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A paradigm shift according to Thomas Kuhn (1962) constitutes a change in the 
basic assumptions within the ruling theory of science. It is not a term to be used 
lightly, except in relation to major breakthrough in the understanding of nature. 
In the field of Earth Science this term can be used in connection with the con-
ception of gradualism in terrestrial evolution by James Hutton (1788) and Charles 
Lyell’s (1830), sea floor spreading and plate tectonics by Harry Hess, Bruce 
Heezen, Robert Dietz, and Sam Carey, and the identification of meteorite craters 
and astroblemes (‘star scars’) by Eugene Shoemaker and Robert Dietz, both hav-
ing been my mentors. My introduction to extraterrestrial impacts in 1968 was 
related to the study of Gosses Bluff Structure, Central Australia, where the United 
States Astrogeology Branch, led by Eugene Shoemaker, was planning a study of 
Moon-like landscapes in preparation for the Apollo program (Fig. 1.1). At the time 
few geologists realized the role of asteroid impacts. In subsequent years, the sea-
change discovery by Walter and Louis Alvarez of the KT asteroid impact bound-
ary and associated mass extinction of species has changed this attitude. This was 
followed by the identification of the relations between the 580 Ma-old Acraman 
impact structure, the Bunyeroo ejecta, and radiation of Acritarchs by George 
Williams, Victor Gostin, and Kath Grey. Based on geological studies of Archaean 
terrains during the 1980s and 1990s I raised doubts whether many Precambrian 
Earth features were triggered exclusively by internal mantle and crust processes. 
A breakthrough came in 1986 and following years when Don Lowe, Gary Byerly, 
Bruce Simonson, and Scott Hassler and their students began to discover millim-
eter scale impact spherules (microkrystites) in Archaean sediments, overlain by 
tsunami deposits, initiating a paradigm shift in the study of early crustal evolution. 
Given the difficulty in identifying spherule units in the field, impact frequencies 
documented to date inherently represent only a minimum flux, namely the ‘tip of 
the iceberg’, yielding support to an extension of the Late Heavy Bombardment. 
This monograph, focusing on impacts craters larger than 20 km in diameter, is 
based on research of Archaean and younger terrains during 1964–2012, including 
studies of impact ejecta units and large buried impact structures on the Australian 
continent. Notably detailed research in the Pilbara Craton, with the support of 
Arthur Hickman of the Western Australian Geological Survey and my field mate 
John Vickers, enabled follow-up of discoveries by Lowe, Byerly, Simonson and 
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their students. Suggestions that Archaean extra-terrestrial impacts acted as triggers 
of internal mantle-crust events will meet with resistance by proponents of uniform-
itarian schools of thought. Traditionally, geology—the study of Earth—focuses on 
internal crust, mantle, and core process, taking little account of the effects of large 
asteroid impacts. However, the two are not mutually exclusive. Whereas purely 
endogenic mantle-crust dynamics and plate tectonic cycles are manifest, the inter-
mittent triggering of thermodynamic events by large extra-terrestrial impact clus-
ters constitutes a combination of Cuvier’s catastrophism and Lyell and Hutton’s 
gradualism throughout Earth history.
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Abstract  This section suggests the evolution of Earth progressed through a com-
bination of internal core-mantle-crust dynamics and extraterrestrial large impacts 
which triggered seismic, tectonic, volcanic and tsunami processes as well several 
mass extinctions of species.

When, in 1981, Louis and Walter Alvarez, the father and son team, unearthed 
a tell-tale Iridium-rich sedimentary horizon at the ~65 million years-old (Ma) 
Cretaceous-Tertiary (KT) boundary at Gubbio, Italy (Alvarez et al. 1980, 1982; 
Alvarez 1997), the find heralded a paradigm shift in the study of terrestrial evolu-
tion. The discovery re-established the idea that much of Earth’s history has been 
shaped by catastrophes, a theory promoted by Georges Cuvier and natural theologi-
ans which preceded, but was largely supplanted by, Darwin’s (1859) theory of evo-
lution and by Hutton (1788) and Lyell’s (1830) geological gradualism (Fig. 1.1).

The KT boundary (64.98 ± 0.05 Ma1) corresponds to the 2nd largest mass extinc-
tion of species recorded in Earth history, when some 46  % of living genera were 
extinguished (Keller 2005) (Figs. 1.2, 9.3 and 9.4). Since the parent craters of the KT 
event have been identified, including Chicxulub (170  km-diameter, Yucatan 
Peninsula, Mexico) and Boltysh (~25 km-diameter, 65.17 ± 0.64 Ma, Ukraine), other 
large asteroid impact craters and impact ejecta units have been associated with mass 
extinction and biological radiation boundaries (Grey et al. 2003; Grey 2005; Glikson 
2005, 2009), underpinning the vulnerability of species to catastrophic events.

