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Preface
This book was originally compiled for a course I taught at the University of

Rochester in the fall of 1991, and is intended to give advanced graduate students
in statistics an introduction to Edgeworth and saddlepoint approximations, and
related techniques. Many other authors have also written monographs on this sub-
ject, and so this work is narrowly focused on two areas not recently discussed in
theoretical text books. These areas are, first, a rigorous consideration of Edgeworth
and saddlepoint expansion limit theorems, and second, a survey of the more recent
developments in the field.

In presenting expansion limit theorems I have drawn heavily on notation of
McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth
expansions. For saddlepoint notation and results I relied most heavily on the many
papers of Daniels, and a review paper by Reid (1988). Throughout this book I have
tried to maintain consistent notation and to present theorems in such a way as to
make a few theoretical results useful in as many contexts as possible. This was not
only in order to present as many results with as few proofs as possible, but more
importantly to show the interconnections between the various facets of asymptotic
theory.

Special attention is paid to regularity conditions. The reasons they are needed
and the parts they play in the proofs are both highlighted.

Computational tools are presented to help in the derivation and manipulation
of these expansions. The final chapter contains input for calculating many of the
results here in Mathematica (R), a symbolic algebra and calculus program. Math-
ematica is a registered trademark of Wolfram Research, Inc.

This book is organized as follows. First, the notions of asymptotics and distri-
bution approximations in general are discussed, and the present work is placed in
this context. Next, characteristic functions, the basis of all of the approximations in
this volume, are discussed. Their use in the derivation of the Edgeworth series, both
heuristically and rigorously, is presented. Saddlepoint approximations for densities
are derived from the associated Edgeworth series, and investigated. Saddlepoint
distribution function approximations are presented. Multivariate and conditional
counterparts of many of these results are presented, accompanied by a discussion
of the extent to which these results parallel univariate results and the points where
multivariate results differ. Finally, these results are applied to questions of the dis-
tribution of the maximum likelihood estimator, approximate ancillarity, Wald and
likelihood ratio testing, Bayesian methods, and resampling methods.

Much of this volume is devoted to the study of lattice distributions, because
in representing a departure from regularity conditions they represent an interesting
variation on and completion of the mathematical development of the rest of the
material, because they arise very frequently in generalized linear models for discrete
data and in nonparametric applications, and because many of my research interests
lie in this direction. In the interest of not unnecessarily burdening those who wish
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vi Preface

to avoid the additional complication of lattice distributions, I have tried to place
the lattice distribution material as late in each chapter as possible. Those who wish
may skip these sections without sacrificing much of the foundation for the rest of
the book, but I recommend this material as both useful and inherently interesting.

Prerequisites and Notation

A knowledge of undergraduate real and complex analysis, on the level of Rudin
(1976), Chapters 1-9, and Bak and Newman (1996), Chapters 1-12, is presupposed
in the text. In particular, an understanding of continuity, differentiation, and inte-
gration in the senses of Riemann and Riemann-Stieltjes, is needed, as is an under-
standing of basic limit theorems for these integrals. An understanding of complex
contour integration is also required. Lebesgue integration and integration of differ-
ential forms are not required. A background in matrix algebra of comparable depth
is also presupposed, but will not be required as frequently.

As far as is possible, statistical parameters will be denoted by Greek characters.
In general, upper-case Latin characters will in general refer to random variables,
lower-case Latin characters will refer to potential observed values for the corre-
sponding random variables, and bold face will in general denote vector or matrix
quantities. Lower case Gothic characters refer to integer constants, and capital
Gothic characters refer to sets. For example R, C, and Z represent the sets of real
numbers, complex numbers, and integers, respectively.

I have been unable to follow these conventions entirely consistently; for instance,
densities and cumulative distribution functions are generally denoted by f and F ,
and cumulant generating functions are generally denoted by K. Additionally, esti-
mates of parameter values under various assumptions are denoted by the parameter
value with a hat or tilde accent, and random estimators are denoted by upper case
counterparts. For instance, ω will represent the signed root of the likelihood ratio,
ω̂ will represent its fitted value, and Ω̂ will represent the random variable of which
w is an observed value.

Unless stated otherwise, all integrals are Riemann-Stieltjes integrals, and the
limiting operation implied by non-absolutely integrable improper integrals are given
explicitly. The symbols � and � are functions returning the real and imaginary
parts of complex numbers respectively. The Gamma function is denoted by Γ(x),
and ψ is the di–gamma function (d/dx) log(Γ(x)). All logarithms are with respect
to the natural base.
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1

Asymptotics in General

Many authors have examined the use of asymptotic methods in statistics. Ser-
fling (1980) investigates applications of probability limit theorems for distributions
of random variables, including theorems concerning convergence almost surely, to
many questions in applied statistics. Le Cam (1969) treats asymptotics from a
decision-theoretic viewpoint. Barndorff–Nielsen and Cox (1989) present many ap-
plications of the density and distribution function approximations to be described
below in a heuristic manner. Hall (1992) investigates Edgeworth series with a par-
ticular view towards applications to the bootstrap. Field and Ronchetti (1990)
treat series expansion techniques in a manner that most closely parallels this work;
I have included more detailed proofs and discussion of regularity conditions, and a
survey of the use of Barndorff–Nielsen’s formula. Their work covers many aspects
of robustness and estimating equations not included here. Skovgaard (1990) ex-
plores characteristics of models making them amenable to asymptotic techniques,
and derives the concept of an analytic statistical model. He also investigates con-
vergence along series indexed by more general measures of information than sample
size. Jensen (1995) presents a range of topics similar to that presented here, but
with a different flavor.

