

Cover
File Attachment
Thumbnails.jpg

Application of Graph Rewriting to

Natural Language Processing

Logic, Linguistics and Computer Science Set
coordinated by

Christian Retoré

Volume 1

Application of Graph
Rewriting to Natural

Language Processing

Guillaume Bonfante
Bruno Guillaume

Guy Perrier

First published 2018 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2018
The rights of Guillaume Bonfante, Bruno Guillaume and Guy Perrier to be identified as the authors of this
work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2018935039

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-096-6

Contents

Introduction . ix

Chapter 1. Programming with Graphs 1

1.1. Creating a graph . 2

1.2. Feature structures . 5

1.3. Information searches . 6

1.3.1. Access to nodes . 7

1.3.2. Extracting edges . 7

1.4. Recreating an order . 9

1.5. Using patterns with the GREW library 11

1.5.1. Pattern syntax . 13

1.5.2. Common pitfalls . 16

1.6. Graph rewriting . 20

1.6.1. Commands . 22

1.6.2. From rules to strategies . 24

1.6.3. Using lexicons . 29

1.6.4. Packages . 31

1.6.5. Common pitfalls . 32

Chapter 2. Dependency Syntax: Surface Structure and
Deep Structure . 35

2.1. Dependencies versus constituents 36

2.2. Surface syntax: different types of syntactic dependency 42

2.2.1. Lexical word arguments . 44

2.2.2. Modifiers . 49

vi Application of Graph Rewriting to Natural Language Processing

2.2.3. Multiword expressions . 51

2.2.4. Coordination . 53

2.2.5. Direction of dependencies between functional and lexical

words . 55

2.3. Deep syntax . 58

2.3.1. Example . 59

2.3.2. Subjects of infinitives, participles, coordinated verbs and

adjectives . 61

2.3.3. Neutralization of diatheses 61

2.3.4. Abstraction of focus and topicalization procedures 64

2.3.5. Deletion of functional words 66

2.3.6. Coordination in deep syntax 68

Chapter 3. Graph Rewriting and Transformation of Syntactic
Annotations in a Corpus . 71

3.1. Pattern matching in syntactically annotated corpora 72

3.1.1. Corpus correction . 72

3.1.2. Searching for linguistic examples in a corpus 77

3.2. From surface syntax to deep syntax 79

3.2.1. Main steps in the SSQ_to_DSQ transformation 80

3.2.2. Lessons in good practice . 83

3.2.3. The UD_to_AUD transformation system 90

3.2.4. Evaluation of the SSQ_to_DSQ and UD_to_AUD
systems . 91

3.3. Conversion between surface syntax formats 92

3.3.1. Differences between the SSQ and UD annotation

schemes . 92

3.3.2. The SSQ to UD format conversion system 98

3.3.3. The UD to SSQ format conversion system 100

Chapter 4. From Logic to Graphs for Semantic
Representation . 103

4.1. First order logic . 104

4.1.1. Propositional logic . 104

4.1.2. Formula syntax in FOL . 106

4.1.3. Formula semantics in FOL 107

4.2. Abstract meaning representation (AMR) 108

4.2.1. General overview of AMR 109

Contents vii

4.2.2. Examples of phenomena modeled using AMR 113

4.3. Minimal recursion semantics, MRS 118

4.3.1. Relations between quantifier scopes 118

4.3.2. Why use an underspecified semantic representation? 120

4.3.3. The RMRS formalism . 122

4.3.4. Examples of phenomenon modeling in MRS 133

4.3.5. From RMRS to DMRS . 137

Chapter 5. Application of Graph Rewriting to Semantic
Annotation in a Corpus . 143

