Advances in Oil and Gas Exploration & Production

Clastic Hydrocarbon Reservoir Sedimentology

Advances in Oil and Gas Exploration & Production

Series editor

Rudy Swennen, Department of Earth and Environmental Sciences, K.U. Leuven, Heverlee, Belgium

The book series Advances in Oil and Gas Exploration & Production publishes scientific monographs on a broad range of topics concerning geophysical and geological research on conventional and unconventional oil and gas systems, and approaching those topics from both an exploration and a production standpoint. The series is intended to form a diverse library of reference works by describing the current state of research on selected themes, such as certain techniques used in the petroleum geoscience businesss or regional aspects. All books in the series are written and edited by leading experts actively engaged in the respective field.

The Advances in Oil and Gas Exploration & Production series includes both single and multi-authored books, as well as edited volumes. The Series Editor, Dr. Rudy Swennen (KU Leuven, Belgium), is currently accepting proposals and a proposal form can be obtained from our representative at Springer, Dr. Alexis Vizcaino (Alexis.Vizcaino@springer.com).

More information about this series at http://www.springer.com/series/15228

Xinghe Yu · Shengli Li Shunli Li

Clastic Hydrocarbon Reservoir Sedimentology

Xinghe Yu China University of Geosciences Beijing China

Shengli Li China University of Geosciences Beijing China Shunli Li China University of Geosciences Beijing China

 ISSN 2509-372X
 ISSN 2509-3738
 (electronic)

 Advances in Oil and Gas Exploration & Production
 ISBN 978-3-319-70334-3
 ISBN 978-3-319-70335-0
 (eBook)

 https://doi.org/10.1007/978-3-319-70335-0

Library of Congress Control Number: 2018938677

Translated from Xinghe Yu. 2006. Clastic Hydrocarbon Reservoir Sedimentology (Second Edition). Beijing: Petroleum Industry Press. ISBN 978-7-5021-6399-0

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

It has been over five years since the first publication of *Clastic Petroleum Reservoir Sedimentology* in September 2002, and since this time, it has been used as a textbook for graduates majoring in geology in universities and colleges where recognition and good reputation have been attributed to teachers and students, particularly at the China University of Geosciences (CUG) (Beijing). The book has also been used as a text in over 20 domestic professional training courses related to petroleum reservoir and sedimentology, particularly at three giant petroleum companies (PetroChina, Sinopec, and CNOOC), which reflects the considerable attention accorded to it by professionals in industrial and academic circles. With the development of hydrocarbon exploration, a larger number of petroleum geological scientists consider that this book not only carries the function of theoretical direction for scientific research, but also has significant practical value in the practice of hydrocarbon exploration. Hence, there is a great expectation for the second edition.

For the first edition, some readers pointed out the shortcomings therein and proposed certain amendments, which were valued by me. Owing to new academic accumulation in reservoir sedimentology and the advancement of scientific research in recent years, my intention was to make systematical modification and supplementation to the book, and thus had the idea of publishing the second edition. For the above-mentioned reasons, I completed the second edition in 200 days by further systematizing the original manuscript, referring to lecture notes, scientific achievements, published articles, and new academic points of view over recent years, and by making word-by-word modifications of the first edition and adding new chapters. This second edition is now about to be published, and I would thus like to cite the same famous Chinese proverb, as in the foreword to the first edition, "Human life is limited, but knowledge is limitless." Since I am restricted in view and shallow in understanding, this book will thus be used in the way of throwing out a minnow to catch a whale.

There are thirteen chapters in this book, covering many aspects of clastic petroleum reservoir sedimentology. This book, in addition to the latest trends in domestic and overseas reservoir studies, and along with basic knowledge, such as essential reservoir characteristics, diagenesis, and reservoir heterogeneity, also covers depositional features and reservoir characteristics of all types of depositional systems (alluvial fans, rivers, lakes, delta, shorelands, and deepwater) for clastic rock. Furthermore, this book presents detailed discussions on the classification of each system, geologic features, sedimentary sequences, identification marks, facies models, and corresponding reservoir characteristics. Moreover, in consideration of the fast development of sequence stratigraphy in China, Chapter 4, "Theory and Methods for Studying Clastic Sequence Stratigraphy," has been added.

In the process of re-publication, I would like to thank the people who participated in the compilation and modification, as follows: Assoc. Prof. Li Shengli (Chaps. 4 and 11), Dr. Zheng Xiujuan (Chap. 1), Master Bai Zhenhua (Chaps. 4 and 5), and Master Fu Ju (Chap. 6); in addition, people who participated in error checks, supplementation, and data compilation include Zou Dejiang, Yang Fan, Ren Xiaojun, Chang Shuyun, Zhan Lufeng, Zhang Shuping, Li Mei, Sun Xiangcan, Yuan Kun, and Gao Dongchen; in addition, Dr. Zheng Xiujuan, who fully proofread the text from the first edition. I would like to express my gratitude to Profs. Qiu Yi'nan, Wang Defa, Zheng Junmao, Tian Shicheng, and other experts and scholars who proposed excellent suggestions for amendment. It should be noted that the second edition of this book is generously subsidized by the Graduate School of CUG (Beijing) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20050491001). I would also like to mention my wife Miss Hu Yihong and family members who have been involved in the compilation of this book. Many thanks for their great patience, passion, and complete support during the long period of compilation and modification.

Beijing, China December 2016 Xinghe Yu Shengli Li Shunli Li

Contents

1	Intro	duction .		1
	1.1	Format	ion and Development of Modern	
		Sedime	entology	1
		1.1.1	Emerging Phase (1830–1894)	2
		1.1.2	Initial Formation Phase (1894–1931)	2
		1.1.3	Professional Study Phase (1932–1950)	4
	1.2	Develo	pment and Features of Modern	
		Sedime	entology	4
		1.2.1	Basic Maturity Phase (1950s–1960s)	4
		1.2.2	Summary and Improvement Phase (1970s)	7
		1.2.3	Theory Sublimation Phase (1980s)	9
		1.2.4	Discipline Permeation Phase (1990s)	13
	1.3	Related	l Concepts, Connotations, and Development	
		of Sedi	mentology	15
		1.3.1	Sedimentary Environment	15
		1.3.2	Formation and Development of Concept	
			of Depositional Facies and Depositional	
			System.	16
		1.3.3	Depositional Model	17
	Refer	ences	*	18
•	Farm	atten D	walaumant and Tuanda in Decompain	
2	FORM	auon, De		21
		Concer	t Natura and Task of Deservoir	21
	2.1	Concep	or, Nature, and Task of Reservoir	21
			Diag of Decembra in Serdimentals and	21
		2.1.1	Rise of Reservoir Sedimentology	21
		2.1.2		22
	2.2	2.1.3	Tasks, Objectives, and Research Content	25
	2.2	Dynam	lics, Trends, and Reservoir Sedimentology	25
		Researc	ch Methods	25
		2.2.1	Status and Challenges Involved in Reservoir	
			Research	25
		2.2.2	History and Prospects of Petroleum	
			Reservoir Research	30
		2.2.3	Thoughts and Methods for Reservoir	
			Sedimentology Research	34

	2.3	Trends in Domestic and International Petroleum		
		Reservo	bir Research	36
		2.3.1	Evolution from Macroscopic to Microscopic	26
			Research in Reservoir Sedimentology	50
		2.3.2	Qualitative to Quantitative Evolution of	20
			Reservoir Description and Prediction	38
		2.3.3	Progress from Theoretical Sedimentology to	
			Applied Sedimentology and Construction of	
			Reservoir Characterization Technology	39
		2.3.4	Synergetic Research and Development of	
			Reservoir Characterization from Single	
			Discipline to Multi-discipline	40
		2.3.5	Emergence of Various Simulation Methods and Software	42
		236	Current Hot Issues in Petroleum Reservoir	12
		2.5.0	Research	44
	Refere	nces		47
	Refere			.,
3	Basic	Features	of Clastic Reservoirs	49
	3.1	Petrolog	gic Features of Clastic Reservoirs	49
		3.1.1	Rock Type	49
		3.1.2	Fabric Features.	51
		3.1.3	Support Form	51
	3.2	Reserve	bir Properties	51
		3.2.1	Porosity of Reservoir Rock	51
		3.2.2	Permeability of Reservoir Rock	60
		3.2.3	Fluid Saturation	63
		3.2.4	Reservoir Concept and Classification	64
	3.3	Reserve	bir Architecture	65
		3.3.1	Sectional Geometric Feature of	
			Sand Bodies	66
		3.3.2	Planar Geometry of Sand Bodies	67
		3.3.3	Mechanism for Controlling Plane Modality	
			of Depositional System	69
		3.3.4	Geometrical Superimposition and Genesis of	
			Sand Bodies	70
		3.3.5	Reservoir Structure or Model	72
	Refere	ences		76
4	Theor	w and M	ethods for Studving Clastic Sequence	
•	Strati	oranhv	enous for studying cluste sequence	77
	4 1	Formati	ion and Development of Sequence	,,
		Stratior	anhy	77
		4 1 1	Emergence and Establishment of the	,,
		1.1.1	Sequence Concept (1948–1976)	77
		412	Formation and Development of Seismic	, ,
		7.1.2	Stratigraphy (1977_1986)	78
		413	Formation and Development of Sequence	70
		т.1.5	Stratigraphy (from 1987 to Date)	70
			Sumgraphy (nom 1907 to Date)	19

