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The history of science, from its very beginnings, is replete with great achievements facilitated by
innovative mathematical thinking. Unfortunately, it is increasingly common for mathematics to
be only loosely linked to the science, by an online device called Supplementary Material. This
practice is especially common in biology, the heroic science our age, but it also is present in
other fields.

The result is usually poorly coupled mathematics that is presented in a manner that fails to
convey the central role that analytical thinking plays in achieving the full scientific understanding
of a subject. With this in mind, the STAMS series of Springer-Verlag will take on the new goal of
countering this tendency, while retaining its existing goal of providing short, up-to-date, readable
tutorials and surveys, written in a style accessible to researchers, professionals and graduate
students, which can serve as an introduction to recent and emerging subject areas.

In future we therefore will strive to publish manuscripts that emphasize the dual roles of science
and mathematics and which achieve the goal of scientific exposition that invites mathematical
interest and vice versa.
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Preface

The Russian mathematician P.L. Chebyshev (1815–1897) once said in a general
context that the collaboration of theory and practice brings out the most beneficial
results in the sciences. N.I. Lobachevskii, one of the discoverers of non-Euclidean
geometry, also said, “There is no area of mathematics, however abstract, which may
not someday be applied to phenomena of the real world”. Their statements pertain to
what this work intends to convey to the reader; that is, the author wishes primarily to
provide the reader with mathematical insight into modern crystallography, a typical
practical science that originated in classifying the observed shapes of crystals.
However, the tools we shall employ are not adopted from the traditional theory
of crystallographic groups, but are rather from algebraic topology, a field in pure
mathematics cultivated during the first half of the last century. More specifically, the
elementary theory of covering spaces and homology is effectively used in the study
of 3D networks associated with crystals. This explains the reason why this book is
entitled Topological Crystallography.

Further, we formulate a minimum principle for crystals in the framework of
discrete geometric analysis, which provides us with the concept of standard
realizations, a canonical way proposed by the author and his collaborator Motoko
Kotani in 2000 to place a given crystal structure in space so as to produce the
most symmetric microscopic shape. In spite of its purely mathematical nature
(thus having nothing to do with physical and chemical aspects of crystals), this
concept, combined with homology theory, turns out to fit with a systematic design
and enumeration of crystal structures, an area of considerable scientific interest
for many years. Incidentally, crystallographers proposed a similar concept in their
recent studies to determine the ideal symmetry of a crystal net and to analyze its
topological structure.

The objects in topological crystallography are not necessarily restricted to
structures of atomic scale, visible only through special devices. Ornamental patterns
having crystallographic symmetry in art, nature, and architectures also fall within
the scope of this book. Indeed, many interesting forms (katachi in Japanese) that are
potentially useful for artistic designs in various areas can be generated from standard
realizations.
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vi Preface

Meanwhile, standard realizations show up in the asymptotic behaviors of random
walks on topological crystals, the abstraction of crystal structures, and are closely
related to a discrete analogue of Abel–Jacobi maps in algebraic geometry. These
remarkable aspects of standard realizations, which are discussed in the final part
of this book, indicate that topological crystallography is neither an outdated nor
an isolated field in mathematics; it vigorously interacts with other areas in pure
mathematics which have been intensively developed in the last decade. Thus this
book, though devoted to a single application of mathematics, takes the reader to
various mathematical fields.

The main target of this book is, naturally enough, both mathematicians (including
graduate and even undergraduate students) and a wide circle of practical scientists
(especially crystallographers and design scientists in art and architecture as well)
who want to know how ideas and theories developed in pure mathematics are
applied to a practical problem. This broad spectrum of readership will justify the
style of our exposition in which basic material in mathematics occupies the first half
of the book.

This work has grown out of the lecture notes that I prepared for my lectures
at Meiji University during the academic year 2011–2012. I am grateful to Davide
M. Proserpio, Jean-Guillaume Eon, and Michael O’Keeffe for fruitful discussions
and for providing me with relevant references in chemical crystallography. I also
thank Hisashi Naito and my daughter Kayo for producing the beautiful CG images
of several hypothetical crystals. This work could not have been done without the
friendly help and advice of several people, especially Polly Wee Sy and Tadao Oda.
I take great pleasure in thanking them.

Kawasaki, Japan Toshikazu Sunada
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Chapter 1
Introduction

Mathematics allows us to understand the true nature of things by liberating us from the spell
of the real world.