The question of convergence of various approximations to distribution functions
and densities will be considered with as much attention to regularity conditions and
rigor as possible. Bhattacharya and Rao (1976) and Bhattacharya and Denker
(1990) rigorously treat multivariate Edgeworth series; the present work begins with
the univariate case as a pedagogical tool. Valuable recent review articles include
those of Reid (1996) and Skovgaard (1989).
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2 1. Asymptotics in General

1.1. Probabilistic Notions

Serfling (1980) describes various kinds of probabilistic limits often used in statistics.
Probabilists generally model random variables as functions of an unobserved sample
point ω lying in some sample space Ω, with a measure P [·] assigning to each set in a
certain class F of subsets of Ω a probability between 0 and 1. Generally, sequences
of related random variables are modeled as a sequence of functions of ω, and a
large part of asymptotic theory is concerned with describing the behavior of such
sequences.

The strongest types of convergence are convergence almost surely, and conver-
gence in mean. Random variables Xn are said to converge almost surely, or converge
with probability 1, to Y if P [Xn(ω) → Y (ω)] = 1. This notion of convergence cru-
cially involves the sample point ω, and concerns behavior of the functions Xn at ω
for all n, or at least for all n sufficiently large, simultaneously. For instance, the
strong law of large numbers implies that if Xn is a Binomial random variable repre-
senting the number of successes in n independent trials, with each trial resulting in a
success with probability π and a failure with probability 1−π, then Xn/n converges
almost surely to π. Using this result, however, requires conceptually constructing
a sample space Ω on which all of these random variables exist simultaneously. The
natural sample space for Xn is Ωn = {0, 1}n consisting of sequences of zeros and
ones of length n. In this case Xn(ω) =

∑
i ωi, and probabilities are defined by as-

signing each ω ∈ Ωn the probability 2−n. The common sample space Ω must be
constructed as a sort of infinite product of the Ωn; this expanded sample space then
bears little relation to the simple Ωn describing the specific experiment considered.

Random variables Xn are said to converge to Y in r-th mean, for some r ∈ (0, ∞)
if E [|Xn(ω) − Y (ω)|r] → 0. This type of convergence is less concerned with the
simultaneous behavior of the random variables for each ω and more concerned about
the overall relationship between Xn(ω) and Y (ω) globally on Ω for fixed n. The
relative values of Xn and Y for a fixed ω play the central role.

A weaker form of convergence is convergence in probability. The variables Xn

converge to Y in probability, if for every ε > 0, then limn→∞ P [|Xn − Y | < ε] = 1.
As with convergence in r-th mean, convergence in probability concerns the overall
relationship between Xn(ω) and Y (ω) globally on Ω for fixed n, but in a weaker
sense.

Random variables Xn are said to converge in distribution to Y , if

lim
n→∞ P [Xn(ω) ≤ x] = P [Y (ω) ≤ x]

for all x continuity points of P [Y (ω) ≤ x]. Of these various convergence notions
convergence in distribution is the weakest, in the sense that convergence almost
surely and convergence in r-th mean both imply convergence in distribution. It is
also weakest in the sense that it relies the least heavily on the classical measure
theoretic probability notions. In the binomial example above, then, one can show
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that (Xn −nπ)/
√

nπ(1 − π) converges in distribution to a standard normal variable
Y , without having to envision, even conceptually, a probability space upon which
Y and even one of the Xn are simultaneously defined.

If Fn is the cumulative distribution function for Xn and F is the cumulative
distribution function for Y then the criterion for convergence in distribution can be
written as Fn(x) → F (x) as n → ∞ for all x at which F is continuous. Often times
the limiting distribution F is then used to approximate the distribution Fn in cases
when n is considered sufficiently large.

This course will concentrate on variants of the idea of convergence in distribu-
tion, and will involve deriving easily–calculated approximations Gn to Fn.