	4.1.4	Different Schools of Sequence				
		Stratigraphy	80			
	4.1.5	Terrestrial Clastic Sequence Stratigraphy	80			
4.2	Theory S	ystem of Marine Clastic Sequence				
	Stratigran	bhy	81			
	4.2.1	Sequence and Its Formation System	81			
	4.2.2	Boundary System in Sequence				
		Stratigraphy	89			
	4.2.3	Concept System of Sequence Genesis				
		Control	92			
4.3	Theoretic	al System of Terrestrial Clastic Sequence	-			
	Stratigrar		93			
	4 3 1	Characteristics of Lake Level Change	94			
	432	Main Controlling Factors of Continental				
	1.5.2	Sequence Stratigraphy	97			
	433	Classification of Continental Sequence	71			
	4.5.5	Stratigraphic Level	98			
	131	Types of Continental Sequence Stratigraphic	70			
	4.3.4	Models	00			
4.4	Theoretic	Models	77			
4.4	Stratigran	by	101			
		Concept Introduction	101			
	4.4.1	Theoretical Pasis	101			
15	4.4.2 Continon	tel Clastia Sequence Stratigraphic Framework	104			
4.5	Continental Clastic Sequence Stratigraphic Framework					
	Research		110			
	4.5.1	Basic Data for Continental Clastic Sequence	110			
	1.5.0	Stratigraphic Research	110			
	4.5.2	Research Principle	111			
	4.5.3	General Research Process	111			
	4.5.4	Identification of Continental Clastic				
		Sequence Boundary	111			
	4.5.5	Establishment of Field Outcrop Sequence				
		Stratigraphic Framework	118			
	4.5.6	Establishment of Seismic Sequence				
		Framework	119			
	4.5.7	Establishment of High-resolution Drilling				
		(Logging) Sequence Stratigraphic				
		Framework	121			
4.6	Applicati	on of Clastic Sequence Stratigraphy in				
	Hydrocar	bon Exploration	130			
	4.6.1	High-Resolution Sequence Stratum and				
		Isochronal Stratigraphic Framework	133			
	4.6.2	High-Resolution Sequence Stratum and				
		Hydrocarbon Exploration	133			
	4.6.3	Sequence-Controlled Reservoir Modeling in				
		Oilfield Development	136			
Referen	ices	- 	138			

Resear	rch Metł	nods of Sedimentary Facies	
and S	edimenta	ition	141
5.1	Concep	t of Fluid Dynamics and Analysis on	
	Hydrod	ynamic Conditions	141
	5.1.1	Concept of Fluid Dynamics	141
	5.1.2	Main Types of Current and Sediment	
		Characteristics	144
	5.1.3	Flume Experiment-Bedding Formation	
		Mechanism.	149
5.2	Grain S	Size Distribution Characteristics and	
	Enviror	mental Significance	153
	5.2.1	Main Grain Size Analysis Methods	153
	5.2.2	Grain Size Distribution Curve and Grain Size	
		Parameter	154
	5.2.3	Grain Size Parameter Scatter Diagram	162
5.3	Charact	teristics and Identification of Sedimentary	
	Structur	res	168
	5.3.1	Basic Concept	168
	5.3.2	Sedimentary Structure of Mechanical	
		Genesis	170
	5.3.3	Sedimentary Structure with Chemogenic	
		Characteristics	188
	5.3.4	Sedimentary Structures with Biogenic	
		Characteristics	188
5.4	Core D	escription and Lithofacies Division	189
	5.4.1	Core Description Method and Principle	193
5.5	Identifie	cation and Modeling of Electrofacies	199
	5.5.1	Overview	199
	5.5.2	Geological Significance of Conventional	
		Electric Well-Logging Curve Features	202
	5.5.3	Depositional Facies Research by Diplog	
		and Imaging Logging.	205
	5.5.4	Steps in Electrofacies Research	211
5.6	Seismic	Facies Analysis	217
	5.6.1	Basic Concept	217
	5.6.2	Seismic Facies Markers and Main	
	01012	Characteristics	218
	563	Seismic Facies Analysis	229
5.7	Sedime	ntary Process of Clastic Rocks	232
017	571	Vertical Accretion	233
	5.7.2	Progradation	233
	5.7.3	Lateral Accretion	235
	2	Overbank/Sheet Flow Accretion	235
	574	VIVELDALING THEEL FLOW ALL FLOOD	/. •
	5.7.4 5.7.5	Sieve Accretion	235
	5.7.4 5.7.5 5.7.6	Sieve Accretion	235 238 230
	5.7.4 5.7.5 5.7.6 5.7.7	Sieve Accretion	233 238 239 239
	5.7.4 5.7.5 5.7.6 5.7.7 5.7.8	Sieve Accretion	233 238 239 239 239

6	Reser	voir Diag	genesis	243		
	6.1	Researc	h Methods and Contents	243		
		6.1.1	Petromineralogy Method	244		
		6.1.2	Regular Rock Slice Research	244		
		6.1.3	Experimental Testing Method	254		
	6.2	Diagene	esis and Porosity Evolution	259		
		6.2.1	Basic Elements of Diagenesis	259		
		6.2.2	Main Diagenesis	263		
		6.2.3	Formation Mechanism of Secondary Pores	273		
	6.3	Dissolu	tion of Carbonic Acid to Minerals	279		
		6.3.1	Factors Influencing Secondary Pore			
			Formation	280		
	64	Divisio	n of Diagenetic Stage and Evolutionary	-00		
	0	Model		281		
		6.4.1	Terms and Definitions	281		
		642	Basis for Diagenetic Stage Division	281		
		643	Marks of Various Diagenetic Stages	282		
		644	Study of Diagenetic Sequence	293		
		645	Establishment of Diagenetic Evolution	275		
		0.1.5	Model in Lacustrine Basin	294		
	Refer	ences		296		
_	_					
7	Reser	voir Hete	rogeneity	299		
	7.1	Concep	t and Influencing Factors	299		
		7.1.1	Concept	299		
		7.1.2	Main Influencing Factors	300		
	7.2	Classifi	cation of Reservoir Heterogeneity	301		
		7.2.1	Pettijohn Classification.	301		
		7.2.2	Weber Classification	301		
		7.2.3	Haldorsen Classification	303		
		7.2.4	Classification by Qiu Yi'nan et al	304		
	7.3	Researc	h and Quantitative Description			
		of Hete	rogeneity	304		
		7.3.1	Microscopic Heterogeneity	305		
		7.3.2	Interlayer Heterogeneity	310		
		7.3.3	Plane Heterogeneity	311		
		7.3.4	Microscopic Heterogeneity	315		
	7.4	Reservo	Reservoir Heterogeneity and Hydrocarbon			
		Recover	ry Ratio	318		
		7.4.1	Influence of Macroscopic Heterogeneity on			
			Waterflooding Development.	318		
		7.4.2	Relationship Between Microscopic			
			Heterogeneity and Hydrocarbon			
			Recovery Ratio	321		
	Refer	ences		323		
8	Alluv	ial Fan D	enositional System	325		
0	8 1	Basic C	haracteristics and Classification	523		
	0.1	of Allu	vial Fans	325		
		811	Basic Features	325		
		0.1.1		545		