5.1. Main stages in the transformation process 144

5.1.1. Uniformization of deep syntax 144

5.1.2. Determination of nodes in the semantic graph 145

5.1.3. Central arguments of predicates 147

5.1.4. Non-core arguments of predicates 147

5.1.5. Final cleaning . 148

5.2. Limitations of the current system 149

5.3. Lessons in good practice . 150

5.3.1. Decomposing packages . 150

5.3.2. Ordering packages . 151

5.4. The DSQ_to_DMRS conversion system 154

5.4.1. Modifiers . 154

5.4.2. Determiners . 156

Chapter 6. Parsing Using Graph Rewriting 159

6.1. The Cocke–Kasami–Younger parsing strategy 160

6.1.1. Introductory example . 160

6.1.2. The parsing algorithm . 163

6.1.3. Start with non-ambiguous compositions 164

6.1.4. Revising provisional choices once all information

is available . 165

6.2. Reducing syntactic ambiguity 169

6.2.1. Determining the subject of a verb 170

6.2.2. Attaching complements found on the right of their

governors . 172

6.2.3. Attaching other complements 176

6.2.4. Realizing interrogatives and conjunctive and relative

subordinates . 179

viii Application of Graph Rewriting to Natural Language Processing

6.3. Description of the POS_to_SSQ rule system 180

6.4. Evaluation of the parser . 185

Chapter 7. Graphs, Patterns and Rewriting 187

7.1. Graphs . 189

7.2. Graph morphism . 192

7.3. Patterns . 195

7.3.1. Pattern decomposition in a graph 198

7.4. Graph transformations . 198

7.4.1. Operations on graphs . 199

7.4.2. Command language . 200

7.5. Graph rewriting system . 202

7.5.1. Semantics of rewriting . 205

7.5.2. Rule uniformity . 206

7.6. Strategies . 206

Chapter 8. Analysis of Graph Rewriting 209

8.1. Variations in rewriting . 212

8.1.1. Label changes . 213

8.1.2. Addition and deletion of edges 214

8.1.3. Node deletion . 215

8.1.4. Global edge shifts . 215

8.2. What can and cannot be computed 217

8.3. The problem of termination . 220

8.3.1. Node and edge weights . 221

8.3.2. Proof of the termination theorem 224

8.4. Confluence and verification of confluence 229

Appendix . 237

Bibliography . 241

Index . 247

Introduction

Our purpose in this book is to show how graph rewriting may be used as a

tool in natural language processing. We shall not propose any new linguistic

theories to replace the former ones; instead, our aim is to present graph

rewriting as a programming language shared by several existing linguistic

models, and show that it may be used to represent their concepts and to

transform representations into each other in a simple and pragmatic manner.

Our approach is intended to include a degree of universality in the way

computations are performed, rather than in terms of the object of

computation. Heterogeneity is omnipresent in natural languages, as reflected

in the linguistic theories described in this book, and is something which must

be taken into account in our computation model.

Graph rewriting presents certain characteristics that, in our opinion, makes

it particularly suitable for use in natural language processing.

A first thing to note is that language follows rules, such as those commonly

referred to as grammar rules, some learned from the earliest years of formal

education (for example, “use a singular verb with a singular subject”), others

that are implicit and generally considered to be “obvious” for a native speaker

(for example in French we say “une voiture rouge (a car red)”, but not “une

rouge voiture (a red car)”). Each rule only concerns a small number of the

elements in a sentence, directly linked by a relation (subject to verb, verb to

preposition, complement to noun, etc.). These are said to be local. Note that

these relations may be applied to words or syntagms at any distance from each

other within a phrase: for example, a subject may be separated from its verb

by a relative.

x Application of Graph Rewriting to Natural Language Processing

Note, however, that in everyday language, notably spoken, it is easy to find

occurrences of text which only partially respect established rules, if at all. For

practical applications, we therefore need to consider language in a variety of

forms, and to develop the ability to manage both rules and their real-world

application with potential exceptions.

A second important remark with regard to natural language is that it

involves a number of forms of ambiguity. Unlike programming languages,

which are designed to be unambiguous and carry precise semantics, natural

language includes ambiguities on all levels. These may be lexical, as in the

phrase There’s a bat in the attic, where the bat may be a small nocturnal

mammal or an item of sports equipment. They may be syntactic, as in the

example “call me a cab”: does the speaker wish for a cab to be hailed for

them, or for us to say “you’re a cab”? A further form of ambiguity is

discursive: for example, in an anaphora, “She sings songs”, who is “she”?

In everyday usage by human speakers, ambiguities often pass unnoticed,

as they are resolved by context or external knowledge. In the case of

automatic processing, however, ambiguities are much more problematic. In

our opinion, a good processing model should permit programmers to choose

whether or not to resolve ambiguities, and at which point to do so; as in the

case of constraint programming, all solutions should a priori be considered

possible. The program, rather than the programmer, should be responsible for

managing the coexistence of partial solutions.

The study of language, including the different aspects mentioned above, is

the main purpose of linguistics. Our aim in this book is to propose automatic

methods for handling formal representations of natural language and for

carrying out transformations between different representations. We shall

make systematic use of existing linguistic models to describe and justify the

representations presented here. Detailed explanations and linguistic

justifications for each formalism used will not be given here, but we shall

provide a sufficiently precise presentation of each case to enable readers to

follow our reasoning with no prior linguistic knowledge. References will be

given for further study.