At this point it may be useful to introduce order notation. Suppose f and g are
two functions of a parameter, and one wishes to describe how much they differ as the
parameter approaches some limiting value. One might begin by assessing whether
the difference converges to zero or whether the differences are bounded in the limit;
a refined analysis might describe the rate at which the difference converges to zero or
diverges from zero. The notation f(n) = g(n)+o(h(n)) means (f(n)−g(n))/h(n) →
0; the notation f(n) = g(n) + O(h(n)) means (f(n) − g(n))/h(n) is bounded as n
approaches some limiting value. Usually the implied limit is as n → ∞ if n is a
discrete quantity like sample size. If n is a continuous quantity the implied limit is
often as n → 0. For example, 1+2t+ t3 = 1+2t+o(t2) as t → 0, and (n+log(n)−
1)/n2 may be described alternatively as 1/n+o(1/n) or 1/n+log(n)/n2 +O(1/n2).
As another example, the numbers a0, a1, . . . , al are the value and first l derivatives
of a function f at zero if and only if f(t) =

∑l
j=0 alt

l/l! + o(tl) as t → 0.
Probabilistic versions of this order notation also exist. For two sequences of

random variables Un and Vn defined on the same probability space, we say that
Vn = Op(Un) if for any ε > 0 there exist Mε and Nε such that P [|Vn/Un| > Mε] < ε
for n > Nε. We say that Vn = op(Un) if Vn/Un converges in probability to zero.

1.2. The Nature of Asymptotics

Wallace (1958) discusses the question of approximating a cumulative distribution
function Fn depending on an index n by a function Gn also depending on n, in
general terms. Often one estimates Fn(x) as the truncation of a nominal infinite
series, whose coefficients depend on n. That is,

Gj,n(x) =
j∑

j=0
Aj(x)aj,n, (1)

where aj,n decreases in n. In the case of sample means often aj,n = n−j/2. In
many cases, the difference between the target cumulative distribution function
and the approximation is of a size comparable to the first term neglected; that
is, |Fn(x) − Gj,n(x)| < c(x)aj+1,n, or in other words,

Fn(x) = Gj,n(x) + O(aj+1,n). (2)
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In general an expression line (1) does not imply that

Fn(x) =
∞∑

j=0
Aj(x)aj,n. (3)

Approximations of the form (1) are useful even when the infinite sum (3) does not
converge, as noted by Cramér (1925).

As an example, consider the standard normal survival function. If j is a non-
negative integer, and x > 0, then integrating by parts shows that

∫ ∞

x
φ(y)y−2j dy = −

∫ ∞

x
[−yφ(y)]

dy

y2j+1

= − (φ(y)/y2j+1)
∣∣∣∞
x

− (2j + 1)
∫ ∞

x
φ(y)

dy

y2j+2

= φ(x)/x2j+1 − (2j + 1)
∫ ∞

x
φ(y)

dy

y2j+2 .

Applying this identity recursively, for any k,

Φ̄(x) = φ(x)
k∑

j=0
x−1−2j(−1)jaj + (−1)k+1aj+1

∫ ∞

x
φ(y)

dy

y2k+2 , (4)

for aj =
{ 1 if j = 0∏j−1

i=0 (2i + 1) otherwise, for any x > 0. Then

Φ̄(
√

nx) =
φ(

√
nx)√
n

⎡
⎣ k∑

j=0
x−1−2jn−j(−1)jaj + O(n−j−1)

⎤
⎦ . (5)

Thus (5) constitutes an asymptotic expansion for Φ̄(
√

nx). Furthermore, the asso-
ciated infinite series is alternating; since the integral in (4) is positive,

Φ̄(x)
{

≤ φ(x)
∑k

j=0 x−1−2j(−1)jaj if k even
≥ φ(x)

∑k
j=0 x−1−2j(−1)jaj if k odd

. (6)

Hence

φ(x){1/x − 1/x3} ≤ Φ̄(x) ≤ φ(x){1/x − 1/x3 + 3/x5}. (7)

However, the aj increase quickly enough that when the finite sum is transformed
into an infinite series, the series does not converge for any x.

As a second example, consider Stirling’s asymptotic expansion for the Gamma
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function

exx
1
2−x Γ(x)√

2π
= 1+

x−1

12
+

x−2

288
− 139x−3

51840
− 571x−4

2488320
+

163879x−5

209018880
+

5246819x−6

75246796800
− 534703531x−7

902961561600
− 4483131259x−8

86684309913600
+

432261921612371x−9

514904800886784000
+ O

(
x−10

)
;

this is a valid asymptotic expansion as x → ∞, but fixing x and letting the number
of terms included increase to infinity eventually degrades performance (Fig. 1).

Error in Stirling’s Series as the Order of Approximation Increases
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Note the distinction between asymptotic expansions and convergence of series
like (3). The main concern in this volume is the behavior of the difference between
Fn and Gj,n as n, rather than j, increases. An asymptotic expansion, then, is a
formal series like (3) which when truncated after any number of terms j as in (1)
exhibits the behavior described by (2).