	8.1.2	Classification of Alluvial Fans	328
	8.1.3	Elements Controlling the Geometric Form	
		of the Fan Shape	329
	8.1.4	Relationship between Area of an Alluvial	
		Fan and Drainage Basin	331
8.2	Sedime	entation of Alluvial Fans. Sediment Types.	
	and Fe	atures	332
	8 2 1	Debris Flow Deposit	332
	822	Sheet Flood Deposit	332
	822	Channel Deposit	222
	0.2.3	Sigue Sediment	222
0 2	0.2.4 Sedimen		554
8.3	Sealme	interventionment and Sedimentary Sequence	225
	OF Allu		333
	8.3.1	Sedimentary Environment	333
	8.3.2	Vertical Sedimentary Sequence	336
8.4	Identifi	cation of Alluvial Fan Sedimentation	339
	8.4.1	Sedimentary Marks for Identifying	
		Alluvial Fans	339
	8.4.2	Features of Alluvial Fans on Seismic	
		Sections	341
	8.4.3	Electric Well-logging Curve Features	
		for Each Part of an Alluvial Fan	342
8.5	Geome	try and Reservoir Features of Alluvial Fans	343
	8.5.1	Geometry of the Fan Body	343
	8.5.2	Complex Microscopic Pore Structure	343
	8.5.3	Lithology and Physical Characteristics	344
	8.5.4	Reservoir Heterogeneous Characteristics	346
Refer	ences		351
-			0.50
Fluvi	al Deposi		353
9.1	River C		353
	9.1.1	Early Classification Schemes	354
	9.1.2	Classification by A. D. Miall	357
	9.1.3	River Structure-Generic Classification	364
	9.1.4	Lithofacies Association Classification	365
9.2	Basic F	Features of Different River Patterns.	371
	9.2.1	Straight River.	371
	9.2.2	Braided River.	372
	9.2.3	Meandering River	375
	9.2.4	Anastomosing River	379
9.3	Sedime	entary Environment and Sedimentary	
	Sequen	ce	381
	931	Environment Type and Model of	001
	2.5.1	Meandering Rivers	382
	027	Vertical Sedimentary Sequence of a	502
	9.3.4	Maandaring Diver	200
	022	Environment Tune and Model of	309
	9.3.3	Environment Type and Wodel of	201
	0.2.4		391
	9.3.4	Environment Type and Model of	10-
		Anastomosing Rivers	403

9

		9.3.5	Sedimentary Sequence and Model of	
			Anastomosing Rivers	404
	9.4	Identific	ation of Fluvial Deposit	405
		9.4.1	Based on Geological Features	405
		9.4.2	Based on Logging Features	407
	9.5	Reservo	ir Characteristics and Prediction	
		of Fluvi	al System	409
		9.5.1	General Characteristics	409
		9.5.2	Heterogeneity Features	409
		9.5.3	Meandering River Reservoirs	411
	Referen	nces		414
10	Loouet	rino Don	ositional System	417
10		Classifie	usition and Basic Characteristics of Lakes	417
	10.1		By Structure	417
		10.1.1	By Solucities	417
		10.1.2	By Geographic Desition	423
	10.2	10.1.5	By Geographic Position	427
	10.2	Classific	visition	427
			Clastic Lake	427
		10.2.1	Salt Lake and Dieve	420
	10.2	10.2.2 Vortical	Salt Lake and Flaya	433
	10.5	Modele	Sedimentary Sequence of Lakes and Evolution	125
			Vortical Sadimantary Saguanaa	433
		10.5.1	Evolution Model	433
	10.4	10.5.2 Identifie	etion of Leoustring Denosit	450
	10.4		Rock Type	433
		10.4.1	Rock Type	434
		10.4.2	Biologia Eossila	4.54
		10.4.5	Biologic Possils	455
		10.4.4	Vartical Sedimentary Characteristics	455
		10.4.5	Distribution Panga and Danosition	455
		10.4.0	Thickness	156
	10.5	Types of	f Lagustring Sand Rodies	450
	TU.J Defere	Types 0		450
	Kultu	lices		439
11	Deltaio	: Deposit	ional System	461
	11.1	Basic Cl	haracteristics, Classification, and Models	
		of Delta	S	462
		11.1.1	Basic Characteristics	462
		11.1.2	Delta Classification	462
		11.1.3	Depositional Model and Characteristics	468
	11.2	Hydrody	namic Conditions and Sedimentation	
		Characte	eristics of Delta Building	470
		11.2.1	River Mouth Process	470
		11.2.2	Hydrodynamic Conditions	472
		11.2.3	Deposition Rate	476
		11.2.4	Sedimentation of Delta	477
	11.3	Formatio	on, Development, and Abandonment	
		of Delta	s	478

	11.3.1	Main Factors Affecting the Formation and	
		Development of the Delta	478
	11.3.2	Correlations Between Fluvial Process,	
		Marine Process, and Delta Form	487
	11.3.3	Abandonment of Delta Lobe, Bifurcation	
		of Distributary Channel, and Formation	
		of Distributary Mouth Bar	488
11.4	Division	of Deltaic Sedimentary Environment	
	and Faci	es	492
	11.4.1	Delta Plain	492
	1142	Delta Front	496
	11.4.2	Prodelta	498
11.5	Sedimen	tation Mechanism of Different Deltas	499
11.5	11 5 1	Sedimentary Mechanism of Fluvial-	177
	11.5.1	Dominated Deltas	499
	1152	Sedimentary Mechanism of Wave-	777
	11.5.2	Dominated Delta	500
	1153	Sedimentary Mechanism of Tide-Dominated	500
	11.5.5	Delta	504
11.6	Sequenc	a Characteristics of Daltas	504
11.0		Sequence Characteristics of Eluvial	504
	11.0.1	Dominated Daltas	507
	1162	Sequence Characteristics of Waya/Tida	507
	11.0.2	Dominated Daltas	500
	1162	Vertical Segments Comparison of Dates	514
117	11.0.3 Ear Dal	vertical Sequence Comparison of Deltas	514
11./	Fan Den		514
	11./.1	Conditions for Formation and	515
	11 7 0	Development	515
	11.7.2	Main Characteristics and Sedimentary Facies	
	11 7 0		516
	11.7.3	Type and Sedimentary Characteristics of	
		Lacustrine Fan Deltas	528
11.8	Braid De		535
	11.8.1	Differences Among Braid Deltas, Normal	
		Fan Deltas, and Fan Deltas	536
	11.8.2	Sedimentary Facies Belt and Depositional	
		Model of a Braid Delta	538
11.9	Delta Id	entification	544
	11.9.1	Geology	545
	11.9.2	Logging	547
	11.9.3	Seismology	548
11.10	Characte	pristics and Examples of Delta Sand Body	
	Reservoi	rs	552
	11.10.1	Sand Body Reservoir Characteristics	
		of a Delta	552
	11.10.2	Delta Structure Features	555
	11.10.3	Model Feature and Main Structure of a	
		Continental Delta Sand Body Reservoir	558
	11.10.4	Research Examples of Delta Reservoirs	559

	11.11	Relations Between Delta Deposit and Petroleum 560		
		11.11.1	Source Bed	565
		11.11.2	Reservoir	565
		11.11.3	Seal Bed	565
		11.11.4	Trap	565
		11.11.5	Comparison Between Source-Reservoir	
			and Delta Trap	566
	Referen	nces	• • • • • • • • • • • • • • • • • • • •	570
10	C 1	C + (C	Land and Marilla Dama different Constant	570
12	Sandy	Coast (S	nore) and Nertic Depositional System	5/3
	12.1	Dasic Ci	Const	572
			Coale in Fraterie	575
		12.1.1	Geological Features	574
	10.0	12.1.2		5/5
	12.2	Hydrody	namic Conditions of Coasts	576
		12.2.1	Wave Action and Sediment Transportation	576
		12.2.2	Tidal Action and Sediment Transport	579
	12.3	Non-bar	rier Coastal Environment	582
		12.3.1	Geomorphic Feature	582
		12.3.2	Sedimentary Characteristics of the Main	
			Sub-environments	583
		12.3.3	Sedimentary Sequence and Model	
			of a Non-barrier Coast	584
	12.4	Barrier (Coastal Environment	589
		12.4.1	Tidal Flat Environment	590
		12.4.2	Barrier–Lagoon Environment	594
	12.5	Identifica	ation Marks of Terrigenous Clastic Coasts	602
		12.5.1	Sedimentary Marks of Terrigenous Clastic	
			Coasts	602
		12.5.2	Features of Electric Well-Logging Curves	605
		12.5.3	Seismic Feature	606
	12.6	Reservoi	r Features of Coastal Environments	606
		12.6.1	Transgressive Barrier Sand Body	606
		12.6.2	Sand-Rich Coastal Plain Sand Body	606
		12.6.3	Barrier Bar Sand Body	608
		12.6.4	Tidal Channel Sand Body	608
	12.7	Neritic I	Deposition and Vertical Sequence	000
	12.7	Characte	ristics	608
		1271	Transitional Zone Deposition	610
		12.7.1 12.7.2	Neritic Shelf Deposition	610
		12.7.2	Sedimentary Sequence and Model of the	010
		12.7.5	Neritic Shelf	611
	12.0	Storm C	wrant and Sadimantary Characteristics	615
	12.0		Storm Action and Sodimentory Easture	013
		12.8.1	Storm Action and Sedimentary Feature	(15
		10.0.0	Characteristics	013
		12.8.2	Characteristics of Tempestite	619
		12.8.3	Classification of Tempestites	626

