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Preface

The sea surface represents the interface between the ocean and the at-
mosphere. As the interface is approached from either the atmospheric or
ocean side, the transport mechanisms are shifted from turbulent to dif-
fusive diffusion. Hence the viscous boundary layers at both sides of the
water surface represents the major resistance to the transport of energy,
mass and impulse between atmosphere and ocean. This has implications
for the composition of the atmosphere and has gained importance es-
pecially for radiatively (climate)-active gases such as CO2, CH4, N2O and
DMS. But also, the transport of gases across the interface is significant for
the fate and the atmospheric/marine budgets of many man-made pollu-
tants, in particular of volatile organic compounds and mercury.

The two key variables which are required for the determination of
the gas exchange fluxes are the partial pressure difference of the con-
sidered gas at the sea surface, and the gas exchange transfer velocity k.
Partial pressure differences are either obtained from measurements in
the surface water and in the atmosphere or from biogeochemical models.
Whereas our knowledge about the partial pressure difference distribu-
tions, in particular for CO2, has increased considerably during the past
years, the choice of an appropriate transfer velocity is still a matter of
controversy. This is because the transport mechanisms across the free,
wind-driven water surface are still only known superficially. This is not
surprising because both the experimental investigation as well as the mod-
eling is very challenging.

Experimental techniques and modeling efforts have evolved separately
with little quantitative comparisons. Recently, refined measurement tech-
niques have advanced which allows researchers to gain novel insights into
the boundary layer processes. Likewise, computer simulations have im-
proved significantly both in terms of resolution and model complexity.
This has made it feasible to compare model output of realistic boundary
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conditions to actual measurements. Through these comparisons, models
can be verified, leading to a deepening of our knowledge of the transport
of energy and mass between ocean and atmosphere. Only by linking ex-
perimental measurements with computer models, can our understanding
of air-sea interactions be enhanced. In turn, through insights into the un-
derlying transport processes, physically sound parameterizations can be
found. Better parameterizations are needed in order to improve global
models of our climate and predict climatic change.

In order to bridge the gap between current models and measurements,
as well as spark new ideas for novel simulation and experimental efforts,
an “International Workshop on Transport at the Air Sea Interface” was or-
ganized by the editors of this volume. The focus of the workshop was on
small scale processes directly at the interface. The workshop took place at
the University of Heidelberg from September 6–8, 2006. Leading scientist
from around the world came together and focused on different aspects of
the transport across the air-water interface. The current state of the art
of research was presented and current and future research interests and
problems were discussed.

The program of the workshop is listed after this preface. This volume
contains peer reviewed, extended and updated versions of selected talks
that also reflect the discussions during the workshop. The editors cor-
dially thank all reviewers for their detailed responses and their efforts to
improve the quality of the papers.

Christoph Garbe
Heidelberg, Robert Handler
April 2007 Bernd Jähne
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The Impact of Different Gas Exchange
Formulations and Wind Speed Products on Global
Air-Sea CO2 Fluxes

Rik Wanninkhof

NOAA/Atlantic Oceanographic and Meteorological Laboratory,
4301 Rickenbacker Causeway, Miami, Florida

Abstract Significant advances have been made over the last decade in estimating
air-sea CO2 fluxes over the ocean by the bulk formulation that expresses the flux
as the product of the gas transfer velocity and the concentration difference of
aqueous CO2 over the liquid boundary layer. This has resulted in a believable
global monthly climatology of air-sea CO2 fluxes over the ocean on a 4◦ by 5◦

grid [38]. It is shown here that the global air-sea CO2 fluxes are very sensitive
to estimates of gas transfer velocity and the parameterization of gas transfer
with wind. Wind speeds can now be resolved at sufficient temporal and spatial
resolution that they should not limit the estimates, but the absolute magnitudes
of winds for different wind products differ significantly. It is recommended to
use satellite-derived wind products that have the appropriate resolution instead
of assimilated products that often do not appropriately resolve variability on
sub-daily and sub-25-km space scales. Parameterizations of gas exchange with
wind differ in functional form and magnitude but the difference between the
most-used quadratic relationships is about 15%. Based on current estimates of
uncertainty of the air-water CO2 concentration differences, the winds, and the gas
exchange-wind speed parameterization, each parameter contributes similarly to
the overall uncertainty in the flux that is estimated at 25%.