2

Characteristic Functions and the Berry–Esseen
Theorem

This chapter discusses the role of the characteristic function in describing proba-
bility distributions. Theorems allowing the underlying probability function to be
reconstructed from the characteristic function are presented. Results are also de-
rived outlining the sense in which inversion of an approximate characteristic function
leads to an approximate density or distribution function. These results are applied
to derive Berry–Esseen theorems quantifying the error incurred in such an approx-
imation. Finally, the relationship between the characteristic function and moments
and cumulants is investigated.

2.1. Moments and Cumulants and their Generating Functions

The characteristic function for a random variable X taking values in R is defined
to be

ζX(β) = E [exp(iβX)] ; (8)

ζX(β) is also known as the Fourier transform of the distribution. The characteristic
function always exists for β ∈ R, and if the density for X is symmetric then ζ(β) ∈
R for all β. It is called “characteristic” because in a sense described below it
characterizes the distribution uniquely.

Additionally, the characteristic function has properties convenient when con-
sidering transformations of random variables. First, if X1 and X2 are independent
random variables, a1, a2, and b are constants, and X = a1X1 + a2X2 + b, then

ζX(β) = E [exp(i[a1X1 + a2X2 + b]β)]
= exp(ibβ)E [exp(ia1X1β)] E [exp(ia2X2β)] = exp(ibβ)ζX1(a1β)ζX2(a2β). (9)

Hence ζX(β) =
∏n

j=1 ζXj
(ajβ) if X =

∑n
j=1 ajXj and the variables Xj are indepen-

dent, and ζX̄(β) = ζX1(β/n)n if X̄ is the mean of n independent and identically
distributed random variables Xj.

7



8 2. Characteristic Functions and the Berry–Esseen Theorem

The distribution of the random variable
∑n

j=1 Xj where aj = 1 for all j is called
the convolution of the distributions of the random variables Xj.

One can recover the moments of a distribution from its characteristic function.
By differentiating (8) l times and evaluating the result at zero, one sees that

ζ
(l)
X (0) = E

[
ilX l exp(i × 0 × X)

]
= ilE

[
X l

]
, (10)

assuming that the orders of integration and differentiation can be interchanged.
The relationship between the characteristic function and moments of the under-

lying distribution unfortunately involves i. In chapters following this one, we will
make use of a more direct generating function, the moment generating function, de-
fined to be MX(β) = E [exp(βX)] , which is (8) with the i removed. The function
MX(β), with β replaced by −β, is called the Laplace transform for the probability
distribution of X. Unlike characteristic functions, these need not be defined for any
real β 	= 0. The range of definition is convex, however, since for any x the function
exp(xβ) is convex. That is, if p ∈ (0, 1), then

MX(pγ + (1 − p)β) = E [exp((pγ + (1 − p)β)X)]

≤ E [p exp(γX) + (1 − p) exp(βX)]

= pMX(γ) + (1 − p)MX(β).

Hence if MX(β) < ∞ for any real β 	= 0, then MX(β) < ∞ for all β in an interval
Q containing 0, although 0 may lie on the boundary of Q. The function MX may
only be defined for values of β lying on one side or the other of the origin. If
MX(β) < ∞ on some open interval containing 0, then all moments are finite, and
MX has a power series expansion about 0 of the form MX(β) =

∑∞
j=0 µjβ

j/j!. The
counterpart of (10) is M(l)

X (0) = E
[
X l

]
. This will be demonstrated in §2.3. The

radius of convergence of this series is given by

R = min(sup({β : β > 0,MX(β) < ∞}, sup({−β : β < 0,MX(β) < ∞})). (11)

Proof of this claim is left as an exercise.
Furthermore, if β ∈ Q × iR, then E [|exp(βX)|] < ∞, and hence MX exists for

these β as well. Conversely, since |exp(βX)| = exp(�(β)X), then E [|exp(βX)|] <
∞ implies that �(β) ∈ Q, and β ∈ Q × iR.

A slightly more general definition of MX(β) is limR→∞
∫ R
−∞ exp(xβ)dFX(x),

when �(β) > 0, and analogously when �(β) < 0. This limit might exist for some β
for which E [|exp(βX)|] = ∞. Widder (1946) proves the following:

Lemma 2.1.1: If limR→∞
∫ R
−∞ exp(ixβ)dFX(x) exists and is finite, then β ∈ Q̄ ×

iR. Here ·̄ applied to a set denotes closure; since Q is an interval, the closure
represents the set together with its supremum and infimum.

Proof: It suffices to show that if limR→∞
∫ R
−∞ exp(xβ)dFX(x) exists and is finite

for �(β) > 0, and if γ ∈ R and γ ∈ [0,�(β)), then limR→∞
∫ R
−∞ exp(xγ)dFX(x)
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exists and is finite. To see this, let G(x) =
∫ x
−∞ exp(βy) dFX(y). Then, integrating

by parts,
∫ R
−∞ exp(xγ)dFX(x) =

∫ R
−∞ exp(x[γ − β])dG(x) = G(R) exp(R[γ − β]) +

(β −γ)
∫ R
−∞ exp(x[γ −β])G(x) dx. Since limR→∞ G(R) = MX(β) and �(γ −β) < 0,

the first term converges to zero. Furthermore, the second integral is bounded.
Q.E.D

The moment generating function will be used for two purposes below. In the
remainder of this section it will be used to define a sequence of numbers providing
a characterization of a distribution that is more useful than the moments, and in
later chapters on saddlepoint approximations, the real part of the moment gen-
erating function argument will be used to index an exponential family in which
the distribution of interest is embedded, and the imaginary part will be used to
parameterize the characteristic function of that distribution.