	12.8.4	Similarities and Differences Between	
		Turbidity Current and Flood Flow	
		Deposition	63
Refere	nces		63
Deep-V	Water De	positional System	63
13.1	Deep W	ater Sedimentation	63
	13.1.1	Deep Water Action Mechanism	
		and Concept.	63
	13.1.2	Determinants and Architectural Elements	
		of Deep-Water Depositional Systems	63
13.2	Sedimer	t Gravity Flow	6.
	13.2.1	Characteristics of Sediment Gravity Flow	6.
	13.2.2	Classification of Gravity Flow	64
	13.2.3	Basic Sedimentary Characteristics	
		of Different Gravity Flow	64
13.3	Formatio	on Mechanism of Sediment Gravity Flow	6
	13.3.1	Gravity Flow Formation Conditions	6
	13.3.2	Formation Phase	6
	13.3.3	Formation Mechanism and Environment	6
	13.3.4	Turbidity Current Depositional System	6
13.4	Bouma	Sequence and Features	6
	13.4.1	Section A (Bottom Graded Bedding)	6
	13.4.2	Section B (Lower Parallel Laminae)	6
	13.4.3	Section C (Current Ripple Laminae)	6
	13.4.4	Section D (Upper Parallel Laminae)	6
	13.4.5	Section E (Mudstone Section)	6
13.5	Gravity	Flow Sedimentary Facies and Facies Model	6
	13.5.1	Flysch Facies Model	6
	13.5.2	Fan Facies Model	6
	13.5.3	Trough Facies Model	6
13.6	Deep-Se	ea Contourites	6
	13.6.1	Concept and Definition	6
	13.6.2	Classification and Characteristics	6
	13.6.3	Vertical Sedimentary Sequence and	
		Depositional Model	6
	13.6.4	Sedimentary Characteristics and	
		Identification Marks	6
		Interrolationships Detwoon Contour Current	
	13.6.5	interretationships between Contour Current	
	13.6.5	and Deep-Water Turbidity Deposit	6
	13.6.5 13.6.6	and Deep-Water Turbidity Deposit Petroleum Geology Significance of	68
	13.6.5 13.6.6	and Deep-Water Turbidity Deposit Petroleum Geology Significance of Contourite Drift	68 68

Introduction

With continuing global hydrocarbon exploration and development, improved descriptions of hydrocarbon reservoirs, and associated studies, the appearance (spatial distribution) and internal properties (physical property) of petroleum reservoirs have become the focus of hydrocarbon exploration and developmental research. However, the external shape (configuration) and distribution law of the internal properties within petroleum reservoirs under different geological conditions are related to their formation environment and associated conditions, and sedimentary petroleum reservoirs that are formed by particular depositional systems have differing distribution laws and heterogeneity characteristics. It is thus necessary to analyze the geological processes and sedimentary environment of the various types of reservoirs. Diagenesis also imposes a remarkable influence on the internal properties of reservoirs. Therefore, the overall characteristics of a petroleum reservoir depend on three factors affecting heterogeneity, the "stage of tectonic evolution, diversity of the sedimentary environment, and the complexity of diagenesis," and gaining a basic knowledge of these areas and associated theory gives a solid foundation in reservoir sedimentology.

As a key branch of sedimentology, reservoir sedimentology is categorized as applied sedimentology. It is therefore necessary to conduct an overall review of the formation and development of sedimentology, as doing so provides a basis for the analysis of historical studies and associated developmental trends of reservoir sedimentology. Sedimentary environment and sedimentary facies are key components of sedimentology, and are the basis for lithofacies restoration and palaeogeography, research on the distribution of depositional systems, explanations of seismic facies, the building of isochronous sequence stratigraphic frameworks, basin analysis, and prediction of the distribution of favorable reservoirs. Therefore, to enable study in these areas, it is firstly necessary to define the concept and connotations of a sedimentary environment and facies, and to gain an understanding of the role of the facies model, as well as similarities and differences between reservoir models.

1.1 Formation and Development of Modern Sedimentology

The definition of sedimentology was first put forward by H. A. Wadell in 1932 as, "A science for sediments research." In 1978, Friedman and Sanders then gave a complete definition of the sedimentology research field in the *Principles of Sedimentology* as, "A science for research on sediments, sedimentation process, and sedimentary rock and sedimentary environment." Furthermore, in 1980 the *Glossary of Geology* defined sedimentology as, "A science of research on sediment resources, description and classification of sedimentary rocks and research on the formation process of sediments."

X. Yu et al., *Clastic Hydrocarbon Reservoir Sedimentology*, Advances in Oil and Gas Exploration & Production, https://doi.org/10.1007/978-3-319-70335-0_1

From the initial proposal of its concept to the present day, sedimentology has been constantly developed, enriched, and improved through the tireless efforts of global sedimentologists. In the beginning, actualism (i.e., uniformitarianism) contributed to the development of the subject, when, the formally published Principles of Geology (1837), Lyell proposed that, "Ongoing geologic processes in modern times once occurred with the essentially same intensities or ways during the whole geological period, and ancient geological events may be explained by phenomena and roles observed today." This definition was then encapsulated by A. Geikie in 1905, with the phrase, "The Present is the Key to the Past." Since then, the intersection and infiltration of different subjects, such as interinfiltrations between sedimentology and oceanography, physics, chemistry, aerology, hydrology, plate tectonics, petroleum geology, paleontology, geophysical logging, and seismic stratigraphy have played a considerable role in its development. Lately, the introduction of new technologies, such as the invention, use, and popularization of the polarizing microscope, X diffractometer, scanning electron microscope, energy disperse spectroscope (EDS), mass spectrometer, computed tomography (CT), nanometer (NM), and computers, have accelerated the development of sedimentology.

It can be said that sedimentology has mainly transitioned through two historical development periods, early modern times and modern times, and its development in early modern times can be further divided into three phases, as follows.

1.1.1 Emerging Phase (1830–1894)

Most of the research conducted during this phase focused on paleobiological strata, coal, and bioherms. In 1837, Lyell published an epochmaking monograph, the *Principles of Geology*, in which he put forward the principle and method of actualism, and stated that, "The Present is the Key to the Past." This book offered guidelines for later geological scientific research. Then, in 1857, Sorby first used the polarizing microscope in rock research, and determined that, "Using all polarization means is an absolute necessity," which lifted the veil for the microscopic study of rocks. In 1884, Murray and Renard collaborated to write Deep-sea Deposits, which could be used in the classification and description of deep-sea sediments. Furthermore, in 1894, Walther wrote the Introduction to Geology as a Historical Science, and put forward the concept of a "facies sequence," namely, Walther's law (law of correlation of facies), which determined, "The principle that facies that occur in conformable vertical successions of strata also occur in laterally adjacent environments. [Only laterally adjacent and dependent facies can be vertically superimposed in the absence of a hiatus]." A limited number of monographs emerged during this period, and their enormous influence and considered academic viewpoint on sedimentology cannot be ignored, even today (Table 1.1).

