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Preface 

This book presents an extended and detailed analysis of both the flow 
phenomena in closed and open channels and the flows around solid bodies. It 
comprises two volumes. This book is a specialized resource for those students, 
engineers and researchers who want to focus on the industrial applications of flows 
and study the fascinating world of internal and external flow phenomena. 

We have both had extensive experience in teaching, studying and researching 
fluids since the completion of our respective PhD theses. We felt that it was time to 
write about the practical and analytical aspects of flow applications, all of which can 
be applied in industrial flows, to support researchers, engineering students and 
industrial engineers in the field of fluids in order to optimize their work in “flows”. 

For the first author, the “fluids direction” began in the early stages of her PhD 
thesis study in Computational Fluid Dynamics in 1998 at the National Technical 
University of Athens. The second author’s knowledge of the fluids’ path is very 
extensive, obtained from more than 45 years of studies and work involved in his 
PhD thesis and further research work at the University of Patras, as well as through 
his position as Professor of Aerodynamics at the Hellenic Air Force Academy, 
spanning more than 35 years. 

We have both gained substantial experience in Fluid Mechanics research through 
numerous publications, presentations at international conferences, academic 
textbook authoring, teaching through international experiences and collaborations. 
However, we felt that more should be offered to the Fluid Mechanics community, 
and hence this book. 

Although we both have experience in writing for academic textbooks, this is our 
first publication that caters to international students, researchers and engineers, 
considering the industrial phenomena that are met in international industries and we 
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have tried to present most of the applications in flows inside or around bodies. This 
book is based on books written previously by us on Fluid Mechanics and on 
Aerodynamics, but for the first time our work focuses on the practical aspects of 
industrial internal and external flows. 

Christina, the first author, offers this textbook to the Bahrain polytechnic 
engineering students and all the industrial delegates who have worked with her in 
“flows” for many years. She also wishes to express her appreciation for her 
colleagues, namely Payal Modi, for the thousands of hours of constructive 
discussions and collaborations in fluids aspects, to Lazaros E. Mavromatidis for his 
support during the publishing procedure, to her father George who has been her 
mentor for all these years and to Stephanie Sutton and Amerissa Kapela for their 
continuing support with the quality of the academic English language. Additionally, 
George, the second author, wishes to share his more than 40 years of experience in 
fluids with the fluids community around the world and support them in their “flows” 
work as best he can. 

We both have a special sentimental feeling for this book in that we are extremely 
proud that we have been able to write, publish and offer it to you, hoping that it will 
really support you in your fluids journey. We have both worked on fluids with a 
passion not only for our students, but also to honor our colleagues around the world. 
We are equally happy to say that the Fluid Mechanics community has been served 
by the same family for more than 40 years. We hope that we will be physically and 
mentally healthy to continue to serve our students and support our colleagues in the 
fluids aspects in the future. 

We hope that you will enjoy this book and be engaged with the fascinating world 
of flows. 

Christina G. GEORGANTOPOULOU 
George A. GEORGANTOPOULOS 

February 2018 



1 

Pipe Networks 

1.1. Introduction 

Pipe networks, which are interconnected and often have a netting structure, are 
used for transportation or even distribution of fluids from their storage or production 
areas to various other areas for certain purposes. 

These networks are used in everyday life, such as plumbing networks of water 
transportation for productive applications such as fire extinguishing, networks of 
natural gas transportation, networks of fluid and gas transportation, and networks of 
water pipes, wet waste and compressed air. 

Some of these networks are simple piping systems equipped with flow 
adjustment devices, whereas others are complicated, such as fluid distribution 
networks. Some of the most complicated networks are fire extinguishing networks 
(because of the fluid used for fire extinguishing), water distribution networks and 
plumbing networks. 

Depending on the complication of mixed networks and the form they take  
for the feasibility of the distribution service, we distinguish them into the following 
three categories: 

1) The tree-system-type pipe networks: these networks are characterized by the 
presence of a central pipe from which other pipes are branched (pipes of 
distribution) with a gradual decrease in their cross-section, taking the form of a tree 
(tree system), as shown in Figure 1.1. 

2) The grid pattern: during development the pipes are formed into this pattern, 
resembling a chessboard, which covers the whole area of the distribution, with a 
decrease in their cross-sections with respect to the distance (grid system), as shown 
in Figure 1.2. 

