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Preface

This volume represents presentations given at the 82nd annual meeting of the
Psychometric Society, organized by the University of Zurich, and held in Zurich,
Switzerland, during July 17–21, 2017. The meeting was one of the largest
Psychometric Society meetings in the Society’s history, both in terms of partici-
pants and number of presentations. It attracted 521 participants, with 295 papers
being presented, of which 91 were part of a symposium. There were 105 poster
presentations, 3 pre-conference workshops, 3 keynote presentations, 4 invited
presentations, 2 career award presentations, 4 state-of-the-art presentations, 1 dis-
sertation award winner, and 22 symposia.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society so as to allow
presenters to quickly make their ideas available to the wider research community,
while still undergoing a thorough review process. The first five volumes of the
meetings in Lincoln, Arnhem, Madison, Beijing, and Asheville were received
successfully, and we expect a successful reception of these proceedings too.

We asked authors to use their presentation at the meeting as the basis of their
chapters, possibly extended with new ideas or additional information. The result is a
selection of 34 state-of-the-art chapters addressing a diverse set of psychometric
topics, including item response theory, factor analysis, causal inference, Bayesian
statistics, test equating, cognitive diagnostic models, and multistage adaptive testing.

Umeå, Sweden Marie Wiberg
Champaign, IL, USA Steven Culpepper
Leuven, Belgium Rianne Janssen
Santiago, Chile Jorge González
Amsterdam, The Netherlands Dylan Molenaar
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Optimal Scores as an Alternative
to Sum Scores

Marie Wiberg, James O. Ramsay and Juan Li

Abstract This paper discusses the use of optimal scores as an alternative to sum
scores and expected sum scores when analyzing test data. Optimal scores are built
on nonparametric methods and use the interaction between the test takers’
responses on each item and the impact of the corresponding items on the estimate of
their performance. Both theoretical arguments for optimal score as well as argu-
ments built upon simulation results are given. The paper claims that in order to
achieve the same accuracy in terms of mean squared error and root mean squared
error, an optimally scored test needs substantially fewer items than a sum scored
test. The top-performing test takers and the bottom 5% test takers are by far the
groups that benefit most from using optimal scores.

Keywords Optimal scoring ⋅ Item impact ⋅ Sum scores ⋅ Expected sum scores

1 Introduction

Test scores must estimate the abilities of the test takers in a manner that is both
accurate and unbiased, since they are used in many settings to make decisions about
test takers. Sum scores (or number correct scores) have in the past been a common
test score choice as they are easy for test takers to interpret and are easy to compute.
Scores built on parametric item response theory (IRT; see Lord 1980; Birnbaum
1968) have also been used, although almost exclusively by test constructors,
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since test takers usually find it hard to understand the meaning of the parametric
IRT scale scores, which may take any value on the real line. Test takers tend not to
be convinced that a score of zero represents average performance. A further
problem is that commonly not all items are satisfactorily modeled with parametric
IRT models, even in large-scale tests that have been carefully developed.

A choice other than using parametric IRTmodels is to use nonparametric methods
to estimate test takers’ ability and the item characteristic curves (ICC). Nonpara-
metric IRT has been used in several studies in the past. Mokken (1997) examined
nonparametric estimation and how it worked in connection to monotonicity. Ramsay
(1991, 1997) proposed ICC estimation using kernel smoothing over quantiles of the
Gaussian distribution. This technique gave fast and reasonably accurate ICC esti-
mation, and was implemented in the computer program TestGraf. Rossi et al. (2002)
and Ramsay and Silverman (2002) used the expectation-maximization (EM) algo-
rithm to optimize the penalized marginal likelihood, and the estimates came close to
the three-parameter logistic IRT model as the smoothing penalty was increased.
Ramsay and Silverman (2005) proposed a nonparametric method for not strictly
monotonic curve estimates. Woods and Thissen (2006) and Woods (2006) proposed
a method for simultaneously estimating item parameters using a spline-based
approximation to the ability distribution. Lee (2007) made a comparison of a number
of nonparametric approaches.

As yet another alternative approach to test scoring, this paper will focus on
optimal scoring. This method was proposed by Ramsay and Wiberg (2017a) and
practical concerns were discussed in Ramsay and Wiberg (2017b). The basic idea
behind optimal scoring is to use the interaction between the test takers’ responses
on each item and the impact of the corresponding items on the estimate of their
performance by letting high-slope items be more influential than low-slope items
when calculating the test scores. Optimal scoring differs substantially from previous
nonparametric approaches in several important ways. First, it uses a faster and more
sophisticated approach than the EM algorithm. Second, it uses spline basis
expansions over non-negative closed intervals to facilitate the interpretation of the
test scores for the test takers. A featured shared with the other nonparametric
methods is that it succeeds to get well-fitting ICC’s when parametric IRT models
fail to give a good fit. The overall aim of this paper is to discuss the nonparametric
IRT based optimal scores as a good alternative to sum scores and expected sum
scores and to illustrate this with real and simulated test data. This paper also differs
from Ramsay and Wiberg (2017b) by extending the comparison to include expected
sum scores.

The next section describes the quantitative skill test used as an illustration,
followed by a third section where three different test scores are defined. The fourth
section contains a description on how to estimate the ICC’s with optimal scoring. In
the fifth section a comparison between sum scores, expected sum scores and
optimal scores are given. The paper ends with a short discussion, which includes
some concluding remarks.