Normal approximations to densities and distribution functions make use of the
expectation, or first moment, and the variance, or second central moment, of the
distribution to be approximated. The Berry–Esseen theorem, to be discussed below,
which assesses the quality of this approximation involved also the third central
moment. Thus far, then, for the purposes of approximating distributions it seems
sufficient to describe the distribution in terms of its first few moments.

For reasons that will become clear later, it is desirable to use, rather than mo-
ments, an alternate collection of quantities to describe asymptotic properties of
distributions. These quantities, which can be calculated from moments, are called
cumulants, and can be defined using the power series representation for the loga-
rithm of the characteristic function. Since manipulation of logarithms of complex
numbers presents some notational complications, however, we will instead derive cu-
mulants from a real-valued function analogous to the characteristic function, called
the moment generating function. Its logarithm will be called the cumulant generat-
ing function. Much of the material on this topic can be found in McCullagh (1987),
§2.5-2.7, and Kendall, Stuart, and Ord (1987), §3.

Since MX(β) is real and positive for all β, we can define the cumulant generating
function KX(β) = log(MX(β)). Let κj be its derivative of order j at zero. If deriva-
tives of all orders exist, the formal expansion of KX about β = 0 is

∑∞
j=0 κjβ

j/j!.
Since MX(0) = 1, κ0 = 0. The coefficients κj for j > 0 are called cumulants or
semi-invariants.

These terms will be justified below. An important feature of the cumulant gen-
erating function is the simple way the cumulant generating function for an affine
transformation of independent random variables is related to the underlying cumu-
lant generating functions. Substituting β for iβ in (9), and taking logs, shows that
the cumulant generating function of an affine transformation of one variable is given
by

KaX+b(β) = KX(aβ) + bβ,

and hence if κj and λj are the cumulants of X and aX + b, λj = ajκj for j > 1
and λ1 = aκ1 + b. Thus cumulants of order two and higher are invariant under
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translation, and vary in a regular way with rescaling. This justifies the name semi-
invariant.

If X has cumulants κ = (κ1, κ2, . . .), then the cumulant of order j of (X −
κ1)/

√
κ2 is ρj = κjκ

−j/2
2 for j > 1, and 0 for j = 1. Call these quantities the

invariants. These do not change under affine transformations of X. Now consider
linear combinations of more than one variable. Choose any X and Y independent.
Then substituting β for iβ in (9), and taking logs,

KX+Y (β) = KX(β) + KY (β),

and hence if κj, λj, and νj are cumulants of X, Y , and X + Y respectively, νj =
κj + λj. Thus the cumulants “cumulate”, giving rise to the name.

If Yj are independent and identically distributed, and Z = (1/
√

n)
∑n

j=1 Yj,
then

KZ(β) = nKY (β/
√

n) =
∞∑

j=0
κjn

(2−j)/2βj/j!.

Using the fact that log(1 + z) =
∑∞

j=1(−1)j−1zj/j, convergent for |z| < 1,
one can express cumulants in terms of moments, and using exp(z) =

∑∞
j=0 zj/j!,

convergent for all z, one can express moments in terms of cumulants. These results
are tabulated in Table 1.

Table 1: Conversions between Moments and Cumulants

κ1 = µ1, µ1 = κ1,
κ2 = µ2 − µ2

1, µ2 = κ2 + κ2
1,

κ3 = µ3 − 3µ1µ2 + 2µ3
1, µ3 = κ3 + 3κ1κ2 + κ3

1,
κ4 = µ4 − 4µ1µ3 − 3µ2

2 + 12µ2µ
2
1 − 6µ4

1, µ4 = κ4 + 4κ1κ3 + 3κ2
2 + 6κ2κ

2
1 + κ4

1.

Conversion in either direction, then, involves forming linear combinations of
products of moments and cumulants, with the coefficients derived from the coef-
ficients of the moments or cumulants in the appropriate generating function, and
from the number of ways in which a particular term arises in the series exponen-
tiation or logarithm. The constants arising in these conversion relations are more
transparent in the multivariate case since the number of times symmetric terms
arise in the transformed power series is explicitly recorded. See McCullagh (1987)
for a further discussion of these transformations. Kendall, Stuart, and Ord (1987)
§3.14 give transformations between these in both directions.