1.1.2 Initial Formation Phase (1894–1931)

Due to the high demand for minerals, geological exploration evolved in line with social development. Sedimentary studies (sedimentary rocks) were historically encouraged, data accumulated, and a collection of monographs and articles (Table 1.1) were published. As early as 1881, sedimentologists began studying heavy minerals using a microscope, and thus analyze the source direction and properties of sediments. In 1913, F. H. Hatch and R. H. Rastall co-authored the book, Petrology of the Sedimentary Rocks, and in 1914, G. K. Gilbert conducted the first flume experiments with sand of different grain sizes and different flow intensities to solve problems in the use of hydraulic power to mine gold, which was an important step in hydrodynamic experiments. Following this, H. B. Milner published Sedimentary Petrography in 1922, and W. H. Twenhorel edited Treatise on Sedimentation in 1926. Also in 1922, Wentworth first determined the power of 2 as a grain size boundary for dividing clastic sediment particles, and 2 mm as the upper limit grain size of sand, thereby leading the

Phase	Year	Author	Book or Article Title	Main Viewpoint or Functions, and Significance	
Emergence	1837	C. Lyell	Principles of Geology	Proposing the principle of actualism, that "The Present is the Key to the Past"	
	1884	J. Murray et al.	Deep-sea Deposits	Beginning of classification and description of deep-sea sediments	
	1894	J. Walther	Introduction to Geology as a Historical Science (in three volumes)	Proposing Walther's law, and first use of the phrase, "comparative petrology"	
Initial formation	1905	van't Hoff	Evaporite	Proposing the viewpoint of chemical precipitation	
	1913	F. H. Hatch et al.	Petrology of the Sedimentary Rocks	Sedimentary petrology starts to serve as an independent branch of geoscience	
	1922	H. B. Milner	Sedimentary Petrography	separated from stratigraphy. Later, research begins to be conducted on flume experiments: the division of grain size	
	1922	C. K. Wentworth	A Scale of Grade and Class Terms for Clastic Sediments	tends to become scientifically quantitative, and more attention is paid to research on sedimentation	
	1925	Twenhorel	Sedimentation	-	
	1926	W. H. Twenhorel	Treatise on Sedimentation		
	1929	Lucien Cayeux	Sedimentary Rocks of France	-	
	1931	Society for Sedimentary Geology (SEPM) in United States	First publication of Journal of Sedimentary Petrology	Marking the emergence of sedimentology as an independent discipline	
Professional studies	1932	Nalivkin (Д. В. Наивки)	Study of Facies	Sedimentary petrology trends veer from qualitative research to become	
	1932	М. С. Svecovs. (М. С. Швецов)	Petrology of the Sedimentary Rocks	semi-quantitative, and greater importance is attached to research on sedimentation and sediment formation mechanisms	
	1939	P. D. Trask	Recent Marine Sediments		
	1939	Twenhorel	Principles of Sedimentation		
	1940	M- C- Pustovalov. (М- С- вечов)	Petrology of the Sedimentary Rocks		
	1949	F. J. Pettijohn	Sedimentary Rocks (3rd edition, revised and published in 1975)	A significant milestone in the maturity of sedimentary petrology	
	1950	P. D. Trask	Applied Sedimentation	Proposing the concept and quantification method of sorting coefficients	

Table 1.1 Representative works in the development of sedimentology before 1950 and associated contribution

classification of sandstones and conglomerates to the field of science quantization. Subsequently, in 1929, Lucien Cayeux from France published the first volume of *Sedimentary Rocks of France*, focusing on siliceous rocks. Thereafter in 1931, SEPM began publication of the *Journal of Sedimentary Petrology*. The abovementioned works show the development of sedimentary petrology into an independent discipline that is separate from stratigraphy.

1.1.3 Professional Study Phase (1932–1950)

With the application of new technologies in the field of sedimentology, including differential thermal analysis and X-ray diffraction, research on sedimentary rocks tended to become semi-quantitative. A series of monographs and articles (Table 1.1) on sedimentary petrology were successively published and released during this period. In 1932, Nalivkin (Д. В. Наивкин) published the Study of Facies; and in 1932 and 1940, M. C. Svecovs. (М.С. Швецов) and М-С-Pustovalov (М- С- вечов) respectively published the Petrology of the Sedimentary Rocks. P. In 1934, Krumbein conducted quantitative research on a sedimentary environment, applied the roundness and shapes of clasts, and determined three main factors-boundary conditions, grains, and energy within a depositional system-and took the lead in applying statistics to sedimentology. D. Trask published Recent Marine Sediments in 1939 and Applied Sedimentation in 1950. In 1940, M. T. Halbouty researched the provenance, marine transgression and regression, change of an ancient shoreline, and the stratigraphic pinch out and petroleum prospect of the Gulf of Mexico. Furthermore, in 1949, Pettijohn wrote Sedimentary Rocks, which marked the mature growth stage of sedimentary petrology. Consequently, the development of early modern sedimentology focused mainly on the discussion of the formation mechanism of various conventional sedimentary rocks from the angle of a single sedimentary petrology discipline.

1.2 Development and Features of Modern Sedimentology

Since the end of World War II and the subsequent start of a global cold war, all countries have attached great importance to, and increased investment in, the development of science and technology. Due to the above stimulation and the influence of new demands on the scientific community, accelerated development has occurred within all disciplines. The division of labor of science itself tends to be elaborate, without exception of sedimentology development. It is precisely because of the rapid development of modern science that leaps have been made in the progress of sedimentology every 10 years, and as a subject it experienced four obvious development stages between the mid-20th century to the early 21st century. These are presented as follows:

1.2.1 Basic Maturity Phase (1950s–1960s)

After World War II, countries globally accelerated construction of their economies (particularly European countries and the USA), and the global industrial revolution entered a new period. Owing to demands for mineral resources in accordance with industrial development, sedimentology gradually transformed from a basic pure scientific theory into an applied science, and became increasingly connected with production practice, particularly in oil and gas exploration. After 1950, there was significant development in terms of research scale and direction with respect to modern sediments, and a number of monographs and literature (Table 1.2) were published and released. Representative works include From Sedimentary Petrology to Sedimentology, published by D. J. Doeglas in 1951; Petrology of Sedimentary Rocks, released by A. Vatan in 1954; Primary Structures in Some Recent Sediments, released by E. D. Mckee in 1957; Paleocurrents and Basin Analysis, co-authored by F. J. Pettijohn and P. E. Potter in 1963, Atlas and Glossary of Primary Sedimentary Structures, published in 1964; and Use of Vertical Profile in Environmental Reconstruction, proposed by Visher in 1965. During the same period, H. N. Fisk investigated the modern Mississippi Delta in detail, and the study of a Bahamas beach by L. V. Illing represented the first detailed research on modern carbonate deposition, which

Year	Author	Book or Article Title	Main Viewpoints or Functions, and Significance
1950	P. H. Kuenen et al.	<i>Turbidity Currents as a Cause of Graded</i> <i>Bedding</i>	A new chapter of research on turbidity current was opened
1951	D. J. Doeglas	From Sedimentary Petrology to Sedimentology	Sedimentology was at a new stage during the development of sedimentary petrology and a new field of geoscience was developed
1955	Ye Lianjun	Sedimentary Conditions of Manganese Deposit in China	A huge impact was made in relation to research on sedimentary deposits in China
1955	Liu Hongyun	Paleogeographic Map of China	Compilation of the first complete palaeogeographic atlas in China
1957	E. D. Mckee	Primary Structures in Some Recent Sediments	Emphasis on primary structure features formed under different sedimentary environments
1957	F. J. Pettijohn	Sedimentary Rocks	A significant mark in the maturation of sedimentary petrology, and an historical summary of sedimentary petrology over the last half century
1959	R. L. Folk	Practical Petrographic Classification of Limestones	Marking a new stage in research of carbonate rock
1961	A. Fi. Bouma et al.	Turbidite	Proposition of the famous Bouma Sequence
1961	Chiefly edited by Zeng Yunfu and Liu Baojun	Sedimentary Facies and Paleogeography	Ending the primary use of work of international scholars in domestic teaching colleges in China, and an
1962	Dai Donglin	Petrology of the Sedimentary Rocks	attempt to use textbooks in sedimentary
1962	Chiefly edited by Liu Baojun	Research Method of Sedimentary Rocks	periology which by domestic sensities
1962	Chiefly edited by Wu Chongjun	Petrology of the Sedimentary Rocks	
1963	P. E. Potter et al.	Paleocurrents and Basin Analysis	A new lead is taken in conducting research on sedimentology by considering the basin as a whole
1964	Ye Zhizheng, Meng Xianghua and He Qixiang	Texture-generic Classification of Carbonate Rock	Marking the beginning of the modern concept of carbonate rock research in China
1967	W. L. Fisher et al.	Depositional systems in Wilcox Group (Eocene) of Texas and Their Relationship to Occurrence of Oil and Gas on Gulf Shores	Proposition of the concept and connotations of a depositional system

Table 1.2 Representative works during the basic maturity phase and associated contribution (1951–1969)

thereby played a significant role in guiding scientists to recognize carbonate rock from a new perspective. The progress made during this phase covers modeling applications, and genetic interpretation and graphic methods, particularly in relation to the subjects listed below; thus the development of sedimentology was of epoch-making significance.