2 M. Wiberg et al.



2 A College Admission Test and Its Empirical Test
Distribution

The data used in this paper come from an administration of the Swedish Scholastic
Assessment Test (SweSAT), which is a binary scored multiple-choice college
admissions test. The SweSAT contains a verbal and a quantitative parts, each
containing 80 items. Sum scores are routinely used in the SweSAT, although the
obtained scores are equated to scaled scores, which are comparable over test
administrations and these scaled scores are used by test takers in their college
applications. A sample of 30,000 test takers who took the quantitative part of the
SweSAT is used throughout the paper and the empirical distribution of the sum
scores is displayed in Fig. 1. From this figure, we can draw the conclusion that a
majority of the test takers found the SweSAT difficult, with a median score of 35, a
lowest score of 4 and no test taker with a perfect score. In Fig. 1 we have added a
smooth function of the distribution, which was constructed from a B-spline
expansion of the log density (Ramsay et al. 2009), since the empirical distribution
of the sum scores did not resemble any of the common parametric densities.

Note that in general the distribution of the θ estimates can be transformed
whether or not a parametric or nonparametric IRT is used. Suppose we have a
one-to-one increasing and smooth transformation φ= hðθÞ, then there exists an
alternative item response function P*

i ðφÞ, so that P*
i ðφÞ=PiðθÞ. Thus, we can

transform any specified distribution of θ into an alternative distribution of φ. For
example, we transform from the whole real line into a closed interval such as ½0, n�
by defining φ= n ̸ð1+ e− θÞ.

Fig. 1 The empirical
distribution of sum scores.
The blue histogram indicates
the number of test takers
within each score range, the
red line indicates the smooth
density function, and the blue
dotted lines are 5, 25, 50, 75
and 95% quintile lines
respectively

Optimal Scores as an Alternative to Sum Scores 3



3 Three Test Scores

Let Sj denote the sum score of test taker j ðj=1, . . . ,NÞ and define it as the number
of correctly answered binary items. Let PiðθjÞ be the probability that a test taker
with ability level θj answered item i ði=1, . . . , nÞ correctly. The expected sum
scores are defined as

Ej = ∑
n

i
PiðθjÞ. ð1Þ

Note, a commonly used expected score uses parametric IRT to model PiðθjÞ.
To estimate optimal scores Oj (Ramsay and Wiberg 2017a) we focus on esti-

mating the more convenient log-odds function

WiðθÞ= log
PiðθÞ

1−PiðθÞ
� �

. ð2Þ

To estimate WiðθÞ we can use B-spline basis function expansions

WiðθÞ= ∑
K

k
γikψ ikðθÞ, ð3Þ

where for each item i, γik is the coefficient of the basis function, ψ ikðθÞ=Bkðθjξ,MÞ
is the B-spline basis function, ξ is a knot sequence, K is the number of spline
functions and M is the order of the spline. The advantage of this approach is that
B-spline basis functions are easily expanded in dimensionality and they give stable
and fast computations.

The left panel of Fig. 2 contains the Pi estimates of the 80 item response
functions and the right panel of Fig. 2 shows the Wi estimates of the SweSAT data.
From Fig. 2 we learn that items vary in shape of their ICC and their corresponding
log-odds functions Wi. Some items are very difficult, other items have low dis-
crimination. If Uij is test taker j’s response (0/1) to item i and if either PiðθÞ or its
counterpart WiðθÞ are either known or we can condition on estimates on them, then
the left hand side of

∑
n

i
Uij −PiðθÞ
� � dWi

dθ
=0 ð4Þ

is the derivative of the negative log likelihood

− log LðθjÞ= − ∑
n

i
UjiWiðθjÞ− logð1+ expðWiðθjÞÞÞ
� �

:

4 M. Wiberg et al.



with respect to θ, and the right hand side is zero for its optimal value. Equation 4 is
interesting in several aspects. The slopes of the log-odds functions WiðθÞ at the
optimal θ weight the residuals Uij −Pi θð Þ. The optimal scores thus correspond to
the ability that minimizes the difference between the answers and their probabilities
in which each item is weighted by its impact (or sensitivity) value. In practice, this
means that high-slope items are mainly influencing the differences in scores among
the test takers. The most useful items for assessing test takers at level θ have higher
slopes of Wi at that location, while items having nearly flat Wi are down-weighted,
which would be the case for easy items being given to high-level θ test takers. We
will refer to the interaction between item weights and item performance in the
weighting as the item impact function. The item impact curves ðdWi ̸dθÞ, corre-
sponding to the curves in Fig. 2, are shown in Fig. 3. From Fig. 3, it is obvious that
items have various weights or performances for a certain ability level θ, and one
particular item’s performance will change at different θ. Summing up, the optimal
scoring algorithm is focused on the items that are most informative as reflected by
the size of the item impact function dWi ̸dθ, which yields the amount of infor-
mation provided by answers to item i.

dWi ̸dθ

Fig. 2 The left panel displays the PiðθÞ curves for each item i estimated over the closed interval
0, 80½ � and the right panel displays the estimated log-odds functions Wi for the SweSAT. The
vertical dashed lines are the 5, 25, 50, 75 and 95% quintiles of the empirical distribution of the sum
scores