1.1 Introduction

In order to determine the role of the ocean in the global cycles of climate-
relevant gases such as carbon dioxide (CO2), the flux of these gases across
the air-sea interface must be quantified. The ocean sequesters 20-30% of
the excess CO2 produced by fossil-fuel burning, thereby mitigating the
greenhouse effect [19]. The projected future amount of CO2 in the atmo-
sphere is thus critically dependent on the amount of exchange between
the ocean and atmosphere. Quantifying the air-sea gas CO2 is, therefore, a
major research objective of various international global change research
programs.

C.S. Garbe, R.A. Handler, B. Jähne (eds.): Transport at the Air Sea Interface
pp. 1-23, 2007, © Springer-Verlag Berlin, Heidelberg 2007
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Global air-sea gas flux estimates of slightly soluble gases are routinely
determined from the product of the concentration gradient of the gas in
question across the liquid boundary layer and the gas transfer velocity,

F = kΔC = kKoΔpC (1.1)

Equation (1.1) is often referred to as the bulk formulation where F is the
flux [mol m−2 day−1]; k is the gas transfer velocity [m d−1]; ΔC is the con-
centration gradient [mol m−3]; Ko is the solubility [mol m−3 atm−1]; and
ΔpC is the partial pressure (or fugacity) difference across the air-water
interface [atm−1]. The ΔC and ΔpC are often approximated from mea-
surements in the surface ocean mixed layer at 1-5 m depth and in air
well above the interface. While this bulk formulation is frequently used in
this form, there are known issues with these approximations that are dis-
cussed elsewhere [26, 29]. One of the most referenced global applications
utilizing this approach is the global air-sea CO2 flux estimate of Takahashi
et al. [38] based on a monthly global climatology of the partial pressure
difference of CO2 and ΔpCO2.

Here I will focus on how uncertainty in the gas transfer velocity, in
particular, its relationship with wind speed, affects the global CO2 flux.
First, a brief background is provided on determination of the gas transfer
velocity in wind-wave tanks and in the field, and the functional relation-
ship of gas transfer to wind speed. The sensitivity of the global CO2 flux
estimates to changes in wind, ΔpCO2, and functional dependence on wind
is shown. The issue of applying gas transfer velocities derived from other
trace gases to CO2 exchange is presented. The impact of the recent re-
assessment of the inventory of excess-14C in the ocean is assessed. Excess-
14C is the 14C produced by nuclear bomb tests corrected for dilution by
14C-free fossil fuel emissions. Henceforth, the excess-14C is referred to as
bomb-14C. The effect of high-resolution satellite wind speeds on the gas
exchange wind speed relationship is discussed. The paper concludes with
a brief summary of current estimates of interannual variability in CO2

flux.

1.2 Discussion

1.2.1 A Summary of Gas Exchange Wind Speed Relationships

Gas transfer velocities have been determined in many field and wind-wave
tank experiments. The laboratory studies benefit from full experimental
control, but scaling considerations and possible artifacts due to the lim-
ited size and configuration of the experimental setups have raised ques-
tions about the applicability of the wind-wave tank results to the open
ocean with respect to the absolute magnitude of the derived relationship
of gas exchange with wind speed [16]. The work in wind-wave tanks has
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shown a strong dependence of gas exchange with wind. A notable finding
is that there are distinct regimes in gas exchange and wind speed that
are delineated by wave state [5]. Over smooth surfaces there is a weak
dependence of gas exchange with wind that closely follows theoretical
considerations of transfer across a smooth wall [9]. Once capillary and
capillary-gravity waves form, the linear dependency strengthens apprecia-
bly. The onset of breaking waves enhances the gas transfer and gas trans-
fer shows a solubility dependence with gases of lower solubility, showing
a stronger enhancement. The transitions from smooth to rough surfaces
and to breaking waves occur at wind speeds of about 3 and 13 m s−1, re-
spectively, depending on cleanliness and configuration of the tank. In field
studies this clear delineation is not seen because of wind speed variability
on short time scales, and variable thresholds for onset of capillary waves
and breaking waves in the natural environment. Liss et al. [25] provide a
comprehensive review of the status of air-sea gas exchange research in
the 1980s.