Fluid Mechanics in Channel, Pipe and Aerodynamic Design Geometries 2, First Edition. 
Christina G. Georgantopoulou and George A. Georgantopoulos. 
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Figure 1.1. Tree-system-type pipe network 

 

Figure 1.2. Grid pattern networks 

3) The loop pattern: this pattern contains a central pipe, forming loops with 
smaller pipes at low flow rates (loop system), as shown in Figure 1.3. 

 

Figure 1.3. Loop pattern network 
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Of the three forms of networks, the loop and grid systems show high reliability 
due to their flexibility, expandability and ability to offer multiple paths to the fluid. 

In general, in all the aforementioned network systems, we distinguish three 
groups of pipelines: 

1) Transportation lines: these pipes transfer the fluid from the storage or 
production area to the distribution area. 

2) Central pipes: these pipes transfer the fluid to the target area, e.g. transfer of 
water to a town or village or transfer of natural gas to an industrial installation. 

3) Supply lines: these pipes of small diameters transfer the fluid from central 
pipes to the users. 

Thus, the entire distribution system consists of pipes, valves and pumps. The 
fundamental aim of a network system is to supply sufficient amounts of fluid to 
target areas with desired pressures and flow rates. Therefore, the choice of materials, 
the diameter of pipes and the formation of pipelines in networks are mostly 
influenced by the necessity of ensuring sufficient pressures and flow rates, despite 
installation costs and operations. 

1.2. Calculation of pipe networks 

Simple pipe networks have procedures for connecting the pipes in a row or in 
parallel, as described in Chapter 5 of Volume 1 [GEO 18]. However, the same is not 
true for complicated pipe networks. The schematic representation of a typical 
plumbing network is shown in Figure 1.4. 

 

Figure 1.4. Schematic representation of a pipe network 

The geometric convergence of three or more pipes is called a network node. In 
technical applications, nodes with more than four branches do not exist. Nodes with 
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three branches (which are most common in practice) are classified into branch nodes 
(Figure 1.5a) and convergence nodes (Figure 1.5b). In branch nodes, the incoming 
branch with a flow rate Q is divided into two branches with flow rates Q1 and Q2, 
while in convergence nodes, two branches with flow rates Q1 and Q2 converge into 
one branch with a flow rate Q. 

When the fluid passes through the node, there is some kind of energy loss, which 
can be attributed to a decrease in the cross-sectional areas of branches 1 and 2, so 
that the average velocity of the fluid in all the three branches of the node is 
approximately the same (V≈V1≈V2), and the walls of the branches are rounded 
instead of being sharp, to avoid higher energy losses. 

 

Figure 1.5. Pipe network nodes 

Minor energy losses at a node can be calculated either by the method of  
losses coefficient or by the method of equivalent lengths. In Table 1.1, typical values 
of the losses coefficients for nodes T−90° with constant diameter are given. 
Furthermore, in Table 1.2, representative values of the equivalent lengths in 
diameters for tees are given. For a flow in parallel connection, the following two 
basic rules are applicable: 

1) For an incompressible flow in a node, the algebraic sum of flow rates in its 
branches is zero. This means: 

1

i k

i
i

Q Q
=

=
=  [1.1] 

for the flow rates of the k branches of the node. During the addition of flow rates, 
streams entering the node are considered positive, while those leaving the node are 
considered negative. By applying this rule at node α, shown in Figure 1.6, we get: 

 [1.2] 1 2 3Q Q Q Q= + +
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Table 1.1. Coefficient of losses for T-90 nodes 

KIND OF APPLIANCE  KIND OF APPLIANCE  

Sudden dilatation 20 Tee, entrance from main line 20 

Sudden systole  12 Tee, entrance from branch 60 

Borda mouth 28 Valves (totally open):  

Mouth with sharp lips 18       back flow with swing 135 

 curve 16       Angular 145 

Standard  curve 30       Hydrant 18 

 curve of large radius 20       Butterfly  20 

 angle 60       Sliding 13 

 curve 65       Spherical 340 

Table 1.2. Equivalent length values 

BRANCH NODE CONVERGENCE NODE

Q2/Q 0     0.2       0.4      0.6      0.8 1,0 Q2/Q     0 0.2 0.4 0.6 0.8 1.0

Km,1 0.04 0.08 0.05 0.07    0.21 0.35 km,1 0.04 0.17 0.30 0.41 0.51  0.60

Km,2 0.95 0.88 0.89   0.95     1.10   1.28 km,2 -1.20 -0.40   0.08 0.47 0.72 0.91