Optimal Scores as an Alternative to Sum Scores 5



4 Estimating Nonparametric ICC’s

An efficient nonparametric procedure for joint estimation of the n functions Wi and
the knowledge states θj was described in Ramsay and Wiberg (2017a). In their
procedure they use parameter cascading (PC), which is a generalization of profiling
that is computationally faster than marginalization over θ. Let θj be represented by
smooth functions θjðW1, . . . ,WnÞ. The PC optimizations performed are initialized
by a fast data smoothing approach to estimate the Wi as described in Ramsay
(1991). PC is a compound optimization procedure in which an inner optimization
ðHðθjγÞÞ of a penalized log likelihood function with respect to the θj is updated,
each time an outer optimization ðF γð ÞÞ adjusts the coefficients of the B-spline basis
function expansions of the Wi. In PC, the gradient plays a crucial role in the outer
optimization through the implicit theorem such that an efficient search is made
possible. Details of how to perform PC are provided in Ramsay and Wiberg
(2017a). We emphasize that PC is different from using alternating optimization
(AO) as for example the EM-algorithm. Instead of a compound optimization as in
PC, AO switches between optimizing one criterion F with respect to some γ
keeping θ fixed, and optimizing another criterion H with respect to θ keeping γ
fixed.

θ

Fig. 3 The item impact
curves, dWi ̸dθ, that provide
the optimal weighting of item
scores. The vertical dashed
lines are the 5, 25, 50, 75 and
95% quintiles of the empirical
distribution of the sum scores

6 M. Wiberg et al.



5 Optimal Scores in Comparison with Sum Scores
and Expected Sum Scores

5.1 Simulation Study

As a first step, the difference between optimal scores and sum scores as well as
optimal scores and expected sum scores were calculated for the SweSAT data. In
order to further examine the difference between sum scores, expected sum scores
and optimal scores we used simulations from the populations defined by the Wi

curves and the θj’s estimated from the data. The first obstacle was how to handle the
problem of identifying the distribution of θ. To make a fair comparison with the
sum scores we simulated test data using a smooth estimate of the density of the sum
scores based on the SweSAT empirical distribution shown in Fig. 1. As we had
access to a sample of 30,000 test takers the Wi have been pre-calibrated and were
considered to be known (and can be seen in Fig. 2) and thus we only simulated the
test takers’ responses. Root mean squared error (RMSE) of θ was used to assess
recovery. The analysis was performed using PC for optimization. The 81 sum score
values were used as fixed values of θ and we simulated 1000 test takers responses.
Sum scores, expected sum scores and optimal scores were averaged across 1000
simulated samples for each value of θ. The average bias of θ for each test score was
also used to evaluate the different test scores.

5.2 Results of the Simulation Study

The difference between optimal scores and sum scores as well as optimal scores and
expected sum scores are displayed in Fig. 4 for the SweSAT data. The left panel in
Fig. 4 shows a large increase in test scores for high-performing test takers if they
would get an optimal score instead of a sum score. The expected sum score in the
right panel is overall more similar to the sum scores than optimal scores, but the
really top achievers among the test takers get penalized with an expected sum score.
The sum score/optimal score and sum score/expected score differences can be as
large as the size of 20% for some of the scores (for sum scores around 40, the
difference can be ±8).

In Fig. 5 the empirical distributions are displayed in the left panel and the
average RMSE and bias are shown in the right panel for each value of θ. The
empirical distributions for the three different scores only differ slightly. For the mid
90% of the test takers the bias is close to zero regardless of the test scoring method.
But low-performing test takers get higher sum scores than the corresponding θ
values used to generate the data, while at the same time, high-performing test takers
lose about five items using sum scores. For the 5% top- and bottom-performing test
takers the bias and RMSE for sum scoring is substantial. For the mid 90% of the test
takers the RMSE is larger for the sum scores than for optimal or expected sum

Optimal Scores as an Alternative to Sum Scores 7



scores. From the simulations, the optimal score RMSE was on average 6.8% lower
than the sum score RMSE, which corresponds to a mean squared error (MSE) of
14%. Because the MSE declines in proportion to 1 ̸n, we see that the sum-scored
SweSAT would have to be 11 items longer than an optimally scored test in order to
achieve the same average accuracy. Note that the expected sum scores have the
lowest RMSE and bias at each score values, but they are expected scores and are
thus not built on the observed scores as sum scores and optimal scores are. The
results from the simulations for optimal scores in comparison to sum scores are in
line with the results in Ramsay and Wiberg (2017a), who used simulations based on
three different tests and compared optimal scores and sum scores.

Fig. 4 The left panel displays optimal scores minus the sum scores plotted against sum scores and
the right panel displays the expected sum scores minus the sum scores for the SweSAT

Fig. 5 The left panel displays the empirical distribution of sum scores, optimal scores and
expected sum scores and the right panel displays the average RMSE of θ and average bias of θ for
the three test scores. The vertical dashed lines are the quintiles of the empirical distribution of the
maximum likelihood estimates

8 M. Wiberg et al.



6 Discussion

This paper used a large sample from a college admissions test in order to discuss
optimal scores in comparison to sum scores and expected sum scores. A closed
interval in terms of the range of the sum scores was used in order to model student
performance differences. This choice facilitates comparisons with the sum scores
and the expected sum scores in terms of bias and RMSE, and also allows for
understandable interpretations for the test takers.