Because of limitations of wind-wave tank studies, most empirical gas
exchange-wind speed relationships are either derived from observations
over the ocean or scaled to such studies. Initial studies over the ocean were
performed using the 222Rn disequilibrium method. The results showed no
discernable trend with wind [36]. Factors that cause the absence of a clear
correlation include experimental shortcomings of insufficient sampling at
a particular location over the averaging time for the 222Rn deficit method
(four days) and inability to quantify losses and gains of 222Rn in the mixed
layer [23]. Use of deliberate tracers, in particular, the dual tracer technique
with sulfur hexafluoride (SF6) and the light isotope of helium (3He), has
proven to be a powerful approach to assess gas transfer in the coastal
and open ocean [18, 32, 43]. Several, but not all, of the limitations of
the 222Rn are circumvented using injected tracers into the surface mixed
layer. Major advantages of the dual tracer technique over the 222Rn deficit
method include the ability to do the studies in shallow coastal seas, ease
of quantifying losses other than gas exchange, and the Lagrangian nature
of the approach.

Using other gases as proxies for air-sea CO2 transfer velocity works
well for transfer over the smooth or turbulent interface in the absence
of wave breaking since the gas transfer velocities can be scaled to their
Schmidt number, which is defined as the kinematic viscosity of water di-
vided by the molecular diffusion coefficient of the gas in question in water,
according to

kCO2

kx
=
(ScCO2

Scx

)−2/3
for smooth surfaces

(
U10 � 3 m s−1

)
(1.2)

and
kCO2

kx
=
(ScCO2

Scx

)−1/2
for wavy surfaces (1.3)
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While these dependencies are well established based on theoretical and
experimental considerations [10, 20], it is important to consider that the
interrelationships will break down under conditions of bubble entrain-
ment. This is of particular concern when the results of the dual tracer
technique using the gases 3He and SF6 that have very low solubilities are
used to estimate the exchange of CO2 which has a higher solubility. Com-
parisons in the field at low to intermediate winds have confirmed that
results can be scaled using a Sc−1/2 dependence [32], but laboratory and
theoretical considerations suggest that Schmidt number normalized gas
transfer velocities of SF6 and 3He are appreciably higher than CO2 transfer
at high winds due to bubble exchange [1, 44].

The effect of solubility for a particular pair of gases has been included
in the Schmidt number parameterization through an apparent Schmidt
number dependence [2] but this is seldom applied when converting the
tracer results to CO2 exchange. For example, Ho et al. [18] suggest a pa-
rameterization of

k600 = 0.266 ·U2
10 (1.4)

based on a dual deliberate tracer study in the open ocean near New
Zealand. The k600 is the gas transfer velocity, k, normalized to a Schmidt
number of 600 according to Eq. (1.3). As shown in Fig. 8 of [1], the ap-
parent Schmidt number for the combination of 3He and CO2 decreases
monotonically from -0.5 to -0.65 over a wind speed range from 5 to 25 m
s−1. Accounting for this change would lead to a dependence for CO2 that
can be well approximated by:

kCO2,600 = 0.230 ·U2
10 (1.5)

The 15% difference in coefficients is relatively small considering the dif-
ferences in the relationships discussed below. However, a change in the
coefficient from 0.266 to 0.23 will decrease the global uptake of CO2 by
15%. The adjustment procedures are strictly only applicable for situations
where the gases are far from equilibrium. More work needs to be done in
these comparisons [2], but it is clear that comparison of exchange rates
of gases with differing solubilities must be done with some caution.