22 VV 00h = k h = km ,0 1 m ,1 m ,0 2 m ,2 g2g2

22 VV 00h = k h = km ,0 1 m ,1 m ,0 2 m ,2 g2g2 →→

0 1 2( )Q Q Q= = 1 2 0( )Q Q Q= =

→ →

/ de / de

( )/ 1/ 21 2d d =

( )/ 1/ 22 1d d =

45°

90°

90° ( )6d in≥

90°

180°
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Relationship [1.1] is a mathematical expression of the node theorem, also known 
as the first law of Kirchhoff in the theory of electrical networks 

2) For a steady flow in a hydraulic network, for example, in the network shown 
in Figure 1.6, the total head loss h  between the nodes α and b is the same as the 

respective head losses, ,ih , in each branch i of the network, which means: 

, ,1 ,2 ,3ih h h h h= = = =      [1.3] 

where ,1 ,2,h h   and ,3h  are the heads of the energy losses in branches 1, 2  

and 3, respectively, for the corresponding flow rates Q1, Q2 and Q3.  
Equation [1.3] constitutes the mathematical statement of the energy principle of the 
hydraulic network 

 

Figure 1.6. Nodes and branches of a pipe network 

The procedure followed for obtaining the solutions of these problems depends on 
the type of information asked. Therefore, if the total head loss of the flow is known, 
then it is easy to calculate individual flow rates iQ  and finally their sum. 

The reversed problem is solved with successive approximations because the 
distribution of the flow rate Q in the individual branches of the network is not 
known. In fact, in the first approximation, we consider zero energy loss at the nodes 
and, if they are considered important, we add them in the second approximation. In 
more complex hydraulic networks, the balance sheet method, head losses in loops 
and flow rates in nodes are applied. It is difficult to obtain the solution of such 
network problems; it can be obtained with a suitable computer program. 
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However, in addition to this form of network, there are more complicated 
distribution networks, particularly the grid and loop patterns. A loop with one inlet 
and two exits, as shown in Figure 1.7, is impossible to obtain by the methods that we 
developed in Chapter 5 of Volume 1 [GEO 18]. 

 

Figure 1.7. Loop pattern network 

Before we develop a method for solving these types of networks, we should state 
the basic relation of these calculations. Therefore, considering that a network 
consists of pipes (branches) with nodes and forms closed circuits or loops, we will 
individually examine the relations of the nodes and the loops. 

Viewing a network macroscopically and applying the continuity equation to the 
network, we have: 

ent exm mΣ = Σ   [1.4] 

and for incompressible fluids, the equality of flow rates is also applicable: 

ent exQ QΣ = Σ  [1.5] 

A respective relationship is applicable for every node of the network. If we 
conventionally pre-label the flow rates (+ for entrance to the node and − for exit 
from the node), we have: 

0nodeQΣ =  [1.6] 

For the node shown in Figure 1.8: 
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1 2 3 4 5 0Q Q Q Q Q− + − − =  

or 1 3 2 4 5Q Q Q Q Q+ = + +  [1.7] 

In addition to the points of the branch or the nodes, a network is characterized by 
closed circuits or loops. A loop is a closed path formed by the sum of successive 
pipes, which will lead us back to the starting point if we follow them. Thus, in the 
pipe shown in Figure 1.9, starting from Α and following a clockwise route, we will 
return to A again: Α–Β–C–D–Α. The pipes that constitute the loop are called 
branches. For the formation of a loop, at least two branches are required. 

 

Figure 1.8. Loop pattern of network 

The loop shown in Figure 1.9 constitutes four branches (ΑΒ, ΒC, CD and DΑ) 
and four nodes (Α, Β, C and D). If we consider the flow path in the pipes shown in 
Figure 1.9, by applying the Bernoulli equation between points Α and C of the fluid 
paths ΑΒC and ADC, it is given that: 

 

Figure 1.9. Closed-loop pattern of a network 

ΓΔ

A B
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ABC ADC AB BC AC DCh h h h h h=  + = +   

0AB BC AD DCh h h h + − − =  [1.8] 

If we conventionally pre-label the losses, putting the sign + when the fluid flow 
is clockwise in the loop and the sign − when it is opposite, equation [1.8] becomes: 

0AB BC AD DCh h h h+ + + =   

0looph Σ =  [1.9] 

Equation [1.9] is general and applicable for any closed system of pipes (loop). In 
combination with equation [1.6] of the branch points (nodes), it is the key for the 
solution of the network problems. We emphasize that both these relationships have 
resulted from conventional pre-labeling of the flow rates and the losses. In their 
specific application, we must take into account the rules of pre-labeling and specify 
the respective relationships. For example, for the nodes shown in Figure 1.8, the 
equation of the nodes will take the form [1.5], while for the node shown in Figure 
1.9, the loop equation will take the form [1.8]. 