Introduction xi

I.1. Levels of analysis

A variety of linguistic theories exist, offering relatively different visions

of natural language. One point that all of these theories have in common is

the use of multiple, complementary levels of analysis, from the simplest to

the most complex: from the phoneme in speech or the letter in writing to the

word, sentence, text or discourse. Our aim here is to provide a model which is

sufficiently generic to be compatible with these different levels of analysis and

with the different linguistic choices encountered in each theory.

Although graph structures may be used to represent different dimensions

of linguistic analysis, in this book, we shall focus essentially on syntax and

semantics at sentence level. These two dimensions are unavoidable in terms

of language processing, and will allow us to illustrate several aspects of graph

rewriting. Furthermore, high-quality annotated corpora are available for use

in validating our proposed systems, comparing computed data with reference

data.

The purpose of syntax is to represent the structure of a sentence. At this

level, lexical units – in practice, essentially what we refer to as words – form

the basic building-blocks, and we consider the ways in which these blocks are

put together to construct a sentence. There is no canonical way of

representing these structures and they may be represented in a number of

ways, generally falling into one of two types: syntagmatic or

dependency-based representations.

The aim of semantic representation is to transmit the meaning of a

sentence. In the most basic terms, it serves to convey “who” did “what”,

“where”, “how”, etc. Semantic structure does not, therefore, necessarily

follow the linear form of a sentence. In particular, two phrases with very

different syntax may have the same semantic representation: these are known

as paraphrases. In reality, semantic modeling of language is very complex,

due to the existence of ambiguities and non-explicit external references. For

this reason, many of the formalisms found in published literature focus on a

single area of semantics. This focus may relate to a particular domain (for

example legal texts) or semantic phenomena (for example dependency

minimal recursion semantics (DMRS) considers the scope of quantifiers,

whilst abstract meaning representation (AMR) is devoted to highlighting

predicates and their arguments).

xii Application of Graph Rewriting to Natural Language Processing

These formalisms all feature more or less explicit elements of formal logic.

For a simple transitive sentence, such as Max hates Luke, the two proper nouns

are interpreted as constants, and the verb is interpreted as a predicate, Hate,

for which the arguments are the two constants. Logical quantifiers may be

used to account for certain determiners. The phrase “a man enters.” may thus

be represented by the first-order logical formula ∃x(Man(x) ∧ Enter(x)).

In what follows, we shall discuss a number of visions of syntax and

semantics in greater detail, based on published formalisms and on examples

drawn from corpora, which reflect current linguistic usage.

There are significant differences between syntactic and semantic

structures, and the interface between the two levels is hard to model. Many

linguistic models (including Mel’čuk and Chomsky) feature an intermediary

level between syntax, as described above, and semantics. This additional level

is often referred to as deep syntax .

To distinguish between syntax, as presented above, and deep syntax, the

first is often referred to as surface syntax or surface structure.

These aspects will be discussed in greater detail later. For now, note

simply that deep structure represents the highest common denominator

between different semantic representation formalisms. To avoid favoring any

specific semantic formalism, deep structure uses the same labels as surface

structure to describe new relations. For this reason, it may still be referred to

as “syntax”. Deep structure may, for example, be used to identify new links

between a predicate and one of its semantic arguments, which cannot be seen

from the surface, to neutralize changes in verb voice (diathesis) or to identify

grammatical words, which do not feature in a semantic representation. Deep

structure thus ignores certain details that are not relevant in terms of

semantics. The following figure is an illustration of a passive voice, with the

surface structure shown above and the deep structure shown below, for the

French sentence “Un livre est donné à Marie par Luc” (A book is given to

Mary by Luc).

Introduction xiii

I.2. Trees or graphs?

The notion of trees has come to be used as the underlying mathematical

structure for syntax, following Chomsky and the idea of syntagmatic

structures. The tree representation is a natural result of the recursive process

by which a component is described from its direct subcomponents. In

dependency representations, as introduced by Tesnière, linguistic information

is expressed as binary relations between atomic lexical units. These units may

be considered as nodes, and the binary relations as arcs between the nodes,

thus forming a graph. In a slightly less direct manner, dependencies are also

governed by a syntagmatic vision of syntax, naturally leading to the exclusion

of all dependency structures, which do not follow a tree pattern. In practice, in

most corpora and tools, dependency relations are organized in such a way that

one word in a sentence is considered as the root of the structure, with each

other node as the target of one, and only one, relation. The structure is then a

tree.