To estimate global air-sea CO2 flux, constraints on the global gas trans-
fer velocities are critical. While these constraints can be obtained from at-
mospheric measurements of CO2 along stable carbon isotopes, or N2/O2

ratios [4], they are commonly obtained from the inventory of bomb-14C
in the ocean [6, 7]. This method takes advantage of the rapid increase of
14CO2 in the atmosphere in the 1960s due to testing of thermo-nuclear
devices. The atmospheric 14C anomaly is followed as it penetrates into
the ocean.

One of the first invasion rate estimates, I [mol m−2 yr−1], was derived
from optimizing for inventory and surface concentration of bomb-14C in
a multi-box ocean model for time dependent inventories and surface con-
centrations [6]. Wanninkhof [40] used this estimate, along with an inferred
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quadratic functional dependence with wind, to obtain a global parameter-
ization of gas exchange with wind speed. The gas transfer velocity, k, was
determined from I through

k = I
Ko · pCO2,a

(1.6)

where pCO2,a is the partial pressure of CO2 in air. In this case, the invasion
rate of CO2 was assumed equivalent to that of 14CO2, and the average
mixing ratio of CO2 in the atmosphere in 1964, at the peak of nuclear
bomb testing, was used. A global average wind speed normalized to 10-
m height (U10) of 7.4 m s−1 from ship-based observations [13] yields the
relationship

kav = 0.39 ·U2
10,av

(
660
Sc

)1/2
(1.7)

where kav is the global average gas transfer velocity and U10,av is the
global average wind speed. This parameterization, when used in models
to estimate air-sea gas fluxes, leads to consistent estimates of changing
ocean bomb-14C inventories. This is, in part, due to the fact that many
of the older general circulation models are tuned to or validated with the
same bomb-14C inventories in the ocean.

The original global bomb-14C inventory estimate did not lend itself to
determine regional gas transfer rates because of difficulties accounting
for transport of 14C once it entered the ocean. The basin-wide invasion
rates [6] are quite similar, and the wind speeds for each basin are simi-
lar enough to prevent obtaining meaningful discrete points for different
oceans except for the Red Sea [8]. Therefore, while the global gas transfer
velocity could be estimated from the invasion rate [6], the functional form
of the relationship between gas exchange and wind had to be obtained by
other means.

Three functional forms have been commonly used in combination with
the bomb-14C constraint:

• linear with a non-zero intercept [6, 39];
• quadratic [40]; and
• cubic [27, 41].

The linear relationship was proposed, in part, because the evidence of any
other reasonable functional dependence was lacking from field observa-
tions. A quadratic dependence was suggested since this was the approxi-
mate dependence observed in wind-wave tanks [40]. Moreover, wind stress
scales with U2

10, and some theories suggest that gas exchange scales with
stress. Monahan was one of the original proposers of a cubic dependence
of gas exchange and wind speed [30]. In this formulation, it is implicitly
assumed that bubbles have a controlling role on air-sea gas transfer. Sev-
eral improvements of these global empirical parameterizations have been
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developed that include boundary layer stability criteria [12, 15], and both
bubble-mediated exchange and exchange over the air-water interface [3].

An important advance over the last decade has been the improved wind
speed measurements over the ocean from active and passive microwave
sensors on earth-orbiting satellites. These measurements provide cover-
age of much of the ocean surface, once or twice a day, at a resolution of 25
km. Besides offering, for the first time, comprehensive measurements in
the remote ocean, the measurements also provide a good estimate of the
variability in wind speed. The variability of the wind affects the calculated
k for non-linear dependencies of gas exchange with wind [40, 42]. Wan-
ninkhof [40] proposed different dependencies for steady or “short-term”
wind and for “long-term” averaged winds assuming that long-term aver-
aged winds followed a Rayleigh wind speed frequency distribution. While
both long-term and short-term dependencies were assumed quadratic
with wind, the coefficients of proportionality differed by 26%. It was known
that wind speed distributions vary by location and by averaging time, but
lack of winds at high resolution prevented an exact solution.