The Earth conceals its secrets well, not least buried scars of meteorite impacts 
and thin, commonly hardly detectable, spherule layers within sedimentary 
sequences. Based on shock metamorphic criteria calibrated with laboratory experi-
ments (French 1998), the pressure–temperature field of shock metamorphism is dis-
tinct from that of terrestrial metamorphism, including that of high pressure eclogite 
facies (Fig. 1.3). Whereas the PT field of eclogite is below 10 GPa, the graphite to 
diamond and coesite to stishovite transformations, shatter cones, planar deformation 
features, diaplectic glass and shock melting occur well above 10 GPa (Fig. 1.3).

1  Impact structure ages and diameters are after the Earth Impact Database [EID] 
(http://www.passc.net/EarthImpactDatabase/index.html) and information by the author. Where 
two figures are cited (cf. 130 < 260 km) the lower value represents an estimate of the diameter of 
the collapsed crater whereas the higher value is the diameter of the outer ring.
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2 1  A Paradigm Shift in Earth Science

Fig. 1.1   Gosses Bluff impact structure, central Australia, and Eugene Merle Shoemaker com-
piling the first comprehensive geologic moon map http://users.tpg.com.au/users/tps-seti/
planets.html. In 1968 the joint Gosses Bluff study by the U.S. Geological Survey, headed by 
Eugene Shoemaker, and the Australian Bureau of Mineral Resources, opened my eyes to the sig-
nificance of large asteroid impacts and their diagnostic hallmarks, to be followed years alter by 
systematic studies of Archaean impactites and buried impact structures on the Australian conti-
nent. a Aerial view of Gosses Bluff, looking from the south (courtesy Reg Morrison); b Eugene 
Shoemaker studying lunar maps (courtesy Carolyn Shoemaker)

Fig. 1.2   Phanerozoic mass extinctions, asteroid impacts, and large igneous provinces. a Extinction 
intensity; b Impact events; c Volcanism. Stratigraphic subdivisions and numerical ages are after 
Gradstein et al. 2004). The extinction record is based on genus-level data by Sepkoski (1996). The 
number of impact events, size and age of craters follows largely the Earth Impact Database (2005), 
with modification by the author (AG). (Keller 2005, by permission)

http://users.tpg.com.au/users/tps-seti/planets.html
http://users.tpg.com.au/users/tps-seti/planets.html


3

Where signatures of buried extraterrestrial impact structures are found, their struc-
ture and composition needs testing by geophysical and geochemical methods, while 
confirmation often has to wait for years before their origin can be established. Until 
the 1960s, the apparent scarcity of large impact basins on Earth, as contrasted with 
the large lunar mare basins, constituted a major objection to theories advocating 
catastrophic extraterrestrial collisions. Several scientists, including Alt et al. (1988), 
Oberbeck et al. (1992) and Abbott and Isley (2002), proposed genetic connections 
between large impacts and geodynamic events. Following the establishment of cri-
teria for shock metamorphism at Meteor Crater, Arizona (Shoemaker and Kieffer 
1979; Roddy and Shoemaker 1995) and the Ries crater, Germany (cf. Chao 1967, 
1968), the pioneering studies by Robert Dietz have paved the way for identifica-
tion of giant impact structures, referred to as astroblemes (star scars). This included 
Vredefort (289 km-diameter; 2,023 ± 4 Ma) (Dietz 1961) and Sudbury (~250 km; 
1,850 ± 3 Ma) (Dietz 1964). Alternatively these structures were regarded as crypto 
explosion features consequent on volcanic gas explosion (Nicolaysen and Ferguson 
1990). However, shock metamorphic parameters indicate pressures of >10  GPa, 
exceeding pressures induced by volcanic explosions, nor are contemporaneous vol-
canic rocks associated with mega-impact structures. It has taken more than 20 years 
to establish the asteroid impact origin of these structures, identified by shatter cones, 
planar deformation features in quartz, high pressure phases [coesite, stishovite], shock 
vitrification [such as produce silica glass (Lechatelierite) and feldspar glass (maskel-
ynite)], impact melting, melt breccia, pseudotachylite veins and dykes, iridium anom-
alies and numerous other features diagnostic of shock metamorphism).