This book is intended to promote a systematic and unified usage of graph

representations. Trees are considered to facilitate processing and to simplify

analytical algorithms. However, the grounds for this argument are not

particularly solid, and, as we shall see through a number of experiments, the

processing cost of graphs, in practice, is acceptable. Furthermore, the tools

presented in what follows have been designed to permit use with a tree

representation at no extra cost.

While the exclusive use of tree structures may seem permissible in the field

of syntactic structures, it is much more problematic on other levels, notably

for semantic structures. A single entity may play a role for different predicates

at the same time, and thus becomes the target of a relation for each of these

roles. At the very least, this results in the creation of acylic graphs; in practice,

it means that a graph is almost always produced. The existing formalisms for

semantics, which we have chosen to present below (AMR and DMRS), thus

make full use of graph structures.

Even at syntactic level, trees are not sufficient. If we wish to enrich a

structure with deep syntax information (such as the subjects of infinitives, or

the antecedents of relative pronouns), we obtain a structure involving cycles,

justifying the use of a graph. Graphs also allow us to simultaneously account

for several linguistic levels in a uniform manner (for example syntactic

xiv Application of Graph Rewriting to Natural Language Processing

structure and the linear order of words). Note that, in practice, tree-based

formalisms often include ad hoc mechanisms, such as coindexing, to

represent relations, which lie outside of the tree structure. Graphs allow us to

treat these mechanisms in a uniform manner.

I.3. Linguistically annotated corpora

Whilst the introspective work carried out by lexicographers and linguists

is often essential for the creation of dictionaries and grammars (inventories of

rules) via the study of linguistic constructs, their usage and their limitations, it

is not always sufficient. Large-scale corpora may be used as a means of

considering other aspects of linguistics. In linguistic terms, corpus-based

research enables us to observe the usage frequency of certain constructions

and to study variations in language in accordance with a variety of

parameters: geographic, historical or in terms of the type of text in question

(literature, journalism, technical text, etc.). As we have seen, language use

does not always obey those rules described by linguists. Even if a

construction or usage found in a corpus is considered to be incorrect, it must

be taken into account in the context of applications.

Linguistic approaches based on artificial intelligence and, more generally,

on probabilities, use observational corpora for their learning phase. These

corpora are also used as references for tool validation.

Raw corpora (collections of text) may be used to carry out a number of

tasks, described above. However, for many applications, and for more

complex linguistic research tasks, this raw text is not sufficient, and additional

linguistic information is required; in this case, we use annotated corpora. The

creation of these corpora is a tedious and time-consuming process. We intend

to address this issue in this book, notably by proposing tools both for

preparing (pre-annotating) corpora and for maintaining and correcting

existing corpora. One solution often used to create annotated resources

according to precise linguistic choices is to transform pre-existing resources,

in the most automatic way possible. Most of the corpora used in the universal

dependencies (UD) project1 are corpora which had already been annotated in

1 http://universaldependencies.org

Introduction xv

the context of other projects, converted into UD format. We shall consider this

type of application in greater detail later.

I.4. Graph rewriting

Our purpose here is to show how graph rewriting may be used as a model

for natural language processing. The principle at the heart of rewriting is to

break down transformations into a series of elementary transformations,

which are easier to describe and to control. More specifically, rewriting

consists of executing rules, i.e. (1) using patterns to describe the local

application conditions of an elementary transformation and (2) using local

commands to describe the transformation of the graph.

One of the ideas behind this theory is that transformations are described

based on a linguistic analysis that, as we have seen, is highly suited to local

analysis approaches. Additionally, rewriting is not dependent on the

formalism used, and can successfully manage several coexisting linguistic

levels. Typically, it may be applied to composite graphs, made up of

heterogeneous links (for example those which are both syntactic and

semantic). Furthermore, rewriting does not impose the order, nor the location,

in which rules are applied. In practice, this means that programmers no longer

need to consider algorithm design and planning, freeing them to focus on the

linguistic aspects of the problem in question. A fourth point to note is that the

computation model is intrinsically non-deterministic; two “contradictory”

rules may be applied to the same location in the same graph. This

phenomenon occurs in cases of linguistic ambiguity (whether lexical,

syntactic or semantic) where two options are available (in the phrase he sees
the girl with the telescope, who has the telescope?), each corresponding to a

rule. Based on a strategy, the programmer may choose to continue processing

using both possibilities, or to prefer one option over the other.