With the remotely sensed winds it is now possible to determine gas
transfer velocities without needing to assume a particular wind speed
distribution curve. Average gas transfer velocities can be expressed as

kav,660 = a
∑ un

s
= a ·nM (1.8)

where kav,660 is the average transfer velocity for a Schmidt number of
660; a is a coefficient of proportionality; s is the number of wind speed
measurements, n = 2 for the quadratic dependence and n = 3 for the cu-
bic dependence; and nM is the nth moment that is sometimes expressed
as 〈un〉. Changing sea surface temperature (SST) over the period of de-
termination will affect the gas transfer as well through the temperature
dependency of the Schmidt number correction (660/Sc)1/2 (see Eq. (1.7)),
which is non-linear as well. However, using the average SST over the time
period of investigation will cause a bias of less than 5%.

1.2.2 The Sensitivity of Global Air-Sea CO2 Flux

The uncertainty in the global air-sea CO2 flux determined from the bulk
flux method is estimated at +22, -19% [38], but this error estimate is pri-
marily associated with the estimated uncertainty in the ΔpCO2 field and
likely an underestimate of the true error. An illustration of the sensitiv-
ity of the global CO2 flux can be obtained from varying the wind, ΔpCO2,
and the functional dependence by an amount that approximates its un-
certainty and determining the resulting change in flux. For this exercise
we obtained the winds, sea surface temperatures, and ΔpCO2 from the
monthly global CO2 climatology [38] and used as default the gas exchange
wind speed formulations k660 = 0.31 ·2M or k660 = 0.0283 ·3M to take
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into account the monthly variability of the wind in each pixel. For this
exercise the 2M and 3M were determined from the six-hour NCEP winds
for 1995 re-gridded from the original 2◦ by 2◦ grid to the 4◦ by 5◦ grid of
the Takahahsi monthly global CO2 climatology as used in [42]. The results
of these changes are shown in Table 1.1. Changes in wind speed have a
pronounced effect, especially for a cubic dependency. The functional de-
pendency itself can change the flux two-fold. It is also of note that while
many of the proposed relationships have a zero intercept, there is little
evidence to support this premise. Turbulence and instabilities near the
water surface induced by (diurnal) heating and shear [28] are believed to
cause a finite gas transfer at low or no wind. This has lead to a refor-
mulation of gas transfer to k = b + a · Un10 where b is referred to as a
“background” gas transfer velocity. McGillis et al. [27] suggest a value of
b = 3.2 cm hr−1. Including this term and adjusting the coefficient a to
meet the bomb-14C constraint leads to a decrease in the ocean uptake of
11-15%. This is because, on average, the ocean releases CO2 at lower winds
when the “background” transfer plays a more important role and because
the relationships with a non-zero intercept yield lower k at higher winds
in order to meet the bomb-14C constraint.

1.2.3 The Impact of Updated Oceanic Bomb-14C Inventories

Using the bomb-14C invasion into the ocean to determine the gas transfer
velocity requires knowledge of the time evolution of the atmospheric 14C
and the oceanic 14C inventories on a regional basis, and the 14C levels in
the surface ocean. Several approximations have been made to estimate the
global gas transfer velocity in this manner with poorly quantified effect on
the final results. In particular, the means of extrapolation of sparse field
measurements has led to uncertainties in the estimate of the ocean 14C in-
ventory. Considerable effort has been put into improving the global bomb-
14C inventory that has yielded revised global oceanic bomb-14C based gas
transfer estimates. The largest current shortcoming is the uncertainty in
the partial pressure of 14CO2 in seawater, p14CO2sw, which controls the
“back flux” of 14CO2. This term is increasingly significant because the at-
mosphere and ocean are reaching equilibrium with respect to 14CO2. In the
estimates below, most of the differences in calculated gas transfer rates
can be associated with differences in inventory estimates and calculation
methods.

The first estimates of the global inventory of bomb-14C in the ocean
in the 1980s were based on interpolating relatively few measurements in
each ocean basin [6]. Separation of the bomb-14C contribution from the
natural background was problematic [35]. The estimates were also subject
to interpolation errors and differences in interpolation schemes.