One can define cumulants even when KX does not have a positive radius of
convergence, using the same conversion rules as above, or using the definition

κj = (−i)j d
j log(ζ(β))

dβj

∣∣∣∣∣
β=0

, (12)
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and some suitable definition for complex logarithms, when this derivative exists.
As we will see below, however, existence of derivatives of the characteristic function
implies the existence of the moment of the corresponding order only if that order
is even; the exercises provide a counterexample in which the first derivative of a
characteristic function exists but the first moment does not. Loosely then we will
say that moments to a certain order exist if and only if cumulants of the same order
exist.

2.2. Examples of Characteristic and Generating Functions

The following are simple examples of calculating characteristic functions.
a. The normal distribution: Recall that the standard normal density has the form

fX(x) = exp(−x2/2)/
√

2π.

Two options for presenting the corresponding characteristic function present
themselves. One might evaluate the integral

ζX(β) =
∫ ∞

−∞
exp(ixβ) exp(−x2/2)(2π)−1/2 dx

=
∫ ∞

−∞
(cos(βx) + i sin(βx)) exp(−x2/2) dx/

√
2π

=
∫ ∞

−∞
cos(βx) exp(−x2/2) dx/

√
2π.

Alternatively one might calculate moments of the random variable and then use
the power series expression for the characteristic function to construct ζX(β).
The moments may be expressed as an integral, which may be evaluated using
integration by parts to show:

µl =
{ 0 l odd

2−l/2l!/(l/2)! l even.

Since the radius of convergence is infinite,

ζX(β) =
∑

l even
(iβ)l/(2l/2(l/2)!) =

∑
l

(−β2/2)l/l! = exp(−β2/2).

The moment generating function is calculated more easily.

MX(β) =
∫ ∞

−∞
exp(βx − x2/2) dx/

√
2π

= exp(β2/2)
∫ ∞

−∞
exp(−(x − β)2/2) dx/

√
2π = exp(β2/2),

for β real. Hence M(β) exists (and is hence differentiable) for β ∈ R; exp(β2/2)
also is defined and differentiable for β ∈ R. Since these functions coincide on
a set of points converging to 0, then MX(β) = exp(β2/2) for β ∈ R (Bak and
Newman, 1996, §6.3). The set on which KX(β) exists is smaller, since the log
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function is not defined for arguments with a zero imaginary part and a non-
positive real part. For instance, since exp((π + i)2/2) = exp((π2 − 1)/2 + iπ) =
− exp((π2−1)/2), then KX(π+i) is not defined. However, on some neighborhood
of R, KX(β) = β2/2, and cumulants of order 3 and above are zero.

b. The uniform distribution on (−1/2, 1/2):

ζX(β) =
∫ 1/2

−1/2
(cos(βx) + i sin(βx)) dx

= [sin(β/2) − sin(−β/2) + i cos(−β/2) − i cos(β/2)]/β = 2 sin(β/2)/β.

Calculation of its cumulant generating function is left as an exercise.
c. The Cauchy distribution: The density fX(x) = 1/(π(1 + x2)) has the corre-

sponding characteristic function

ζX(β) = exp(−|β|), (13)

differentiable everywhere except at 0. Its derivation is left as an exercise. No
moments of order greater than or equal to one exist for this distribution, but
expectations of the absolute value of the random variable raised to positive
powers less than one do exist. Kendall, Stuart, and Ord (1987) give these as
E [|X|c] = 1/ sin((1+c)π/2) for |c| < 1. For β ∈ R such that β 	= 0, the integral

ζX(β) =
∫ ∞

−∞
exp(xβ)/(π(1 + x2)) dx

is infinite, and so the cumulant generating function does not exist.
d. The Bernoulli distribution and the binomial distribution: If X is a Bernoulli

variable taking the value 1 with probability π and the value 0 otherwise, then
its characteristic function is ζX(β) = (1 − π) + π exp(iβ), and if Yn has the
distribution of the sum of n independent such variables, its characteristic func-
tion is ζYn(β) = ((1 − π) + π exp(iβ))n. The cumulant generating function is
log((1 − π) + π exp(β)).
The Bernoulli example illustrates two points. First, this characteristic function

has a non-zero imaginary part. In the three preceding examples the distributions
were symmetric about zero, eliminating the imaginary part of the integral. This
distribution is not symmetric, and so imaginary parts do not cancel out, since,
for a fixed value of x, values of the summands or integrands in the expectation
calculation are no longer in general the conjugates of the values at −x. Second, this
characteristic function is periodic. This arises from the fact that possible values for
the random variable are restricted to a lattice of equally spaced points. Most of
the applications considered in this volume will involve either continuous or lattice
distributions. Complications arising from other distributions will be discussed along
with the regularity conditions for Edgeworth series. The Bernoulli distribution
arises in applications involving testing a binomial proportion, including determining
critical regions for the non–parametric sign test.
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2.3. Characteristic Functions and Moments

We have seen that under certain regularity conditions, the set of derivatives of
the characteristic function ζY of a random variable Y determines the moments of
Y , which in turn under certain regularity conditions determines the distribution
of Y . Billingsley (1986) proves as Theorem 26.2 that two distinct real random
variables cannot have the same characteristic function. A portion of this argument
is summarized below, in providing an expansion for the characteristic function in
terms of moments of the underlying distribution. Some lemmas link the existence
of derivatives of the characteristic function at zero to the existence of moments of
Y .