We shall discuss the graph rewriting formalism used in detail later, but for

now, we shall simply outline its main characteristics. Following standard usage

in rewriting, the “left part” of the rule describes the conditions of application,

while the “right part” describes the effect of the rule on the host structure.

The left part of a rule, known as the pattern, is described by a graph (which

will be searched for in the host graph for modification) and by a set of negative

constraints, which allow for better control of the context in which rules are

xvi Application of Graph Rewriting to Natural Language Processing

applied. The left part can also include rule parameters in the form of external

lexical information. Graph pattern recognition is an NP-complete problem and,

as such, is potentially difficult for practical applications; however, this is not

an issue in this specific case, as the patterns are small (rarely more than five

nodes) and the searches are carried out in graphs of a few dozen (or, at most, a

few hundred) nodes. Moreover, patterns often present a tree structure, in which

case searches are extremely efficient.

The right part of rules includes atomic commands (edge creation, edge

deletion) that describe transformations applied to the graph at local level.

There are also more global commands (shift) that allow us to manage

connections between an identified pattern and the rest of the graph. There are

limitations in terms of the creation of new nodes: commands exist for this

purpose, but new nodes have a specific status. Most systems work without

creating new nodes, a fact which may be exploited in improving the efficiency

of rewriting.

Global transformations may involve a large number of intermediary steps,

described by a large number of rules (several hundred in the examples

presented later). We therefore need to control the way in which rules are

applied during transformations. To do this, the set of rules for a system is

organized in a modular fashion, featuring packages, for grouping coherent

sub-sets of rules, and strategies, which describe the order and way of applying

rules.

The notion of graph rewriting raises mathematical definition issues,

notably in describing the way in which local transformations interact with the

context of the pattern of the rule. One approach is based on category theory

and has two main variants, SPO (Single Pushout) and DPO (Double Pushout)
[ROZ 97]. Another approach uses logic [COU 12], drawing on the

decidability of monadic second-order logic. These approaches are not suitable

for our purposes. To the best of our knowledge, the graphs in question do not

have an underlying algebraic structure or the limiting parameters (such as tree

width) necessary for a logical approach. Furthermore, we need to use shift
type commands, which are not compatible with current approaches to

category theory. Readers may wish to consider the theoretical aspect

underpinning the form of rewriting used here independently.

Introduction xvii

Here, we shall provide a more operational presentation of rewriting and

rules, focusing on language suitable for natural language processing. We have

identified a number of key elements to bear in mind in relation to this subject:

– negative conditions are essential to avoid over-interpretation;

– modules/packages are also necessary, as without them, the process of

designing rewriting systems becomes inextricable;

– we need a strong link to lexicons, otherwise thousands of rules may come

into play, making rewriting difficult to design and ineffective;

– a notion of strategy is required for the sequential organization of modules

and the resolution of ambiguities.

The work presented in this book was carried out using GREW, a generic

graph rewriting tool that responds to the requirements listed above. We used

this tool to create systems of rules for each of the applications described later

in the book. Other tools can be found in the literature, along with a few

descriptions of graph rewriting used in the context of language processing

(e.g. [HYV 84, BOH 01, CRO 05, JIJ 07, BÉD 09, CHA 10]). However, to

the best of our knowledge, widely-used generic graph rewriting systems, with

the capacity to operate on several levels of language description, are few and

far between (the Ogre system is a notable exception [RIB 12]). A system of

this type will be proposed here, with a description of a wide range of possible

applications of this approach for language processing.

I.5. Practical issues

Whilst natural language may be manifested both orally and in writing,

speech poses a number of specific problems (such as signal processing,

disfluence and phonetic ambiguity), which will not be discussed here; for

simplicity’s sake, we have chosen to focus on written language.

As mentioned, we worked on both the syntactic and semantic levels. The

language used in validating and applying our approach to large bodies of real

data was French. Figure I.1 shows the different linguistic levels considered

in the examples presented in this book (horizontal boxes), along with one or

more existing linguistic formats.

xviii Application of Graph Rewriting to Natural Language Processing

Our aim here is to study ways of programming conversions between

formats. These transformations may take place within a linguistic level

(shown by the horizontal arrows on the diagram) and permit automatic

conversion of data between different linguistic descriptions on that level.

They may also operate between levels (descending arrows in the diagram),

acting as automatic syntactic or semantic analysis tools2. These different

transformations will be discussed in detail later.