A simple box model used in the original analysis [6] could roughly re-
produce the observed surface values and basin inventories obtained dur-
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Table 1.1. Sensitivity of global air-sea CO2 fluxes to changes in wind speed,
ΔpCO2, and wind speed formulation (in Pg C yr–1).

Variable Adjustment k = 0.31 ·2M k = 0.0283 ·3M
Winda +1 m/s (Uav = 8.1 m/s) –1.86 (17%)b –2.58 (34%)

0 m/s (Uav = 7.1 m/s) –1.59 –1.93
–1 m/s (Uav = 6.1 m/s) –1.31 (–18%) –1.4 (–27%)

ΔpCO2
c +1 μatm –1.38 (–13%) –1.75 (–9%)

0 μatm –1.59 –1.93
–1 μatm –1.79 (13%) –2.12 (10%)

kd +20% (a = 0.37, 0.0339) –1.90 (19%) –2.32 (20%)
0% (a = 0.31, 0.0283) –1.59 –1.93

–20% (a = 0.25, 0.0226) –1.26 (–21%) –1.55 (–20%)

ke linear = 2.88 ·U10 –1.02 (–36%)
quadratic = 0.31 ·2M –1.59
cubic = 0.0238 ·3M –1.93 (20%)

kf linear = 3.2 + 2.46 ·U10
f –0.92 (–11%)

quadratic = 3.2 + 0.26 ·2M –1.39 (–14%)
cubic = 3.2 + 0.0238 ·3M –1.67 (–15%)

a Change wind speed for each monthly 4◦ by 5◦ pixel by 1 or -1 m/s. The winds
are six-hour NCEP winds for 1995 re-gridded from the original 2◦ by 2◦ grid to
a 4◦ by 5◦ grid (Doney, pers. com.). The resulting global average winds Uav are
listed in parentheses.

b Percent difference from the standard case.
c Change ΔpCO2 for each monthly 4◦ by 5◦ pixel by 1 or -1 μatm.
d Change coefficient a in k = a ·2M or k = a ·3M for each monthly 4◦ by 5◦ pixel

by the listed amount. The change in a for a quadratic or cubic dependence,
respectively, is listed in parentheses.

e Change functional dependence of k as listed.
f Include a finite “background” gas transfer at low winds.

ing the GEOSECS cruises and offered a means to project future 14C con-
centrations in the ocean (Figure 1.1). The controversy about the bomb-14C
inventory in the ocean and resulting global 14C constraint started when
the inventory values [6] were put in question by an independent strato-
spheric 14C constraint and a global mass balance [17]. In this analysis, the
ocean inventory was approximately 25% less for 1974 than the original
estimate [6].
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Figure 1.1. Change in bomb-14C inventory over time. The solid line is the result
of the box model optimized for basin-wide 14C inventories and surface concen-
trations [6] as recently rerun by Peng (pers. com.). The dashed line is the model
run where the invasion rate, I, was decreased by 30%. The points are the model
and data-based estimates listed in Table 1.2.

This was followed by an analysis which suggested the results could be
reconciled if a more sophisticated ocean model was used [11]. A more rig-
orous observation based 14C inventory was performed for the mid-1970s
using a model and chlorofluorocarbon (CFC) inventories to estimate the
distribution of bomb-14C in the ocean [34]. This estimate was 15% lower
than the original estimates [6, 7]. The comparison of estimates based on
data from the 1970s is complicated by the rapid rise of 14C in the ocean
during this time (Fig. 1.1), the multi-year expeditions that were used to de-
termine the inventories, and the inconsistent estimates of the inventories
cited in various publications. Of note is that the original optimized ocean
model results [6] fall below the estimates of global inventory (see Fig. 1.1)
but that this run is in good agreement with the more recent ocean bomb-
14C estimate [34]. For comparison, a model run using the same model as
in [6] with an evasion rate 30% below the optimum is also provided.

Currently, inventories are estimated for two time periods from large
hydrographic surveys that were conducted in the 1970s (the Geochemical