The simulation study indicated that the expected sum scores and optimal scores
should be preferred over sum scores as their average bias and average RMSE were
lower than for the corresponding sum scores. The improvement in terms of RMSE
was about 6% for 90% of the test takers. Even though the expected sum scores had
the lowest bias and RMSE we cannot recommend it in general as it measures
something else than the optimal scores, i.e. it is an expected score instead of an
observed score. It was mainly included here for sake of completeness and as
expected sum scores are sometimes used in test analysis. The largest problem with
sum scores is the substantial negative bias for high-performing test takers and the
positive bias for low-performing test takers. The substantial improvement is
important, especially in high-stakes test as the SweSAT. To get an improvement of
6% could be the difference of being accepted into the university program of one’s
choice or not. The improvement found in the well-designed SweSAT lead us to
expect a larger benefit if we have less well-designed tests, as for example those
given in classrooms. We are not stating that sum scores should never be used as
they might be useful in some situations. However if we put some effort into
explaining how optimal scores work it may be beneficial for both test constructors
and test takers as they contain more information.

In the future it is important to continue examining the performance of optimal
scoring, especially against parametric IRT as that is used all over the world by test
constructors. As additional information about test takers in terms of covariates are
regularly gathered when large-scale tests are given it should be interesting to
examine optimal scoring with covariates as it has been used successfully in other
test areas as for example test equating (Bränberg and Wiberg 2011; Wallin and
Wiberg 2017; Wiberg and Bränberg 2015). Other interesting future directions
include the use of optimal scoring with polytomous scored items and multidi-
mensional tests. In order to spread the usage of optimal scoring it is crucial to
develop an easy to use software. Currently the authors are developing a new version
of TestGraf (Ramsay 2000) which will incorporate all the important features of
optimal scoring. In summary, optimal scoring provides a number of interesting
opportunities as it is built on efficient and advanced statistical methodology and
technology. We need to stop the waste of valuable information and give our
top-performing test takers the score they earn.
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Disentangling Treatment and Placebo
Effects in Randomized Experiments
Using Principal Stratification—An
Introduction

Reagan Mozer, Rob Kessels and Donald B. Rubin

Abstract Although randomized controlled trials (RCTs) are generally considered

the gold standard for estimating causal effects, for example of pharmaceutical treat-

ments, the valid analysis of RCTs is more complicated with human units than with

plants and other such objects. One potential complication that arises with human

subjects is the possible existence of placebo effects in RCTs with placebo controls,

where a treatment, suppose a new drug, is compared to a placebo, and for approval,

the treatment must demonstrate better outcomes than the placebo. In such trials, the

causal estimand of interest is the medical effect of the drug compared to placebo.

But in practice, when a drug is prescribed by a doctor and the patient is aware of the

prescription received, the patient can be expected to receive both a placebo effect

and the active effect of the drug. An important issue for practice concerns how to

disentangle the medical effect of the drug from the placebo effect of being treated

using data arising in a placebo-controlled RCT. Our proposal uses principal stratifi-

cation as the key statistical tool. The method is applied to initial data from an actual

experiment to illustrate important ideas.

Keywords Causal inference ⋅ Placebo effects ⋅ Principal stratification

1 Introduction

Placebo-controlled, blinded randomized controlled trials (RCTs) are the standard for

approving pharmaceuticals to be given to human beings in the United States, Euro-

pean Union, and much of the world. In fact, agencies such as the U.S. Food and
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Drug Administration (FDA) and the European Medicines Agency (EMA) usually

require evidence from such trials that the drugs being proposed are safe and effec-

tive. It is a widely accepted stance in the world of drug development that if a drug is

“snake oil”, meaning it is ineffective and only appears to work because of presumed

expectancy effects, then the producer of the drug should not profit from its sale. It

was because of this attitude that placebo controlled, double-blind randomized trials

became essentially necessary for the approval of new drugs in the 1960s. That is, for

a drug to be considered effective, the active drug (treatment) must be compared to

an inactive drug (a placebo), which (to a user) is indistinguishable from the active

drug, where assignment to the treatment versus control is random and unknown to

the experimental units until the completion of the experiment; here the units are said

to be “blinded” to the actual assignment. If assignment is unknown to both the exper-

imental units and the experimenter, the experiment is considered “double-blind”.

Although randomized experiments have been used for nearly a century, for

decades they were only used with unconscious units, such as plants, animals, or

industrial objects, none of which presumably could be influenced by the knowledge

that they were objects of experimentation. Historically, it has been recognized that

humans are different and can be influenced by the knowledge that they are part of

an active experiment. In some cases, that knowledge alone has been shown to influ-

ence participants behavior, as with the well-known “Hawthorne effect” (Landsberger

1958), where awareness of participation in a study influences outcomes. In other

examples, the knowledge that some individuals would receive an active drug with a

particular anticipated effect creates the expectation among all experimental units that

this anticipated effect will be achieved among all participants, a version of so-called

“expectancy effects (Rosenthal and Fode 1963; Rosenthal and Jacobson 1966). Thus,

a number of complications may arise when analyzing data from randomized exper-

iments with human subjects when the conduct of the experiment itself influences

participants’ outcomes.

2 Motivation

Emotional Brain (EB) is a research company based in the Netherlands that is devel-

oping a therapy for improving sexual functioning in women, which they call Lybrido.

Lybrido is designated for the treatment of a medical condition in women called

Female Sexual Interest/Arousal Disorder (FSIAD). The increase in “satisfying sex-

ual events” (SSEs) per week from baseline (before any drugs, active or placebo,

have been received) is the accepted primary outcome of interest, and for approval of

Lybrido, by either the FDA or EMA, there must be evidence that the drug is superior

to placebo with respect to increase in SSEs from baseline, 𝛥SSE. As with other psy-

chopathologies, experiments on therapies for treating this condition are believed to

suffer from large placebo effects because the anticipation of effects of the drug can

have obvious effects on the self-reported number of SSEs.