Finally, we remind ourselves that for each branch, we have the losses equation  
(Darcy–Weisbach): 

2
2 2

8 i
i i i i

ii

h f K Q
dg dπ

 
= ⋅ ⋅ + Σ ⋅ 

⋅ ⋅  



 

which can take the form: 

2
i i ih a Q= ⋅  [1.10] 

where 2 2

8 i
i i i

ii

a f K
dg dπ

 
= ⋅ ⋅ + Σ 

⋅ ⋅  


 [1.11] 

The analysis and calculation of the distribution networks is a complicated and 
time-consuming procedure, which is based on equations [1.6], [1.9] and [1.10] 
(nodes, loops and branches, respectively). 
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1.3. Problem-solving methodology for pipe networks 

Let us consider a pipe network in which the pipes have a common point, that is, 
a node or a bend, and the other side is connected to a tank, whose level is at a  
height h, as shown in Figure 1.10. 

In this category of problems, the kinematic viscosity ν, the lengths of the pipes 

1 2 3, ,   , their diameters 1 2 3, ,d d d , their heads 1 2 3, ,h h h  and their roughnesses 

1 2 3, ,ε ε ε  are usually given while their flow rates 1 2 3, ,Q Q Q  are asked. 

The following methodology is used to solve this category of problems: 

1) We assume a value for the head hΑ , where: 

ph h
γ

Δ
Α Δ= + = pressure head [1.12] 

 

Figure 1.10. Pipe network with a common point for the pipes 

2) From the Darcy–Weisbach relationship, the given data of the problem and the 
Moody diagram, we find the flow rates 1 2 3, , , ..., nQ Q Q Q . 

For example: 

2

2
n n

n n A n
n

V
h h h f

d g
= − = ⋅


 [1.13] 

where nf  is found by various tests, and nV  can be found by the relationship: 
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2 n n
n

n n

gh d
V

f
=


 [1.14] 

Therefore, 
2 2

4
n n n

n
n n

d gh d
Q

f
π

=


 [1.15] 

3) After calculating all the flow rates, we may use the continuity equation. This 
means that the values that we find for 1 2 3, , , ..., nQ Q Q Q  have to satisfy the 

continuity equation. 

If the flow rates Q1, Q2 and Q3 are higher than the flow rates of branches, then 
we obtain a higher value for hA, and we repeat steps 1, 2 and 3. If the flow rate to  
the branch is lower than the flow rate from the branch, then we use a smaller value 
for hA. 

It is clear from the above procedure that for these problems, the following 
conditions are applicable: 

1) For every pipe, the Darcy–Weisbach relationship must be satisfied. 

2) Q → branch Q= → branch. 

3) There has to be a flow from the higher tank to a lower one. This means that 
one of these relationships must be applicable: 

2 1 3Q Q Q= +  [1.16] 

or 3 1 2Q Q Q= +  [1.17] 

As 1Ah h< , we have a flow toward a tank, so it is given that: 

2 1 3Q Q Q= +  [1.18] 

4) Regardless of the losses in the flow in any pipe, equivalent lengths  
will be able to express them, which are added to the real length, as mentioned  
in section 1.2. 
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1.4. Overall approach for the network calculation 

In the beginning of this chapter, we mentioned that the basic purpose of a 
distribution network is to ensure the necessary flow rate and pressure for the exit of 
the fluid from the network. Consequently, a water supply network must ensure a 
flow rate higher than 1 / s  for every user and a pressure of 2 bar. 