1.2.1.1 Knowledge of Turbidity Current and Tractional Currents

It was initially believed that tractional currents were the main hydrodynamic process involved in the formation mechanism of clastic rocks. However, a new chapter of research on turbidity currents developed following the publication of Turbidity Currents as a Cause of Graded Bedding by Kuenen and Migiorini in 1950. After this publication, research on the formation and distribution of turbidity currents earned widespread attention in the field of geoscience, which resulted in a revolution in the field of sedimentology. Thereafter, under the guidance of Kuenen, A. H. Bouma conducted research on turbidity currents and flysch formation, proposed features of turbidity sediments, and built the famous "Bouma Sequence" in 1961. He then edited Turbidite together with A. Bronwer, forming two characteristic theories between the 1950s and 1960s: The Biochemical Origin of Carbonate Rock and The "Bouma Sequence" of a Turbidity Current.

1.2.1.2 Role of Flume Experiments in Sedimentary Structure Interpretation

In the early 1960s, American geologists applied the concept of hydraulics in a flume experiment, and from their experimental results determined the hydraulic conditions for the formation of bedding and ripples (Simons and Richardson 1962). Their experiments determined that the bedform changing sequence of a nonviscous bed when flow velocity is increased and depth reduced is that of no movement \rightarrow lower flat bed \rightarrow sand ripwaves \rightarrow dune \rightarrow transition ples \rightarrow sand area \rightarrow upper flat bed \rightarrow antidunes \rightarrow scour pit and chute. The change in sandy bedform was well explained for various sedimentary structures, where the mechanism and hydrodynamic conditions were formed by tabular, trough cross bedding, and parallel bedding.

1.2.1.3 Grain Size Analysis for the Interpretation of Hydrodynamic Conditions

R. Passega and G. S. Visher put forward a C-M diagram and cumulative probability graph explained by a tractional current in 1964 and 1969, respectively, which analyze and explain a sedimentary environment based on hydrodynamic conditions by virtue of grain size quantification; thus, genetic analysis became more scientific and feasible.

1.2.1.4 New Phase for Research on Carbonate Rocks

In 1959, R. L. Folk introduced a genetic point of view for clastic rocks in relation to the classification of carbonate rocks. He also classified and explained clastic rocks, and revealed the identity of carbonate rocks and terrigenous clastic rocks in terms of their formation processes and mechanisms. This marked a new phase in research methods and associated knowledge of carbonate rocks.

1.2.1.5 Construction of Vertical Sedimentary Sequence or Facies Model

In 1965, Visher constructed 13 facies models from the perspective of vertical sedimentary sequences. These included four river models, four regression models, two transgression models, one delta model, one deep-sea model, and one lake facies model. The construction of a vertical model formed the foundation for the recognition of sedimentary facies, especially for the specific operation of analyzing sedimentary facies from field and downhole data.

1.2.2 Summary and Improvement Phase (1970s)

In the early 1970s, A. V. Carozzi translated the book Carbonate Rocks (written in French by Caye) into English for wider circulation, and in 1971, R. G. C. Bathurst published Carbonate Sedimentary and their Diagenesis. These achievements represented the mature phase in the study of carbonate rocks. During this period, a large number of summary monographs on sedimentology emerged (Table 1.3), for example Morgan edited Deltaic sedimentation: Modern and Ancient in 1970, R. C. Selley completed Ancient Sedimentary Environments, J. R. Allen wrote Physical Process of Sedimentation, and R. M. Garrels and F. T. Mackenzie coauthored Evolution of Sedimentary Rocks. In 1972, Blatt and Middleton co-authored Origin of Sedimentary Rocks, which summarized various mechanisms for the formation of sedimentary rocks, achievements and quoted research from hydromechanics. In the same year, Sand and Sandstone, coauthored by F. J. Pettijohn, P. E. Potter, and R. Siever, was formally published: this book summarizes important achievements made during research on clastic rocks previously determined at a seminar in Canada in 1964, and holds that sandstone can play an important role in tracing stratum history. In 1973, Reineck from Germany and Singh from Indian co-authored and published Depositional Sedimentary Environments with Reference to Terrigenous Clastics from the perspective of sedimentary structure research. In 1976. R. G. Walker from Canada compiled Facies Models, and R. C. Selley rewrote An Introduction to Sedimentology (2nd Edition) (Selley 1976). In the late 1970s, the most noteworthy achievement is that of Sedimentary Environments and Facies, which was chiefly edited by H. G. Reading in 1978, and Principles of Sedimentology published by G. M. Friedman and J. L. Sanders, which systematically summarizes geologic features and the formation mechanisms of various sedimentary environments, thereby reflecting the highest level of sedimentology research at that time.

The above works comprehensively upgraded and summarized the theory of sedimentology to an authoritative stage, particularly in relation to clastic rocks, thereby laying a firm foundation for further developments in sedimentology. At this point in time, Chinese scholars mainly learned and applied new theories and technologies obtained from overseas, and universities began writing trial textbooks on the Petrology of Sedimentary Rocks and Sedimentary Environments and Facies, thus guiding college students in China within a discipline originally consisting of scattered knowledge towards one with systematic study. The author began to learn the science of sedimentology under the guidance of these works. It is worth mentioning that some universities in China (for example, Beijing Graduate School of Wuhan Geological College, and Chengdu College of Geology), together with production departments, conducted research on the sedimentary environment of sedimentary minerals and petroleum resources, as well as the genesis of minerals, and published a number of papers and monographs on continental deposition in our country, thereby opening a new page in the development of sedimentology in China.

To conclude, the general features during this period are as follows: ① extensive research on identifying marks of sedimentary facies was conducted, and facies models were constructed for various sedimentary environments to enhance the operability of sedimentology research; ② research on sedimentary facies had an obvious evolutionary viewpoint; namely, analyzing the changes in depositional facies from the perspective of evolution; ③ facies analysis within global sedimentary basins was initiated; ④ knowledge of gravity flow was incorporated in the interpretation and classification of a particle supported mechanism; and (5) the theory of sedimentology was applied in hydrocarbon exploration and development.

In the 1960s–1970s, when the petroleum industry faced a large transition, reservoir sedimentology as a new science emerged at the right moment to better explain the formation and evolution of petroleum reservoirs. It used the