A variety of small, but expensive, randomized placebo-controlled double-blind

trials have been conducted to study the effectiveness of Lybrido (Van Der Made et al.
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2009a, b; Poels et al. 2013). In these trials, simple analyses comparing the random-

ized groups with each other (intention to treat analyses) generally show significant

positive effects for Lybrido relative to placebo, but the large placebo effects (that

is, large increases in SSEs observed in all groups) complicate the interpretation and

implication of the results.

The desire to disentangle the active effects of Lybrido from its related placebo

effects is important for several reasons. First, assume Lybrido has a true effect for

some subset of women, but this true effect is masked by highly variable placebo

effects; how do we eliminate the noise and so identify that subset of women? This is

related to the current hot-topic issue of “personalized medicine”, which describes

selecting treatments that are tuned to patients characteristics. Another important

question concerns what outcomes should be anticipated in actual medical practice,

when doctors prescribe a treatment and patients are aware of the prescription they

receive. In this setting, patients’ outcomes will reflect both placebo effects as well as

the medical effects of the active drug. Considering both types of effects may allow

prescribing physicians to anticipate better the benefits a patient can expect when

using the drug outside of the setting of an RCT.

The objective of this work is to disentangle active drug and placebo effects in

RCTs, such as those with Lybrido. Previous attempts to address this issue using

existing methods are summarized in Kessels et al. (2017), and, though some have

interesting ideas, none are statistically fully satisfactory. Here we use the statistical

tool called Principal Stratification (Frangakis and Rubin 2002) to estimate jointly

treatment and placebo effects within the framework of causal inference based on

potential outcomes, commonly called the Rubin Causal Model (Holland 1986) for a

body of work done in the 1970s (Rubin 1974, 1975, 1978, 1980); a short summary

of this perspective is in Imbens and Rubin (2008) and a book on it is Imbens and

Rubin (2015).

In principle, we consider the administration of placebo as an intervention, just as

the administration of an active drug. The placebo effect is then defined by compar-

ing potential outcomes under assignment to placebo to potential outcomes under no

treatment at all. Just as active treatment effects can vary across units, so can placebo

effects, which can also vary as a function of patients’ individual characteristics. Fur-

ther, the effects of the active treatment can also vary with respect to characteristics

of patients, including their individual placebo effects, which further complicates sta-

tistical inference.

3 The Principal Stratification Framework for Joint
Estimation of Treatment and Placebo Effects

3.1 Notation

Consider an RCT with N subjects, indexed by i = 1,… ,N. Subject i is assigned

treatment Zi, which equals 1 for subjects assigned and receiving active treatment
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and equals 0 for subjects assigned and receiving placebo. Throughout, we assume

full compliance with assignment. Interest focuses on the effect of treatment (Zi = 1)

compared to placebo (Zi = 0) on an outcome variable, defined in terms of change

from a baseline measurement Yi0. For each subject we may also observe a vector

of p pre-treatment covariates Xi = (Xi1,Xi2,… ,Xip) where X is the N × p matrix of

covariates for all subjects. The outcome variable takes the value Yi(1) if subject i
is assigned treatment and Yi(0) if subject i is assigned placebo. The “fundamental

problem facing causal inference” (Rubin 1978) is that we cannot observe both poten-

tial outcomes Yi(0) and Yi(1), but rather Yobs
i = ZiYi(1) + (1 − Zi)Yi(0), the observed

outcome for subject i. Additionally, we consider a third potential outcome, Yi(−1),
which is defined but never observed for any unit in the situation we consider and rep-

resents the outcome that would be observed if unit i is neither assigned nor receives

either treatment or placebo and is aware of this. We then define the causal effects of

interest by differences in potential outcomes, where Yi(0) − Yi(−1) is the “placebo

effect” for unit i and Yi(1) − Yi(0) is the “medical effect” of active treatment for unit

i, or for descriptive simplicity, the treatment effect.

3.2 General Modeling Strategy

Because we believe that effect of the active treatment can depend on both individ-

ual characteristics of the patient (i.e., covariate values Xi) and the magnitude of the

patient’s response to placebo, Yi(0), our approach is a version of the one used in Jin

and Rubin (2008), which deals with “extended partial compliance”, a special case

of principal stratification that defines principal strata based on continuous measures

of how each patient would comply with their assignment under both treatment and

control.

Here, we view patients’ response to placebo as roughly analagous to compliance

status under active treatment, and following Jin and Rubin (2008), we define con-

tinuous principal strata according to this potential outcome, which is only partially

revealed (i.e., revealed for those patients assigned placebo), but is missing for those

patients assigned the active treatment. Causal effects of the active treatment versus

placebo are then defined conditional on the observed covariates and the potential

outcomes under placebo. Regression models (typically not linear) are used for the

joint conditional distribution of potential outcomes given covariates, specified by the

distribution of the placebo potential outcome (given covariates) and the conditional

distribution of the potential outcome under treatment given the potential outcome

under placebo (and, of course, the covariates). This is explained in greater detail in

Sect. 4. For analysis, we use Bayesian models with proper prior distributions and

employ Markov Chain Monte Carlo (MCMC) methods, which are only outlined in

this paper. Under this framework, missing potential outcomes are multiply imputed

to obtain a large number of completed data sets, from each of which, all causal

estimands, including individual causal effects, can be computed. Aggregates of the
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estimated individual effects across the multiply imputed data sets then approximate

the posterior distributions of interest.