The flow rate is related to not only the selection of the pipes with suitable 
diameters but also the differences of the energy heads between the nodes of exit and 
inlet, as well as the presence or absence of pumps in the network. The 
collateralization of the required pressure is related to the energy heads: the pressure 
head at the entrance nodes, the heights and the height that the pumps attribute. More 
specifically, if we assume a distribution network that is supplied by a tank, as shown 
in Figure 1.11, the Bernoulli equation, if applied between the surface of tank Α and 
the node Ε, will give: 

 

Figure 1.11. Pipe network connected to a tank 

2 2

2
A E A E

A E AE p
V V p py y h h

g Y
− −

− + = Σ − 
 

2 2

2
E A E A

A E AE p
p V V py y h h
Y g Y

−
 = − + + − Σ +  [1.19] 

As the variation of the kinetic energy is negligible because the flow velocities are 
smaller than 3 m/sec, as well as zero at the surface of the tank, the above 
relationship becomes: 

E A
A E AE p

p py y h h
Y Y

= − + − Σ +  [1.20] 
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where AB E,AE Bh h h hΓ Γ= + +  with the losses of every branch pre-labeled 

according to the assumption described in section 1.2. 

1.5. The Hazen–Williams equation for network analysis 

In the previous sections for the solution of the network problems, we used the 
Darcy–Weisbach losses equation as follows: 

2 2
5 2

1 2 5 2

8
8

2

V f Qh f f d Q
d g d g gπ π

−⋅= = =  
 [1.21] 

Considering that the flow is turbulent, we calculate the friction coefficients f 
from this relationship and then the flow rates. 

 

Figure 1.12. Pipe network for water distribution 

Thus, when the flow is turbulent, the losses along a pipe with respect to the flow 
rate, the friction coefficient and the pipe’s dimensions can be expressed by the 
following relationship: 

1
nh CQ=  [1.22] 

where the coefficient C is a parameter that depends solely on the dimensions and the 
roughness of the pipe. Relationship [1.22] can be derived from [1.21] after we 
express the friction coefficient f with respect to the flow rate, which means that: 

af KQ=  [1.23] 
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Substituting [1.23] into [1.21] gives [1.22]. 

After a series of experiments, Hazen and Williams, who worked with pipes of 
various diameters and roughnesses, found that the value of the average water 
velocity in pipes is proportional to the hydraulic radius if it is raised to a power and 
to the square root of the inclination value of the pressure gauge line, which means 
that: 

X
hV R S∞  [1.24] 

where hR  is the hydraulic radius and S is the inclination of the pressure gauge  

line = 1 /h  , with   being the length of the pipe and h1 being the losses during the 

length   of the pipe. 

Therefore, depending on the unit system (SI or British), the Hazen–Williams 
equation in its final form is given by the relationship: 

1) In the metric system (SI): 

 in  [1.25] 

If  is in m, the coefficient , depending on the type of the pipe, has the 

following values: 

No. Kind and situation of pipes Value of coefficient  

1 Small, not of a good structure up to 40 

2 Old, in bad situation 60–80 

3 Old, made of cast iron, nailed 95 
4 Made of cast iron or mud brick 100 
5 New, steel, nailed 110 
6 Glazed, in good situation 110 
7 Wooden, smooth 120 
8 Very smooth 130 
9 Made of concrete, of large dimensions 130 
10 Asbestos tubes 140 
11 Very smooth and rectilinear 140 

Table 1.3. Values of the coefficient Wm 

0,63 0,540,849 m hV W R S= ⋅ / secm

hR mW

mW
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2) In the British system: 

0,63 0,541,318 E hV W R S=  in ft/sec [1.26] 

Table of values of the coefficient  

No. Kind and situation of pipes Value of coefficient  

1 Made of cast iron, corroded 80 

2 Made of cast iron, after some years of function 100 

3 Glazed pipes of drainages 110 

4 Average situation of cast iron 110 

5 New, steel, nailed 110 

6 New, smooth, made of cast iron 130 

7 Very smooth and rectilinear 140 

Table 1.4. Values of the coefficient WE 

If  is in ft, the coefficient , depending on the type of the pipe, has the 

above values. 