Despite acceptance of the diagnostic hallmarks of impact outlined above, few 
suspected that, following the Late Heavy Bombardment of the Moon (LHB ~3.95–
3.85  Ga) (Ryder 1990, 1991, 1997), extraterrestrial impacts continued to play a 
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major role in the history of Earth. However, since the 1980s geological field work 
in the ancient cratons of South Africa and Western Australia by Don Lowe, Gary 
Byerly, Bruce Simonson, Scott Hassler, the present author and other have identi-
fied major asteroid impact ejecta units within sedimentary and volcanic sequences, 
recording repeated impact clusters by asteroids tens of kilometers in diameter 
between ~3.5 and 2.5 Ga (Lowe et al. 2003; Simonson and Glass 2004; Glikson 
2008; Glikson and Vickers 2010). This breakthrough was allowed by the iden-
tification of millimeter-scale originally glassy spherules in sediments of the KT 
impact boundary termed microkrystites (Fig. 9.4), characterized by inward radiat-
ing quench crystallites, chromium spinels and platinum group element anomalies, 
markedly high iridium levels (Glass and Burns 1988). Geochemical calculations 
and spherule size frequency analysis suggest asteroids as large as 20–50 km across 
(Melosh and Vickery 1991; Byerly and Lowe 1994; Shukolyukov et al. 2000; Kyte 
et al. 2003; Glikson and Allen 2004).

Microkrystite spherules form when vapor, ejected from craters upon large 
impact, condense in the atmosphere. On impact, target rocks are fragmented, shat-
tered, fused and vaporized. The crust underlying the crater rebounds elastically, 
forming a dome, a process analogous to the upward ejection of a water drop when a 
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Microkrystite spherulegranophyreShatter cone

Fig.  1.3   Pressure–temperature diagram comparing conditions of shock metamorphism and 
conditions of endogenic crustal metamorphism. The shock-metamorphic field (from ~7 to 
>100 GPa) is distinct from the endogenic field is (P < 5 GPa, T < 1,000  °C). Stability curves 
for high-pressure minerals (coesite, diamond, stishovite) are shown for static equilibrium condi-
tions (after French 1998, Fig. 4.1; by permission). Inset microphotographs display (1) a shatter 
cone; (2) granophyre core and radiating crystallites; (3) planar deformation features in quartz; 
(4) devitrified glass (1–3 from the Yarrabubba impact structure) and (5) a microkrystite spherule 
formed by condensation of impact-released vapor (Jeerinah Impact Layer)
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stone is thrown into a pond. The impact vapor is dispersed with the winds, cools and 
condenses as myriad melt droplets which solidify as tiny glass spheres, preserved in 
sub-marine sediments (Fig. 1.4).

Since the 1990s no fewer than 18 microkrystite-bearing ejecta and fallout units 
have been detected in Archaean Pilbara and Barberton greenstone belts, overlying 
sediments of the Hamersley Basin and Transvaal Basin (Simonson 1992) and younger 
sediments. Pilbara ejecta units are dated as about ~3.47  Ga (2 units), ~2.63  Ga, 
~2.57  Ga, ~2.56  Ga (2 units) and ~2.48  Ga-old, and Barberton ejecta units about 
4.482, 3.472, 3.445, 3.416, 3.334, 3.256, 3.243 and 3.225  Ga (2 units) (Lowe and 
Byerly 2010). Several of these units represent multiple impacts (Glikson 2004a, b). 
A spherule unit 1.85–2.13 Ga-old is reported from Greenland (Chadwick et al. 2000) 
and spherule units ~1.850 Ga-old are reported from Ontario, Minnesota and Michigan 
(Addison et al. 2005; Jirsa et al. 2008; Cannon et al. 2010). The frequency of impact 
ejecta units in the Barberton greenstone belt suggests frequent intermittent bombard-
ment of the Earth since the LHB (Lowe and Byerly 2010). Given the difficulty in 
identifying spherule units in the field, impact frequencies documented to date inher-
ently represent only a minimum flux, namely the ‘tip of the iceberg’, yielding further 
support to an extension of the LHB.

The question arises, what were the effects of impacts by asteroids ~10  km 
and larger on the Earth’s crust, its structure, tectonics, magmatic activity and 

Fig. 1.4   Outcrop-scale (mesoscopic) features diagnostic of asteroid impact. a Shatter cone from 
the Gosses Bluff impact structure, central Australia, forming penetrative conical radiating horse 
tail-shaped striated fracture pattern (courtesy Duane Hamacher); b Rhombohedral fracture pat-
terns associated with shatter cones, Yarrabubba impact structure, Western Australia; c Suevite—
crater-fill melt breccia. Large hand specimen, about 45 cm-long, of typical fresh suevite from the 
Ries Crater (Germany). The specimen consists of irregular and contorted individual fragments of 
glass (dark) with roughly parallel elongation and crystalline rock fragments (light) in a fine clas-
tic matrix. (From French 1998, by permission)
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