				(-,
Year	Author	Book or Article title	Main viewpoints or functions, and significance	Remarks
1970	S. J. Pieson	Geologic Well Log Analysis	Applied well-logging to research on oildom sedimentology for the first time	
1970	R. C. Selley	Ancient Sedimentary Environments	Defined the relationship between environment and facies, and systematically introduced the geologic features of various sedimentary environments	2nd edition in 1976; 3rd edition in 1985
1970	J. R. Allen	Physical Process of Sedimentation	Put forward the control of sedimentary processes and sediment distribution, and a mutual relation between "deposition rate" and "settlement rate"	
1971	R. G. C. Bathurst	Carbonate Sediments and Their Diagenesis	Incorporated diagenesis as the main research content in relation to carbonate rock, thereby bringing associated research to maturity	
1972	H. Blatt et al.	Origin of Sedimentary Rocks	Summarized various formation mechanisms of sedimentary rocks, and quoted achievements in hydromechanics	2nd edition in 1980
1972	F. J. Pettijohn et al.	Sand and Sandstone	Proposed the viewpoint that "sandstone is able to play an important role in retrospecting stratum history"	2nd edition in 1987
1973	H. E. Reineck et al.	Depositional Sedimentary Environments with Reference to Terrigenous Clastics	Elucidated the geologic features of various terrigenous clastic sedimentary environments based on sedimentary structure, in order to lay a theoretical foundation for recognition of sedimentary facies	2nd edition in 1980
1974	K. J. Hsu et al.	Pelagic Sediments: On Land and Under the Sea	Provided a new understanding of deep-sea sediments	
1976	R. G. Walker	Facies Models	Expounded facies models formed by various sedimentary environments to give research on sedimentology had an analogous example	2nd edition in 1986; 3rd edition in 1992
1977	P. R. Vail	Seismic Stratigraphy	First to combine seismic data and sedimentary facies analysis	
1976	R. C. Selley	An Introduction to Sedimentology	Systematically expounded hydrodynamic conditions and methods of sediment transport and sedimentation mechanisms under different environments	2nd edition in 1982
1978	H. G. Reading	Sedimentary Environments and Facies	These two monumental works gave an overall summary of the theory of	2nd edition in 1986; 3rd edition in 1996
1978	G. M. Friedman et al.	Principles of Sedimentology	sedimentology, and reflected the highest, most current, level of research on sedimentology. They are thus classic works on sedimentology	
1973	Sun Shu	Studies on The Phosphate Rocks in Western Szechuan	First to apply the theory of sedimentology in analysis of the distribution of	
1978	Li Jiliang et al.	On the Features of Turbidite Sequences in Some Regions of China	sedimentary minerals. Published reports and monographs satisfied sedimentary features of continental facies in China, which opened a new page for the development of sedimentology in China	
1978	He Qixiang	Sedimentary Rocks and Depositional Ore Deposits		
1980	Liu Baoli	Petrology of the Sedimentary Rocks		

Table 1.3 Representative works during the summary and improvement phases associated contribution (1970–1980)

basic theory and method of sedimentology, and involved the prediction of macroscopic and microscopic characteristics of reservoirs in the search for hydrocarbon reservoirs.

1.2.3 Theory Sublimation Phase (1980s)

This was a comprehensive, fast, and vigorous development period for global sedimentology, and also a rapid developmental stage for sedimentology in China (Table 1.4). During this period, many new viewpoints and theories were expounded, and knowledge was gained particularly in relation to the genesis of special sediments, mainly in the following areas.

1.2.3.1 Storm Deposition

In 1975, J. C. Harms discovered hummocky cross bedding, which is iconic bedding from a storm event. Although hummocky cross bedding is found extensively at a continental shelf near the shore (Duke 1985), it was also discovered in estuaries, tidal flats, and delta-marginal environments (J. Bourgeois 1980), and even as deep-water turbidite. It was therefore evident that hummocky cross bedding and other various representative signs of storm events needed to be comprehensively distinguished. Also during the 1980s, R. H. Dott (1988) put forward the concept of episodic sedimentation, and pointed out that there may be an average status or balanced state in some environments, and also a deviation from the average status. Using the deposition of a

Table 1.4 Main Representative works during theory sublimation phase and associated contribution (1981–1990)

Year	Author	Book or Article title	Main viewpoints or functions, and significance	
1983	W. E. Galloway	Terrigenous Clastic Depositional Systems	Gradually led theory and methods used in depositional system analysis to a systematic stage, and to practical applications	
1983	R. A. Davis	Depositional Systems		
1984	A. D. Miall	Principles of Sedimentary Basin Analysis	Presented basin analysis as an integration of a number of studies such as stratigraphy, structural geology, and sedimentology	
1985	A. D. Miail	Architectural-Elements Analysis: A new Method of Facies Analysis Applied to Fluvial Deposits	Proposed new concepts for architectural element and bounding surface hierarchy, divided rivers into 12 categories, and conducted quantitative research on the heterogeneity of fluvial reservoirs at different levels, with the aim of making research on sedimentology more operable	
1988	A. D. Miall	Reservoir Heterogeneities in Fluvial Sandstones		
1988	W. Nemec et al.	Fan Deltas	Put forward a genetic classification method for a delta structure	
1988	P. R. Vail	Handbook of Sequence Stratigraphy	Marks the birth of sequence stratigraphy, highlights an isochronal stratigraphic framework, and determines four effects that affect the sequence (i.e., tectonic movement, sea level eustacy, sediment supply, and climate change)	
1988	J. B. Sagree	Basics of Sequence Stratigraphy		
1988	J. C. Wagoner	SEPM Special Publication in Sequence Stratigraphy		

(continued)

Year	Author	Book or Article title	Main viewpoints or functions, and significance
1981	Institute of Geology and Geophysics (CAS)	Petrology of the Sedimentary Rocks	Based on high start, sedimentology in China applied advanced overseas theories to systematically summarize and upgrade
1981	Lithofacies Palaeogeography Committee of China	Initial issue of <i>Lithofacies</i> Palaeogeography	domestic geologic features, thereby forming a theory of sedimentology using Chinese characteristics
1981– 1982	Sun Shu et al.	Evolution of Henan-Shaanxi Sedimentary Basin of the Middle And Late Proterozoic Age	-
1982	Wang Yinghua et al.	Early Paleozoic Carbonate Petrology in Northern China Platform	-
1983	Sedimentology Society of China	Initial issue of Acta Sedimentologica Sinica	-
1983	Ye Lianjun	Sedimentary Associations of the Northern China Platform	-
1985	Wang Hongzhen	Paleogeographic Atlas of China	-
1986	Wu Chongjun	Sedimentation Types of Lake Sand Body	-
1986	Zeng Yunfu, Xia Wenjie	Petrology of the Sedimentary Rocks	-
1986	Sun Yongchuan, Li Huisheng	Clastic Sedimentary Facies and Sedimentary Environment	-
1986	He Qixiang et al.	Reef facies Deposition in Xisha Islands	-
1987	Sun Shu et al.	Sedimentation of Extensional Basins in Platform Regions of China	-
1987	He Jingyu, Meng Xianghua	Sedimentary Rock, Sedimentary Facies Model and Construction	-
1987	Yu Suyu, He Jingyu	Petrology of the Sedimentary Rocks	-
1987	Ye Lianjun	Current Status and Development Trends of Sedimentology	-
1988	Ye Lianjun, Sun Shu et al.	Advances and Prospects of Sedimentology in China	
1989	Sha Qing'an	Deposition of Holocene Beach in Dafu Bay, Pingtan Island, Fujian and Diagenesis Thereof	
1989	Zhu Xia	Sedimentary Basins in China	The first volume of World Sedimentary Basins
1989	Zheng Junmao, Pang Ming	Research on Diagenesis of Clastic Reservoirs	Systematically introduced methods for studying diagenesis of clastic reservoirs

Table 1.4 (continued)

nearshore wind-wave zone as an example, positive deviation may cause storm deposition, while negative deviation may cause non-deposition or a hard bottom.

1.2.3.2 Flysch Formation

As early as 1978, Friedman and Sanders in *Principles of Sedimentology* defined flysch as a product specific to marine strata. Prior to this, it had been considered that flysch was only produced in deep-sea troughs, and that steep slopes and turbidity currents were thought to be necessary and sufficient conditions for its formation. In the 1980s, it became acknowledged that flysch may be produced in other environments (such as in basins on continental slopes or continental margins).

1.2.3.3 Basin Analysis and Research on Sedimentary System

In accordance with a geotectonic environment, Sun Shu, a Chinese scholar, conducted systematic research on the clastic sedimentary environment and lithofacies paleogeography of sedimentary basins in Henan and Shaanxi in 1981, and summarized their formation and evolutionary history to discuss the zonation of sedimentary iron deposits.

In 1984, A. D. Midi determined basin analysis to be an integration of stratigraphy, structural geology, and sedimentology. He also answered paleogeographic evolutionary problems relating to basins, and published the *Principles of Sedimentary Basin Analysis*. Furthermore, Galloway and Hobday published *Terrigenous Clastic Depositional Systems* in 1983, and R. A. Davis published *Depositional Systems* in the same year (Davis 1983). In 1982, the editor-in-chief, Scholle and Spearing, compiled the publication, *Sandstone Depositional Environments*, which contained a large number of colorful pictures. In addition, the theory of plate tectonics became one of the theoretical foundations of sedimentation.

Studying the sedimentation and evolutionary laws of different types of basins is a major topic in the understanding of relations between tectonics and sedimentation. Construction of a depositional basin model involves analysis of the depositional system of different types of basins, and integrated research into the sedimentary filling pattern and basin evolutionary process. At present, theory and methods for the analysis of depositional systems have moved into a systematic stage.