3.3 Assumptions

Throughout this article, we assume the Stable Unit Treatment Value Assumption

(SUTVA) (Rubin 1980), which requires that there is no interference between units

(that is, treatment assignment for an individual unit has no effect on the potential

outcomes of other units) and that there are no hidden versions of treatments. We

also assume ignorable treatment assignment (Rubin 1978), which requires that the

treatment assignment is known to be a probabilistic function of observed values and

is true by design in randomized experiments. Next, we assume that the potential

outcomes under no treatment, Yi(−1), defined as the change in the outcome from its

measurement at baseline, is zero for all units (i.e., Yi(−1) = 0 for all i = 1,… ,N).

This important assumption implies that the outcome that would be observed for each

unit if they were given neither the active treatment nor placebo, and are aware that

they are receiving neither, will be exactly equal to the value of that unit’s outcome at

baseline; assessing this assumption would require a design with such an assignment

(i.e., an assignment with instructions to take nothing and continue to be followed

up with measurements as if the patient had been assigned either active treatment or

placebo).

All other assumptions are extensions of the classical assumptions utilized in

problems involving principal stratification. In particular, we assume positive side-

effect monotonicity on the primary outcome for both treatment and placebo, that is,

Yi(1) ≥ 0 and Yi(0) ≥ 0 for all i, which implies that neither the treatment nor the

placebo are harmful to any units, in the sense that an individual will not experience

a decline in their outcome (measured as change from baseline) as a result of either

intervention.

We also assume additivity of the treatment and placebo effects on some scale.

This is analagous to the perfect blind assumption commonly made in causal infer-

ence, which requires that, upon receipt, the active drug is indistinguishable from the

placebo except for its active effect. Under this assumption, for a unit assigned to

treatment, the portion (on some scale) of the observed outcome that is attributable

to the placebo effect is exactly equal to the placebo effect that would be observed

if that unit had been assigned placebo. Thus, the potential outcome when assigned

treatment can be viewed as the sum of the “placebo effect” and some “extra” effect

achieved under treatment that is attributable to the active drug, which we call the

treatment effect.

Together, these assumptions also imply that for every patient, the total response

that would be observed when assigned treatment is greater than or equal to the

response that would be observed when assigned placebo (i.e., Yi(1) ≥ Yi(0) for all i).
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4 Model and Computation

4.1 The General Model with No Covariates

We begin by considering the simplest case of an RCT with no covariates. We first

specify a distribution for the potential outcomes under control, Y(0), conditional on

some global parameter 𝜃:

Yi(0)|𝜃 ∼ 
(0)
, Yi(0) ≥ 0 for all i, 𝜃 (1)

where(0)
denotes the probability law for Yi(0), governed by some parameters, which

are functions of the global parameter 𝜃. We then specify a distribution for the poten-

tial outcomes under treatment, Yi(1), conditional on the potential outcomes under

control, Yi(0) and 𝜃 as

Yi(1)|Yi(0), 𝜃 ∼ 
(1)
, Yi(1) ≥ 0 for all i, 𝜃 (2)

where

E[Yi(1)|Yi(0), 𝜃] = Yi(0) + f (Yi(0)). (3)

Here, (1)
is another probability law, and f is an arbitrary function that generally

defines heterogeneous treatment effects across units as a function of potential out-

comes under placebo. Under this formulation, f (Yi(0)) is the treatment effect for unit

i. By the assumptions stated in Sect. 3.3, f (⋅) must be chosen such that f (Yi(0)) ≥ 0
for all i and Yi(0) + f (Yi(0)) is monotonically non-decreasing in Yi(0), which defines

a positive, monotonically non-decreasing curve, analagous to a dose-response curve,

which captures the expected effect of assignment to treatment versus assignment to

placebo for each possible value of placebo response.

For example, consider the specification of f (⋅) as the polynomial f (x) =
a0 + a1x + a2x2, where a0, a1 and a2 are constrained such that f (x) ≥ 0, and 1 +
f ′(x) = 1 + a1 + 2a2x ≥ 0 for all x (thereby satisfying the monotonicity constraint).

Under this specification, the parameters of interest are (a0, a1, a2), where the intercept

parameter a0 is a common treatment effect across all subjects, including those who

have zero response to placebo, and the parameters a1 and a2 capture how treatment

effects vary linearly and quadratically, respectively, with the magnitude of placebo

response. Figure 1 illustrates such a specification, where the left plot displays the

expected medical effect of the active drug as a function of placebo response, which is

relevant for drug approval, and the right plot displays the overall expected response

to being assigned the active drug and taking it as a function of placebo response,

which is relevant for anticipating the benefits a patient can expect when using the

drug as prescribed by a doctor.
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Fig. 1 Two illustrations of a possible quadratic specification of f

4.2 Computation

Under the general formulation above, the complete-data likelihood for the data Y =
(Y(0),Y(1)) (meaning the likelihood if both Yi(1) and Yi(0) were observed for all

units) is:

p(Y|𝜃,Z) =
∏

i
p(Yi(1),Yi(0)|𝜃) =

∏

i
p(Yi(1)|Yi(0), 𝜃)p(Yi(0)|𝜃). (4)