Part of Speech

Surface Syntax

Semantics

Deep Syntax DSQ

SSQ

DMRS AMR

EUD AUD

UD

POS

Figure I.1. Formats and rewriting systems considered in this book

Our tools and methods have been tested using two freely available

corpora, annotated using dependency syntax and made up of text in French.

The first corpus is SEQUOIA3, made up of 3099 sentences from a variety of

domains: the press (the annodis_er subcorpus), texts issued by the European

parliament (the Europar.550 sub-corpus), medical notices (the emea-fr-dev
and emea-fr-test subcorpora), and French Wikipedia (the frwiki_50.1000
sub-corpus). It was originally annotated using constituents, following the

French Treebank annotation scheme (FTB) [ABE 04]. It was then converted

2 We have yet to attempt transformations in the opposite direction (upward arrows); this would

be useful for text generation.

3 https://deep-sequoia.inria.fr

Introduction xix

automatically into a surface dependency form [CAN 12b], with long-distance

dependencies corrected by hand [CAN 12a]. Finally, SEQUOIA was annotated

in deep dependency form [CAN 14]. Although the FTB annotation scheme

used here predates SEQUOIA by a number of years, we shall refer to it as the

SEQUOIA format here, as we have only used it in conjunction with the

SEQUOIA corpus.

The second corpus used here is part of the Universal Dependencies

project4 (UD). The aim of the UD project is to define a common annotation

scheme for as many languages as possible, and to coordinate the creation of a

set of corpora for these languages. This is no easy task, as the annotation

schemes used in existing corpora tend to be language specific. The general

annotation guide for UD specifies a certain number of choices that corpus

developers must follow and complete for their particular language. In

practice, this general guide is not yet set in stone and is still subject to

discussion. The UD_FRENCH corpus is one of the French-language corpora

in UD. It is made up of around 16000 phrases drawn from different types of

texts (blog posts, news articles, consumer reviews and Wikipedia). It was

annotated within the context of the Google DataSet project [MCD 13] with

purely manual data validation. The annotations were then converted

automatically for integration into the UD project (UD version 1.0, January

2015). Five new versions have since been issued, most recently version 2.0

(March 2017). Each version has come with new verifications, corrections and

enrichments, many thanks to the use of the tools presented in this book.

However, the current corpus has yet to be subject to systematic manual

validation.

I.6. Plan of the book

Chapter 1 of this book provides a practical presentation of the notions used

throughout. Readers may wish to familiarize themselves with graph handling

in PYTHON and with the use of GREW to express rewriting rules and the graph

transformations, which will be discussed later. The following four chapters

alternate between linguistic presentations, describing the levels of analysis in

question and examples of application. Chapter 2 is devoted to syntax

(distinguishing between surface syntax and deep structure), while Chapter 4

4 http://universaldependencies.org

xx Application of Graph Rewriting to Natural Language Processing

focuses on the issue of semantic representation (via two proposed semantic

formalization frameworks, AMR and DMRS). Each of these chapters is

followed by an example of application to graph rewriting systems, working

with the linguistic frameworks in question. Thus, Chapter 3 concerns the

application of rewriting to transforming syntactic annotations, and Chapter 5

covers the use of rewriting in computing semantic representations. In

Chapter 6, we shall return to syntax, specifically syntactic analysis through

graph rewriting; although the aim in this case is complementary to that found

in Chapter 3, the system in question is more complex, and we thus thought it

best to devote a separate chapter to the subject. The last two chapters

constitute a review of the notions presented previously, including rigorous

mathematical definitions, in Chapter 7, designed for use in studying the

properties of the calculation model presented in Chapter 8, notably with

regard to termination and confluence. Most chapters also include exercises

and sections devoted to “good practice”. We hope that these elements will be

of use to the reader in gaining a fuller understanding of the notions and tools

in question, enabling them to be used for a wide variety of purposes.

The work presented here is the fruit of several years of collaborative work

by the three authors. It would be hard to specify precisely which author is

responsible for contributions, the three played complementary roles.

Guillaume Bonfante provided the basis for the mathematical elements,

notably the contents of the final two chapters. Bruno Guillaume is the

developer behind the GREW tool, while Guy Perrier developed most of the

rewriting systems described in the book, and contributed to the chapters

describing these systems, along with the linguistic aspects of the book. The

authors wish to thank Mathieu Morey for his participation in the early stages

of work on this subject [MOR 11], alongside Marie Candito and Djamé

Seddah, with whom they worked [CAN 14, CAN 17].