1.2.3.4 Impact of Diagenesis on Porosity

Following further progress and developments made in hydrocarbon exploration, and the constant introduction of new technologies and new methods, there was a breakthrough in research into the diagenesis of clastic rocks in the late 1970s. Among such breakthroughs, was the discovery that a large amount of secondary porosity is formed by diagenesis in sandstone. Representative articles include, Diagenesis in Sandstones by Blatt (1979), Diagenesis and Pore Evolution of Sandstones (Sand Layers) by Zhu Guohua (1982), The Chemistry of Secondary Porosity by Surdam et al. (1984), Application of Organic/Inorganic Diagenesis to Porosity Prediction by L. J. Crossey (1986), and Diagenesis of Clastic Reservoirs by Zheng Junmao (1989). All these mark the mature stage of diagenesis research and theory.

1.2.3.5 Hierarchical Analysis and Formation of Configuration Concept

At the Second International Symposium on Rivers in 1985, Miall put forward the concept of "Configuration or Architecture Elements," and "Bounding Surface Hierarchy" for the hierarchical classification of rivers, and divided river sediments into 8 basic architectural elements. He also proposed 12 river depositional models, which guided research on the depositional system into a new historical period. Three features or ideas in this respect were as follows: highlighting the hierarchical concept; embodying the three-dimensional (3D) structure of sediments and internal lithofacies; and obtaining research on rivers using a simple morphological classification stage. These are of historical significance in the formation and development of reservoir sedimentology, and on improvements in

sedimentology, and have been of evident guidance and reference to date. In particular, these concepts have been extensively applied in high water-cut oilfields when conducting research on intercalation during efficient development.

1.2.3.6 Further Developments in Geotectonic Sedimentology

Along with the systematization of classifying sedimentary basins according to plate tectonics (Dickinson 1979; Ye Lianjun 1983; Xu Jinghua 1985; Klein 1987; Zhu Xia 1989), scholars around the world have conducted systematic research on the sedimentation of different sedimentary basins, and discussed the formation, development, and evolution of sedimentary basins in various geotectonic backgrounds based on the fundamental theories of continental dynamics, plate tectonics, and sedimentology. Furthermore, from the perspective of construction and evolution, scholars have focused on discussing the distribution law of the sedimentary system within the basin, on the basis of sedimentary control, in order to predict the distribution of sedimentary minerals.

1.2.3.7 Delta Structure—Genetic Classification

In the publication, *Fan Deltas*, which was chiefly edited by Nemec and Steel in 1988, Orton and Mcpherson (1988) further divided a megaclast delta into a fan delta and a braided river delta, and applied a structure in the form of a genetic classification method to enable the scientific partition of a delta depositional system. In this respect, great leaps were made in delta research.

1.2.3.8 Rise of Sequence Stratigraphy

Vail et al. published an essay on seismic stratigraphy with the American Association of Petroleum Geologists (AAPG) in 1977. The essay proposed two major viewpoints, the first of which was that a sequence consists of mutually integrated and genesis-related strata, of which the top and bottom margins are the plane of unconformity and corresponding conformity surface. The second viewpoint was that the genesis of a sequence is basically or completely controlled by changes in global sea level. Following this, in 1988, as editor-in-chief, C. K. Wilgas compiled a special issue called *Integrated Research Method* for Sea-level Changes–Sequence Stratigraphy. In addition, P. R. Vail and J. B. Sagree chiefly edited the Handbook of Sequence Stratigraphy and Basics of Sequence Stratigraphy, where it was determined that a stratigraphic sequence is produced by the interaction of geological factors such as tectonic movement, global sea level eustasy, sedimentation, and climate change. A new science, known as sequence stratigraphy, was born with the advent of these works.

In relation to the knowledge contained in the above texts, a large number of famous international scholars revised their monographs and textbooks, and published second or third editions (Table 1.3), such as Sedimentary Environments and Facies (2nd edition in 1986) chiefly edited by Reading, Facies Models (2nd edition in 1986) edited by R. G. Walker, Depositional Sedimentary Environments with Reference to Terrigenous Clastics (2nd edition in 1980) edited by H. E. Reineck, An Introduction to Sedimentology (2nd edition in 1982), and Ancient Sedimentary Environments (2nd edition in 1978, and 3rd edition in 1985) edited by Selley, Sandstone Depositional Model (2nd edition in 1978 and 3rd edition in 1985) edited by Klein, Sand and Sandstone (2nd edition in 1987) edited by Pettijohn, and Origin of Sedimentary Rocks (2nd edition in 1980) edited by H. Blatt. The extra sections in these re-publications mostly include basin analysis, the principle of sequence stratigraphy, and research on depositional systems, which makes these works more systematic and theoretical.

Geoscientific research in China at the time was mainly "Following Thought, Imitable Research," and was focused on studying related knowledge from developed countries within Europe and the USA. Therefore, scientists were able to single out principal contradictions, and as a result a number of texts were compiled by systematically summarizing and upgrading geologic features by applying advanced theories from overseas. For example, Chongjun (1986) conducted systematic research on а Mesozoic-Cenozoic lake basin sand body in China, and determined that the distribution and characteristics of the lake basin's sand body were controlled by tectonic activity, terrain, provenance, and climatic condition. In addition, he supported a link between the determination of sand body types and the zonal division of depositional facies within a lake basin, and advocated that a sandy lake basin could be divided into five categories: a turbidity sand body, delta sand body, fan delta sand body, submarine alluvial fan sand body, and a beach bar sand body; the distribution, formation and characteristics of which were then systematically summarized. During this period, a large number of representative monographs and textbooks (Table 1.4) were published: Petrology of the Sedimentary Rocks (1980), chiefly edited by Baoban; Paleogeographic Atlas of China (1985), chiefly edited by Wang Hongzhen; Lithofacies Paleogeography Basis and Working Method (1986), chiefly edited by Liu Baoban and Zeng Yunfu; Petrology of the Sedimentary Rocks, chiefly edited by Zeng Yunfu and Xia Wenjie; Clastic Sedimentary Facies and Sedimentary Environment (1985), chiefly edited by Yongchuan, Huisheng; and Petrology of Sedimentary Rocks, chiefly (1987) edited by Yu Suyu and He Jingyu.

1.2.4 Discipline Permeation Phase (1990s)

Both the depth and width of research on sedimentology expanded in line with the introduction of new technologies and approaches. Rapid developments in seismic technology and integrated electric well-logging interpretation technology opened a new and wider approach towards research into sedimentology. Previous studies had mostly focused on the analysis of one-dimensional or two-dimensional sections, and it was therefore necessary to introduce a new concept of 3D space to apply the new approaches. Between the late 1980s and early 1990s, research on depositional systems entered a true 3D space era through the use of 3D seismic data, and promoted the rapid development of the graphic workstation.

New technologies and approaches were also reflected in the development of new instruments, equipment, and tools, such as the isotope assay, cathode luminescence, X-ray diffraction, scanning electron microscope (SEM), electronic probe, paleomagnetism, paramagnetic resonance, automated imager, and remote sensing technology, all of which have played an important role in research to the present day.

China began conducting research on continental reservoir sedimentology in the early 1970s. By the late 1980s, reservoir sedimentology had entered a new stage by virtue of implementation of "China Petroleum Reservoir Research" by the former CNPC, which was headed by Qiu Yinan, and a series of research reports and monographs were published in relation to this project. With almost 30 years of practice, the future of reservoir sedimentology based on Chinese characteristics and research methods was summarized by Qiu Yinan (1992) as, "The main task of reservoir sedimentology is to acquire abundant quantitative geological knowledge to set up a continental reservoir geologic model using an outcrop survey." In the 1990s, reservoir sedimentology had already become a key subdiscipline of sedimentology.

The science of sedimentology had penetrated a number of other disciplines and embarked on a journey at a higher level. To be specific, a large number of classic monographs, and those concerning sequence stratigraphy, were revised and re-published (Table 1.5). The most representative works include Sea-level Changes: An Integrated Approach, edited by C. K. Wilgas from the USA in 1991; Facies Models: Response to Sea Level Change, re-published by Roger G. Walker and Noel P. James from Canada in 1992; and Depositional System (2nd edition), republished by R. A. Davis from the USA in 1992. In addition, Einsele from Germany edited and published Sedimentary Basins: Evolution, Facies and Sediments Budget, and later revised it as a