For Bayesian inference, with prior distribution p(𝜃) on 𝜃, the posterior distribution

of 𝜃 given the complete data Y is then:

p(𝜃|Y ,Z) ∝ p(𝜃)p(Y ,Z|𝜃) = p(𝜃)p(Y|𝜃,Z), (5)

where the equality follows from the randomization of Z. Posterior inference on 𝜃

can then be done using straightforward application of MCMC techniques, such as

the Gibbs sampler (Geman and Geman 1984; Gelman et al. 2014). For example, in

each iteration of the Gibbs sampler, we draw the missing potential outcomes Ymis

given the observed data Yobs
and the current draw of the parameter 𝜃:

p(Ymis|Yobs
, 𝜃,Z) =

∏

i∈{Zi=0}
p(Yi(1)|Yi(0) = Yobs

i , 𝜃)

×
∏

i∈{Zi=1}
p(Yi(0)|Yi(1) = Yobs

i , 𝜃)

=
∏

i∈{Zi=0}
p(Yi(1)|Yi(0) = Yobs

i , 𝜃)

×
∏

i∈{Zi=1}
p(Yi(1)|Yi(0) = Yobs

i , 𝜃)p(Yi(0) = Yobs
i |𝜃)

(6)

where the second equality follows from Bayes Rule. We then draw 𝜃 given the com-

pleted data Y = (Yobs
,Ymis) using Eqs. 4 and 5, and we continue this process until
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convergence in distribution. Depending on the specifications of (0)
and (1)

, the

conditional distribution of Ymis
given Yobs

and 𝜃, and the conditional distribution of

𝜃 given the complete data Y , may not have closed-form solutions that allow us to sam-

ple directly values of Ymis
or 𝜃. In such situations, Metropolis-Hastings steps can be

used to draw approximate samples from the desired conditional distributions in each

iteration of the Gibbs sampler. For posterior inference on causal effects of interest,

we continue this sampling procedure after approximate convergence, in each itera-

tion drawing the missing potential outcome, Yi(0) or Yi(1), for each patient. Thus, in

each iteration, we construct a completed dataset consisting of all observed potential

outcomes and the imputed missing potential outcomes, and then use this completed

data to calculate the implied placebo and treatment effects. Repeating this process

over many such simulated datasets produces the approximate posterior distribution

for all causal effects of interest. In the same way, posterior samples of 𝜃 can provide

posterior estimates of the parameters of the function f , which characterizes the rela-

tionship between expected response to treatment and expected response to placebo.

Depending on the exact specification of f (⋅), the likelihood may suffer from prob-

lems with multimodality, as is common with many specifications of mixture models,

such as this one. In such situations, initialization of the MCMC procedure can have

an impact on convergence, and first finding regions of high posterior density (e.g.,

maximum likelihood estimates—MLEs) for model parameters using a method such

as a variant of Expectation Maximization (EM) (Dempster et al. 1977) to inform

initial values in the MCMC procedure can help. In cases of extreme multi-modality

of the likelihood, one can also specify more restrictive prior distributions on the

parameters governing f (⋅).

4.3 Incorporating Covariates

The model presented in Sect. 4.1 considers a patient’s response to placebo as an

underlying, psychological, characteristic that exists prior to treatment assignment.

By defining heterogeneous treatment effects as a function of this characteristic, we

can estimate both the expected effect of assignment to treatment versus assignment to

placebo (the medical effect of the active drug) and the expected effect of assignment

to placebo versus assignment to neither treatment nor placebo (the placebo effect)

for each type of patient, at least under specific assumptions.

When covariates, Xi = (Xi1,… ,Xip), are observed for patients, we can specify

the distribution for potential outcomes under control, Yi(0), conditional on Xi and

the global parameter 𝜃 as:

Yi(0)|Xi, 𝜃 ∼ 
(0) Yi(0) ≥ 0 for all i, 𝜃. (7)

We then model the potential outcomes under treatment, Yi(1), conditional on

Yi(0),Xi, and 𝜃 as
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Yi(1)|Yi(0),Xi, 𝜃 ∼ 
(1) Yi(1) ≥ 0 for all i, 𝜃, (8)

where (1)
is such that

E[Yi(1)|Yi(0),Xi, 𝜃] = E[Yi(0) + f (Yi(0))|Xi]. (9)

In general, we assume that covariate effects on Yi(0) are conditionally independent

of effects on Yi(1). For example, continuing the example where f is specified using

the polynomial f (x) = a0 + a1x + a2x2, we might consider linear regression models

for covariate effects on both Yi(0) and Yi(1):

Yi(0)|Xi, 𝜃 = 𝛽0 + Xi𝛽 + 𝜖i
Yi(1)|Yi(0),Xi, 𝜃 = Yi(0) + Xi𝛾 + a1Yi(0) + a2Yi(0)2 + 𝜂i,

(10)

where 𝜖i and 𝜂i are independent residual terms and 𝛽, 𝛾 ∈ p
govern covariate

effects. Here, we may include an intercept term for the distribution of potential out-

comes under control but not for the distribution of potential outcomes under treat-

ment. In this example, posterior inference for 𝜃 comprises two standard Bayesian

regressions (Gelman et al. 2014).

5 Evaluating Treatment and Placebo Effects of Lybrido on
Sexual Function

To illustrate our proposed approach, we return to our motivating example of Lybrido.

Data for this example were pooled from two double-blind, placebo-controlled RCTs

conducted by EB to investigate the efficacy of Lybrido among patients for whom

FSIAD was believed to be caused by insensitivities in the brain to sexual cues.