This book includes elements contained in a number of existing

publications: [BON 10, BON 11a, BON 11b, PER 12, GUI 12, BON 13a,

BON 13b, CAN 14, GUI 15b, GUI 15a, CAN 17]. All of the tools and

resources presented in this book are freely available for download at

http://grew.fr. All of the graphs used to illustrate the examples in this book

can be found at the following link: www.iste.co.uk/bonfante/language.zip.

1

Programming with Graphs

In this chapter, we shall discuss elements of programming for graphs. Our

work is based on PYTHON, a language widely used for natural language

processing, as in the case of the NLTK library1 (Natural Language ToolKit),

used in our work. However, the elements presented here can easily be

translated into another language. Several different data structures may be used

to manage graphs. We chose to use dictionaries; this structure is elementary

(i.e. unencapsulated), reasonably efficient and extensible. For what follows,

we recommend opening an interactive PYTHON session2.

Notes for advanced programmers: by choosing such a primitive structure,
we do not have the option to use sophisticated error management
mechanisms. There is no domain (or type) verification, no identifier
verification, etc. Generally speaking, we shall restrict ourselves to the bare
minimum in this area for reasons of time and space. Furthermore, we have
chosen not to use encapsulation so that the structure remains as transparent
as possible. Defining a class for graphs should make it easier to implement
major projects. Readers are encouraged to take a more rigorous approach to
that presented here after reading the book. Finally, note that the algorithms
used here are not always optimal; once again, our primary aim is to improve
readability.

1 http://www.nltk.org

2 Our presentation is in PYTHON3, but PYTHON2 can be used almost as-is.

Application of Graph Rewriting to Natural Language Processing, First Edition.
Guillaume Bonfante, Bruno Guillaume and Guy Perrier.
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.

2 Application of Graph Rewriting to Natural Language Processing

Notes for “beginner” programmers: this book is not intended as an
introduction to PYTHON, and we presume that readers have some knowledge
of the language, specifically with regard to the use of lists, dictionaries and
sets.

The question will be approached from a mathematical perspective in

Chapter 7, but for now, we shall simply make use of an intuitive definition of

graphs. A graph is a set of nodes connected by labeled edges. The nodes are

also labeled (with a phonological form, a feature structure, a logical predicate,

etc.). The examples of graphs used in this chapter are dependency structures,

which simply connect words in a sentence using syntactic functions. The

nodes in these graphs are words (W1, W2, . . . , W5 in the example below), the

edges are links (suj, obj, det) and the labels on the nodes provide the

phonology associated with each node. We shall consider the linguistic aspects

of dependency structures in Chapter 2.

Note that it is important to distinguish between nodes and their labels. This

enables us to differentiate between the two occurrences of "the" in the graph

above, corresponding to the two nodes W1 and W4.

In what follows, the nodes in the figures will not be named for ease of

reading, but they can be found in the code in the form of strings : 'W1', 'W2',

etc.

1.1. Creating a graph

A graph is represented using a dictionary. Let us start with a graph with no

nodes or edges.
� �

g = dict()
� �

The nodes are dictionary keys. The value corresponding to key v is a pair

(a, sucs) made up of a label a and of the list sucs of labeled edges starting

from v. Let us add a node 'W1' labeled "the" to g:

Programming with Graphs 3

� �

g['W1'] = ('the', [])
� �

Now, add a second and a third node, with the edges that connect them:
� �

g['W2'] = ('child', [])
g['W3'] = ('plays', [])
g['W3'][1].append (('suj', 'W2'))
g['W2'][1].append (('det', 'W1'))
� �

and print the result:
� �

g
� �

{'W1': ('the', []), 'W2': ('child', [('det', 'W1')]), 'W3':
('plays ', [('suj', 'W2')])}

The last box shows the output from the PYTHON interpreter. This graph is

represented in the following form:

Let us return to the list of successors of a node. This is given in the form

of a list of pairs (e, t), indicating the label e of the edge and the identifier t
of the target node. In our example, the list of successors of node 'W2' is given

by g['W2'][1]. It contains a single pair ('det', 'W1') indicating that the

node 'W1' corresponding to "the" is the determiner of 'W2', i.e. the common

noun "child".