1.6. Hazen–Williams and Darcy–Weisbach identity 

These two expressions that offer the possibility of solving complicated problems 
of pipe networks have some common points. Therefore: 

1) If we assume relationship [1.25]: 

0,63 0,54
m hV = 0,849W R S  [1.27] 

where 1S = h /  , and substituting S and rearranging, we have: 

0,54
0,631

0,849 h
m

h V R
W

−  = 
   

1/0,54 1,852

0,63 0,63

0,849 0,8491 h h
m m

V Vh = R R
W W

− −   
=   

   
 

 

EW

EW

hR EW
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For a cylindrical pipe, 
4h
dR = . Then, we have: 

0,63 1,852 1,1671,852 2

1,852 1,852

0.148 2

4 0,7385 2 4( 0,849)
1

m m

V d V V g dh =
gW W

− × −⋅ ⋅ −   = ⋅ ⋅   
   

 

 

Now, if we set 2g = 9,81m / sec , we have: 

1,167 2 0,148 0,019 2

1,852 0,167 1,852 0,148 0,148

4 2 134 1

2 20,7385
1

m m

g V V d Vh =
d g d gW d W V d

− −×  ⋅ ⋅ = = 
 

 

 

0,63 1,852 1,1671,852 2

1,852 1,852

0.148 2

4 0,7385 2 4( 0,849)
1

m m

V d V V g dh =
gW W

− × −⋅ ⋅ −   = ⋅ ⋅   
   

 

 

0,019 0,148 2

0,148 1,852 0,148 0,198

134

2m

d V
d gW V d

ν
ν

−     = =    
    



 

0,019 2 2

1,852 0,148 0,148

134

2 2Rem

d V L Uf
d g D gW ν

−   = 
 



 

However, because 
0,019

1,852 0,148 0,148

134

Rem

df
W ν

−

= , we have: 

2

21
Vh = f

d g
 
 
 


 [1.28] 

2) If we consider relationship [1.27] and substituting S and rearranging, we have 

for a cylindrical pipe, where 
4h
dR = : 

0,540,63
1

2

4
1,318

4E
hd QV W

dπ
  = =        

So, solving for 1h


, we find: 
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1

0,54

2

0,63

4

1,318
4

1

E

Q
h d=

dW

π

 
 
  
       



 

1,8521,63

1,852
1 4,87

4

1,318

E
h Q

W d

 
 
  = ⋅
 
 
 



 

1,852

1,852
1 4,87

2,3136

E
h Q

W d
 

= ⋅ 
 


 [1.29] 

where all the lengths are expressed in ft and the flow rate in ft/sec. 

Comparing [1.29] and [1.22], we see that: 

1,852

4,87

2,3136

E
C

W d
 

=  
 


 [1.30] 

and n =1,852. 

Combining relationship [1.29] with the nomograph of Hazen–Williams, we 
obtain solutions in various cases of pipe connection, which are much easier and 
faster than those obtained using the Moody diagram. 

Moreover, the Hazen–Williams relationship is simpler than the Darcy–Weisbach 
relationship because the calculation of the coefficient C is easier. This can be solved 
by using tables or graphs, and therefore this method has been commonly used in the 
calculation of water networks. However, it also has some disadvantages of providing 
less accurate results than the Darcy–Weisbach equations, and it is applicable only if 
the fluid is water. Moreover, both relationships are empirical, but the  
Darcy–Weisbach equation is theoretically more close to an analytical method and 
compatible with the conclusions of the two-dimensional analysis. 
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1.7. Hardy–Cross method 

Another method by which we can solve problems of pipe networks is the  
Hardy–Cross method, which is a relatively simple procedure. According to this 
methodology, we initially assume flow rate distribution under only one condition, 
which is to satisfy the mass conservation in each node. Continuing, we make 
corrections to these flow rates at each loop of the network, with corrections every 
time a new value of the flow rate comes up at every circle of calculations so that 
finally there is a better balance of flow rates in the network than the value we 
assumed before. If we get in the beginning a good value for the flow rate 
distribution, we can have convergence in the final value after two or three attempts. 

For simple networks, as shown in Figure 1.12, the solution can be obtained 
easily using a calculator, while for more complicated ones, the assistance of a 
computer is necessary. 

The procedure for finding a solution according to the Hardy–Cross method is as 
follows: 

1) We initially assume the flow rate distribution 01 02 03, , ,...Q Q Q  with the only 

limitation at each node of the network being the mass conservation applicable, 
meaning that the amount of the mass of water that goes in is the same that  
comes out. 

2) We calculate the losses at each pipe of the network based on the relationship: 

01 1 0
nh C Q=  [1.31] 

Therefore, if there are seven pipes in the circuit, we will find seven losses using 
the Hazen–Williams nomograph. 

01

02

07

1 1 01

1 2 02

1 7 07

n

n

n

h C Q

h C Q

h C Q

=

=

⋅
⋅
⋅
⋅
=

 

3) Choosing any direction and paying attention not to make a mistake in the sign, 
we find the following sum in each loop of the network: 