Because the actual results of both studies are under peer review process with an

implied embargo, a subset of 67 patients was sampled from these data to be used for

illustrative purposes here, 34 randomized to treatment (Lybrido) and 33 randomized

to control (placebo).

The primary outcome of interest in this example is the increase from baseline

in number of SSEs within a four week period during the study. In this example, no

baseline measurements for SSEs are directly observed for any participants in the

sample, but implicitly these values are all equal to zero, because the patients in these

experiments have FSIAD and therefore suffer from low sexual desire. This likely

leads to infrequent SSEs among these patients, which makes the assumed value of

zero SSEs at baseline realistic. In addition to the outcome, we observe the age and

body mass index (BMI) for each patient at the time of enrollment, as well as 40

other covariates collected via self-report using the Sexual Motivation Questionnaire

(SMQ), as described in detail in a subsequent publication.
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Fig. 2 Kernel density

estimates for the

distributions of observed

potential outcomes in

treatment (Lybrido) and

control (placebo)

We observe an average of 4.00 SSEs over the four week study period for patients

randomized to receive treatment, with a standard deviation of 2.58, and an average

of 4.06 SSEs over the four week period for patients randomized to receive placebo,

with a standard deviation of 2.58. Kernel density estimates of the distributions of

observed potential outcomes in the treatment and control groups are shown in Fig. 2.

Using simple intention to treat (ITT) analysis (Sheiner and Rubin 1995), which

compares the means of observed potential outcomes among treated units to those

in control, we estimate the ITT effect of assignment to Lybrido to be 4.00 − 4.06 =
−0.06. At first glance, this result suggests that Lybrido has essentially zero effect

compared to placebo and might lead to the conclusion that the drug is ineffective

as a treatment for FSIAD. However, because both the placebo and treatment groups

are observed to have large and highly variable responses (with standard deviations of

approximately 2.58 in each group), this finding may instead suggest that any effect of

the active drug is simply being masked by large placebo effects and varying treatment

effects, which more sophisticated statistical analyses might be able to detect.

5.1 Model Specification

To illustrate our proposed approach on these data, we consider models both with and

without the observed covariates. For both models, we specify the function f (⋅), which

relates each patients’ treatment effect to their expected potential outcomes under

assignment to placebo, using the simple quadratic form f (x) = a0 + a1x + a2x2. In

the model for Yi(1) that includes covariates, however, no intercept term is included

because Yi(1) is already centered at Yi(0). For both models, we assume a truncated

normal distribution for placebo response, Yi(0). With no covariates, this is:

Yi(0)|𝜃 ∼ +(𝜇0, 𝜎
2
0), (11)

where +(𝜇, 𝜎2) denotes a normal density with mean 𝜇 and variance 𝜎
2

truncated

to the interval [0,∞]. Similarly, we specify a truncated normal distribution for treat-
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ment response, Yi(1), given Yi(0) as:

Yi(1)|Yi(0), 𝜃 ∼ +(Yi(0) + f (Yi(0)), 𝜎2
1). (12)

In this illustrative example, we use truncated normal distributions for both placebo

response, Yi(0), and treatment response, Yi(1), to satisfy the assumption of positive

side-effect monotonicity, which requires that both Yi(0) and Yi(1) be strictly non-

negative for all i. However, other distributions that satisfy this constraint (e.g., Pois-

son) could be specified for one or both of these variables. In general, we advise

researchers implementing this approach in practice to choose appropriate distribu-

tions based on domain knowledge about the treatment and population under investi-

gation.

When including covariates, we model Yi(0) conditional on Xi as:

Yi(0)|Xi, 𝜃 ∼ +(𝛽0 + Xi𝛽, 𝜎
2
0), (13)

and model Yi(1) given Yi(0) and Xi as:

Yi(1)|Yi(0),Xi, 𝜃 ∼ +(Yi(0) + f (Yi(0)) + Xi𝛾, 𝜎
2
1). (14)

In the model without covariates, the global parameter is 𝜃 = (a0, a1, a2, 𝜎2
0 , 𝜎

2
1),

and with covariates we have 𝜃 = (a0, a1, a2, 𝛽0, 𝛽, 𝛾, 𝜎2
0 , 𝜎

2
1), where 𝛽0 is an intercept

term for the regression of response to placebo, Yi(0), on the covariates Xi, and 𝛽 and

𝛾 are p-dimensional vectors with components for coefficients for the covariate effects

on Yi(0) and Yi(1). In both models, we use weakly informative prior distributions on

all parameters, where each prior distribution is proper and fully specified.

5.2 Results

Results from the models with and without covariates are displayed in Fig. 3. When

using the model without covariates, we estimate the function f as f̂ (Yi(0)) = 0.288 −
0.035Yi(0) − 0.481Yi(0)2, which suggests that Lybrido has the largest effects on

patients that do not respond to placebo (E[Yi(1)|Yi(0) = 0] ≈ 0.288). Further, we see

that estimated treatment effects decrease with response to placebo, such that patients

who have a placebo response of approximately one or more post-assignment SSEs

are expected to have essentially zero treatment effects. That is, big placebo respon-

ders do not benefit from receiving the active treatment. The findings are similar

when employing the model that incorporates covariates. Using this model, we obtain

f̂ (Yi(0)) = 0.321 + 0.016Yi(0) − 0.323Yi(0)2 with E[Yi(1)|Yi(0) = 0] = 0.321.

Among covariates considered, none were identified as significant predictors of