In practice, it is easier to use construction functions:
� �

def add_node(g, u, a):
#Add a node u labeled a in graph g
g[u] = (a, [])

def add_edge(g, u, e, v):
Add an edge labeled e from u to v in graph g
if (e, v) not in g[u][1]:

g[u][1].append((e, v))
� �

4 Application of Graph Rewriting to Natural Language Processing

This may be used as follows:
� �

add_node(g, 'W4', 'the')
add_node(g, 'W5', 'fool')
add_edge(g, 'W3', 'obj', 'W5')
add_edge(g, 'W5', 'det', 'W4')
� �

to construct the dependency structure of the sentence "the child plays the fool":

Let us end with the segmentation of a sentence into words. This is

represented as a flat graph, connecting words in their order; we add an edge,

'SUC', between each word and its successor. Thus, for the sentence "She
takes a glass", we obtain:

The following solution integrates the NLTK segmenter:
� �

import nltk
word_list = nltk.word_tokenize("She takes a glass")
word_graph = dict()
for i in range(len(word_list)):

add_node(word_graph , 'W%s' % i, word_list[i])
for i in range(len(word_list) - 1):

add_edge(word_graph , 'W%s' % i, 'SUC', 'W%s' % (i + 1))
word_graph
� �

{'W3': ('glass ', []), 'W1': ('takes ', [('SUC', 'W2')]),
'W2': ('a', [('SUC', 'W3')]), 'W0': ('She', [('SUC',
'W1')])}

Readers may wish to practice using the two exercises as follows.

EXERCISE 1.1.– Finish constructing the following flat graph so that there is a
'SUC*' edge between each word and one of its distant successors. For
example, the chain "She takes a glass" will be transformed as follows:

Programming with Graphs 5

EXERCISE 1.2.– Write a function to compute a graph in which all of the edges
have been reversed. For example, we go from the dependency structure of "the

child plays the fool" to:

1.2. Feature structures

So far, node labels have been limited to their phonological form, i.e. a string

of characters. Richer forms of structure, namely feature structures, may be

required. Once again, we shall use a dictionary:
� �

fs_plays = {'phon' : 'plays ', 'cat' : 'V'}
� �

The fs_plays dictionary designates a feature structure with two features,

'phon' and 'cat', with respective values 'plays' and 'V'. To find the

category 'cat' of the feature structure fs_plays, we apply:
� �

fs_plays['cat']
� �

V

Let us reconstruct our initial sentence, taking account of feature structures:
� �

g = dict()
add_node(g, 'W1', {'phon' : 'the', 'cat' : 'DET'})
add_node(g, 'W2', {'phon' : 'child ', 'cat' : 'N'})
add_node(g, 'W3', {'phon' : 'plays ', 'cat' : 'V'})
add_node(g, 'W4', {'phon' : 'the', 'cat' : 'DET'})
add_node(g, 'W5', {'phon' : 'fool', 'cat' : 'N'})
add_edge(g, 'W2', 'det', 'W1')
add_edge(g, 'W3', 'suj', 'W2')
add_edge(g, 'W3', 'obj', 'W5')
add_edge(g, 'W5', 'det', 'W4')
� �

6 Application of Graph Rewriting to Natural Language Processing

The corresponding graph representation3 is:

The “Part Of Speech” (POS) labeling found in NLTK4 may also be used to

construct a richer graph. The following solution shows how this labeling may

be integrated in the form of a dictionary.
� �

import nltk
word_list = nltk.word_tokenize("She takes a glass")
tag_list = nltk.pos_tag(word_list)
feat_list = [{'phon':n[0], 'cat':n[1]} for n in tag_list]
t_graph = {'W%s' % i : (feat_list[i], [])

for i in range(len(tag_list))}
for i in range(len(tag_list)-1):

add_edge(t_graph , 'W%s' % i, 'SUC', 'W%s' % (i+1))
t_graph
� �
{'W3': ({'phon': 'glass ', 'cat': 'NN'}, []), 'W1': ({'phon'

:
'takes ', 'cat': 'VBZ'}, [('SUC', 'W2')]), 'W2': ({'phon':
'a', 'cat': 'DT'}, [('SUC', 'W3')]), 'W0': ({'phon': 'She',
'cat': 'PRP'}, [('SUC', 'W1')])}

1.3. Information searches

To find the label or feature structure of a node, we use:
� �

g['W4'][0]
� �
{'phon': 'the', 'cat': 'DET'}

or the function:
� �

def get_label(g, u):
return g[u][0]

� �

3 The feature names phon and cat are not shown, as these are always present in applications.

Other features are noted, for example num=sing.

4 The PennTreeBank tagset is used by default in NLTK.