I first demonstrate an inequality for use in bounding the error when exp(iy) is
approximated by partial sums of its Taylor expansion; this is given by Billingsley
(1986), p. 297.

Lemma 2.3.1: For any real y,
∣∣∣∣∣exp(iy) −

l∑
k=0

(iy)k/k!
∣∣∣∣∣ ≤ min

(
|y|l+1

(l + 1)!
,
2 |y|l

l!

)
.

Proof: Integration by parts shows that
∫ x

0
(y − s)j exp(is) ds =

yj+1

j + 1
+

i

j + 1

∫ x

0
(y − s)j+1 exp(is) ds.

Furthermore, exp(iy) = 1 + i
∫ y
0 exp(is) ds, and hence by induction,

exp(iy) =
j∑

k=0

(iy)k/k! + (ij+1/j!)
∫ y

0
(y − s)j exp(is) ds.

Note that ∣∣∣∣
∫ y

0
(y − s)j exp(is) ds

∣∣∣∣ ≤ |y|j+1 .

By integration by parts,∫ y

0
(y − s)j exp(is) ds = −iyj + ij

∫ y

0
(y − s)j−1 exp(is) ds

= ij
∫ y

0
(y − s)j−1(exp(is) − 1) ds

and hence ∣∣∣∣
∫ y

0
(y − s)j exp(is) ds

∣∣∣∣ ≤ 2j |y|j .

Q.E.D
Lemma 2.3.1 will be used in this section and §2.6 to bound errors in approximat-

ing exp(y). The following result was presented by Billingsley (1986), §26. We will
also need the following result limiting the size of tails of the distribution function.
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Lemma 2.3.2: If G(y) is a cumulative distribution function, then

lim
A→∞

∫ A

−∞
y dG(y)/A = 0.

Proof: If the result fails to hold, then there exists ε > 0 and a sequence Ak such
that limk→∞ Ak = ∞ and

∫ Ak
−∞ y dG(y) ≥ εAk for all k. In this case,

∑k
j=1(G(Aj) −

G(Aj−1))Aj ≥ Akε for all k. Choose K so that G(AK) > 1 − ε/2. Then

K∑
j=1

(G(Aj) − G(Aj−1))Aj + εAk/2 ≥ Akε

for all k. This is a contradiction, and the result holds.
Q.E.D

All of the preliminaries are completed for demonstrating that the existence of
absolute moments of a random variable implies differentiability of the characteristic
function to the same order.

Lemma 2.3.3: If Y has a moment µl of order l (in the sense that E
[
|Y |l

]
< ∞),

then the derivative of ζ of order l exists at zero, with ζ(l)(0) = µli
l, and ζ(β) =∑l

k=0 µk(iβ)k/k! + o(βl).

Proof: Let F (y) be the distribution function for |Y |. Substituting the random
variable βY for y in Lemma 2.3.1, and taking expectations on both sides,∣∣∣∣∣ζ(β) −

l∑
k=0

βkikµk/k!
∣∣∣∣∣ ≤ |β|l E

[
min(|β| |Y |l+1 /(l + 1)!, 2 |Y |l /l!)

]
. (14)

If G(y) =
∫ y
−y |y|l dF (y)/E

[
|Y |l

]
, then

∣∣∣∣∣ζ(β) −
l∑

k=0

βkikµk

k!

∣∣∣∣∣ ≤
E
[
|Y |l

]
|β|l

l!

[
|β|

l + 1

∫ 2(l+1)/|β|

0
y dG(y) + 2G

(
2(l + 1)

|β|

)]
.

The second term in brackets above clearly goes to zero as |β| → 0. The first term in
brackets above goes to zero as |β| → 0, by Lemma 2.3.2. Hence if Y has moments
µ1, ..., µl, then ζ(β) =

∑l
k=0 µk(iβ)k/k!+o(βl), and ζ is l-times differentiable at zero

with the derivatives claimed.
Q.E.D

The previous result shows that if Y has a moment of a certain order, then the
corresponding derivative of ζY also exists. The next result is a partial converse.

Lemma 2.3.4: If l is an even integer, and if the derivative of ζ of order l exists
at zero, then Y has a moment of order l given by (10).

