such a method.

1.3  Marmot’s CCSM Technology

As a solution for a permanent Carbon Capture Storage Monitoring system 
Marmot’s CCSM provides a technical method which allows monitoring the 
fluid behavior inside the storage as well as structural changes using “non-
invasive” technical means from the surface without penetrating mechani-
cally into the storage space itself.

Two conditions are fundamental for such a monitoring system:

The surveillance of the storage must be permanent and con-
tinuous and for any kind of measurement this needs a per-
manently and continuously operating signal source which 
should have no extra impact on the environment.



Carbon Capture Storage Monitoring (“CCSM”) 7

The source signal must have the energetic and spectral 
“properties” to allow the signal to reach any “element“ of the 
storage system in space and time – including the boundaries 
and sealing spaces.

The technical conclusion from these conditions is to use a broadband 
acoustic noise as source signal which is powerful and stable and generated 
by a permanent continuous source.

Such source signal exists in the omnipresent and omnidirectional 

natural seismic background – noise [1].

The principle of analysis follows here the principles of analyzing 

the behavior of a technical dynamic system by pulse response or 

“white noise” response [18].

The technical method is to record and analyze from the surface the spec-
tral deformation of the seismic background and its changes in a frequency 
range between 0.1 and 30 Hz.

Any seismic signal can be construed as a convolution of a series of 
filters [2]:

W(t) = S
1
(t) * A

2
(t) * A

3
(t) * A

4
(t) * I

5
(t)

where
W(t) – Recorded signal
S

1
(t) – Undisturbed source signal

A
2
(t) – Filter characteristic of the storage

A
3
(t) – Filter characteristic of the cap rock

A
4
(t) –  Filter characteristic of the transition zone between cap rock and 

surface
I

5
(t) – Instrument characteristic

It is a fundamental criterion for a complex “Storage System” like CCS that all 
geological, lithological, geophysical, geochemical and physical rock proper-
ties are very well known – otherwise it doesn’t make sense to select this sys-
tem and use it as a Carbon Capture Storage – as opposed to a hydrocarbon 
reservoir under development. And for this reason, based on the detailed 
knowledge of all storage properties it is possible to associate the system ele-
ments and its filter characteristics to the signal pattern components.

Marmot’s CCSM technology is a spin-off of the ULF-PSSM – 5D 
Quantum Monitor [3] for permanent monitoring of producing oil fields and 
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“Time Variant Visualization of Fluid and Non-Fluid Reservoir Dynamics”. 
This technology is based on the spectral analysis of the omnipresent and 
omnidirectional seismic background noise of the earth (RSSN = Random 
Spread Spectrum Noise).

This ULF – PSSM technology is noninvasive using the seismic back-
ground noise as source signal – it is operated with surface or near surface 
broadband signal converter (Resonance Spectrometer) and it delivers a 
broad spectrum of information from which in reservoir monitoring the 
following phenomena are observed and used as processing parameter:

Frequency conversion power caused by fluid saturation 
parameter in porous media (non-linear transfer function for 
a limited frequency band)
Stochastic resonances caused by secondary permeability 
fluid spaces which act as λ/4 resonators and indicate rock 
properties [22, 23]
Spectral anomalies indicating complex faulting systems or/
and spatial rock unconformities which transform mechani-
cal energy into chemical energy [24]
SLSE – Short Life Single action Events indicating spontane-
ous lithological changes.

The creation of side bands caused by frequency conversion at non-linear 
transfer elements is a well-known effect in communication instruments 
and electronic devices [19] but the same theory applies for acoustic wave 

Primary source

RSSN background

plus anthropogenic

events

Non linear transfer

element

HC reservoir

frequency mixer

downward converter

/4 resonator

Special comparison

Spectral

downward conversion

stochastic resonances

Reservoir

volume index

Permeability signature

Figure 1.2 Principle of the ULF-PSSM Analysis.
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propagating in anisotropic geological formations. A fluid saturated porous 
“body” is a frequency converter in a distinct frequency window building 
lower and higher sidebands from the incoming Random Spread Spectrum 
Noise (RSSN) of the seismic background. At the surface, these conversion 
products can be recorded but because of non-symmetric wave propagation 
in the lithosphere only the lower sidebands make a significant contribution 
and can be used for the calculation of fluid saturation because conversion 
power and fluid saturation are directly related.

The second phenomenon which contributes to the analysis of rock 
properties – secondary permeability – is the appearance of stochastic reso-
nances caused by fluid prone fractures where the fluid column is acting as 
a λ/4 Resonator due to its geometrical and fluid properties. Each reservoir 
or storage has a characteristic resonator pattern depending on the rock 
properties (Figure 1.3).

Figure 1.3 also shows two more phenomena which are used as monitor-
ing tools and reservoir or storage characterization. Spectral anomalies as 
emission or absorption spectra indicate changes in the fluid-rock system 
which may occur in space or even in time, when system properties are 
changing.

The next indicator which is very important especially in CCS monitor-
ing is the SLSE which provides a huge amount of information including 
indication of micro seismic or micro tectonic events caused by micro frac-
tures or macro fractures (in case of macro fractures we have to expect land-
slides, earthquakes or avalanches).

In case of a CCS system or in general a “disposal system” these events 
are crucial and they have to be “captured” with 100% reliability and each 
of these events may happen only once – only once in the whole lifetime of 
the storage or the system – and one of those events can be the trigger for 

Source waveform

background noise

SLSE
short life single
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Spectral
anomalies

Source waveform

background noise
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filter
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M

U
)

Stochastic

resonance

Induced seismicity

Distributed spectra

Trigger event

Figure 1.3 Frequency Conversion – Stochastic Resonances – Spectral Anomalies and 

SLSE.
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the system collapse or can predict the system collapse and for this reason 
permanent monitoring is mandatory for system control. This is the same 
in oil reservoir monitoring but there the direct hazardous component is 
missing – the task is different.

1.4  Principles of Information Analysis

Principally we have to distinguish between signal analysis and informa-
tion analysis. From the continuous signal stream information elements are 
separated and from those information elements an information vector

(x, y, z, A
1
, A

2
, A

3
, …, A

n
)

is created. A manifold of these information vectors over time builds a so-
called “event space” from which each (finite) element is attributed with a 
“probability”

{(x, y, z, P
1
, P

2
, P

3
, …, P

n
)}(t)

The projection from the event space into the initial 3D cube allows the 
dynamic visualization of the storage “MODEL”.

Figure 1.4 Signal – Information Flow.

Broadband non specific
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Signal analysis

information vector
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