Proof: This proof is essentially that given by Cramér (1946). Let g0(β, y) =
exp(βy) and gk(β, y) = ((exp(βy) − exp(−βy))/(2β))k for k > 0. Furthermore, let
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Z be the random variable taking the value of Y if |Y | < K and zero otherwise.
Exercise 1 of this chapter outlines a proof that if the derivative of order k of ζ at 0
exists, then

ζ(k)(0) = lim
β→0

E [gk(β, iY )] . (15)

Hence
ζ(l)(0) = lim

β→0
E [gl(β, iY )] ≥ lim

β→0
E [gl(β, iZ)] = E

[
Z l
]

for all K. The last equality holds by the Bounded Convergence Theorem, since
|(exp(iβy) − exp(−iβy))/(2β)| ≤ |y|. By the Monotone Convergence Theorem,
ζ(l)(0) = E

[
Y l
]
.

Q.E.D
If l is odd, the Monotone Convergence Theorem does not apply. The claim of

the lemma does not hold for odd l. Left as an exercise is a counterexample in which
the first derivative of the characteristic function of a random variable is defined at
0 even though the first absolute moment does not exist. The principal value of the
associated sum is 0.

When derivatives of a characteristic function of all orders exist, one might con-
sider constructing the power series representation for the function. The next theo-
rem considers the radius of convergence for this series.

Theorem 2.3.5: If Y has moments of all orders, and R = 1/ lim sup(µl/l!)1/l

then ζ has the expansion
∑∞

k=0(iβ)kµk/k! valid on |β| < R. This radius R might be
zero, in which case the series expansion holds for no β 	= 0, or R might be ∞, in
which case the expansion holds for all β ∈ R.

Proof: First, a note about notation. Given a sequence an of real numbers,
lim sup an is the upper bound on the set of limits of subsequences of the sequence
an, if any convergent subsequences exist, and is infinite otherwise. If the sequence
an converges, then limn→∞ an = lim sup an.

The theorem follows from (14).
Q.E.D

These results for characteristic functions also hold for moment generating func-
tions; in fact, since the existence of a moment generating function is a rather re-
strictive condition, results for moment generating functions are stronger:

Lemma 2.3.6: Suppose that the moment generating function MY (β) exists for β

in a neighborhood (−ε, ε) of 0. Then moment of Y of order k, µk = E
[
Y k

]
exist

for all k and are given by µk = M(k)
Y (β).

Proof: Choose β ∈ (−ε, ε) × iR. Choose γ ∈ (�(β) − (ε − |�(β)|)/2,�(β) + (ε −
|�(β)|)/2)) × iR. Then

(MY (β) − MY (γ))/(β − γ) = E [[exp(Y β) − exp(Y γ)]/(β − γ)] , (16)
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and for some β∗ between β and γ,∣∣∣∣∣exp(Y β) − exp(Y γ)
β − γ

∣∣∣∣∣ = |Y exp(Y β∗)|

≤ |Y | exp(Y [|�(β)| /2 + ε/2]) ≤ sup
w∈R

(w exp(w(|�(β)| − ε)/2) exp(Y ε).

The supremum above is finite. Since this last quantity is integrable, the Dominated
Convergence Theorem allows us to interchange expectation and limβ→γ to show
that MY (β) is differentiable as a complex function on (−ε, ε)× iR. Hence MY has
derivatives of all orders, and Lemma 2.3.4 applies.

Q.E.D
Alternatively, we might avoid using Lemma 2.3.4 by noting that the proof to

Lemma 2.3.6 shows that M′
Y (β) = E [Y exp(βY )]; the argument might be iterated

to show that M(k)
Y (β) = E

[
Y k exp(βY )

]
.

2.4. Inversion of Characteristic Functions

The following theorem on inverting characteristic functions to recover the underlying
cumulative distribution function is found in Billingsley (1986).

Theorem 2.4.1: If a distribution function F corresponds to a characteristic func-
tion ζ and the points b1 and b2 have zero probability assigned to them then

F (b2) − F (b1) = lim
Θ→∞

1
2π

∫ Θ

−Θ

exp(−iβb1) − exp(−iβb2)
iβ

ζ(β) dβ. (17)

Proof: Let IΘ =
1
2π

∫ Θ

−Θ

exp(−iβb1) − exp(−iβb2)
iβ

ζ(β) dβ. Then

IΘ =
1
2π

∫ Θ

−Θ

∫ ∞

−∞

exp(−iβb1) − exp(−iβb2)
iβ

exp(iβx) dF (x) dβ

=
1
2π

∫ Θ

−Θ

∫ ∞

−∞

exp(iβ(x − b1)) − exp(iβ(x − b2))
iβ

dβ dF (x).

Interchange of the order of integration is justified because the integrand is bounded
and the set of integration is of finite measure. Expanding the complex exponential,
one can express IΘ as
∫ Θ

−Θ

∫ ∞

−∞

cos(β(x − b1))+i sin(β(x − b1))−cos(β(x − b2))−i sin(β(x − b2))
2πiβ

dβ dF (x).

Since the cosine is an even function, the integral of terms involving cosine is zero,
leaving

IΘ =
1
2π

∫ ∞

−∞

∫ Θ

−Θ

sin(β(x − b1)) − sin(β(x − b2))
β

dβ dF (x).