Applications of mathematics to crystallography have a long history. The theory of
crystallographic groups (space groups in jargon) is a traditional field dating back
to the first half of the nineteenth century, which, needless to say, has been playing
a significant role in the classification of crystals in view of the symmetry.1 Graph
theory is another powerful area for the obvious reason that it is used to study the
microscopic structure of a crystal2 (and any molecule) as a 3D (three-dimensional)
network,3 in which each atom (or each cluster of atoms) is represented by a vertex
of the net, and each edge of the net represents a bond (or a polymeric ligand) in the
crystal structure.

A mathematical discipline that looks unconventional at first sight, but turns out to
be an effective tool when applied to crystallography is algebraic topology, a field in
geometry which studies structures of topological spaces by assigning algebraic data
to topological spaces in order to translate topological problems into algebraic ones
that hopefully will be more accessible [45]. This is by no means surprising because
a graph is identified with a cell complex of one-dimension, and thus it is expected
to be able to employ basic tools such as covering spaces and homology. Indeed, if
a topologist is asked “What’s the mathematical nature of crystal structures?”, his

1To be precise, the notion of crystallographic groups has its origin in the study of morphology (the
observed shapes) of crystals. In this sense, the link between mathematics and crystallography is
ancient. See the beginning of Chap. 6.
2In this book, crystals mean solids composed of atoms arranged in an orderly repetitive array.
In crystallography, more general materials such as quasicrystals are counted as crystals.
3Wells [109] initiated a systematic study of crystal structures as 3D networks. Applications of
graph theory to chemistry could be traced back to 1864 when the Edinburgh chemist Crum Brown
proposed representing chemical compounds by graphs.

T. Sunada, Topological Crystallography, Surveys and Tutorials in the Applied
Mathematical Sciences 6, DOI 10.1007/978-4-431-54177-6 1, © Springer Japan 2013
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2 1 Introduction

Fig. 1.1 “Seeds” of diamond, K4 crystal, Lonsdaleite

immediate answer would be “topologically they are infinite-fold abelian covering
graphs over finite graphs. The crystal nets (the networks in space associated with
crystals) are their periodic realizations”.

This bold answer is satisfactory enough, from the theoretical view at least, since
among all abelian covering graphs over a given finite graph X0, there is a maximal
one from which we may construct, in a unified way, every abelian covering graphs
over X0. In fact, if one starts with a finite graph X0 to obtain (hypothetical) 3D crystal
structures,4 then the main recipe in this construction is the selection of a subgroup
H of H1(X0,Z), the first integral homology group of X0, such that the factor group
H1(X0,Z)/H is a free abelian group of rank-3, which is eventually going to be the
period lattice when we realize the covering graph in space. A period lattice5 here
means a lattice group in R

3 leaving a given crystal net invariant when it acts on
the space R

3 by translations (a more general definition is given in Sect. 7.1). In
particular, the enumeration of topological structures of crystal nets reduces to that
of finite graphs and subgroups of homology groups.

In a few cases, maximal abelian covering graphs themselves give 3D crystal
structures. For instance, maximal abelian covering graphs over the graphs (A) and
(B) in Fig. 1.1 yield the crystal structures of Diamond6 and the hypothetical K4

crystal (diamond twin),7 respectively. On the other hand, Lonsdaleite8 (Fig. 1.29) is,
as an abstract graph, a non-maximal abelian covering graph over the finite graph (C);

4By a crystal structure we mean an abstract graph associated with a crystal net.
5The notion of period lattices is a generalization of Bravais lattices in crystallography. Precisely
speaking, a Bravais lattice is a representative of period lattices when classified by symmetry.
6Diamond is an allotrope of carbon which is formed and synthesized at high-pressure and high-
temperature conditions, and is known to be less stable than graphite though the conversion rate
from diamond to graphite is negligible at ambient conditions. Silicon and germanium adopt similar
types of crystal structure.
7See Sect. 8.3 and Notes (IV) in Chap. 8 for the detailed account where we explain the reason
why the K4 crystal deserves to be called “diamond twin”. The picture of the K4 crystal is given in
Fig. 1.4.
8This carbon allotrope, formed when meteorites containing graphite strike the earth, is named in
honour of crystallographer Kathleen Lonsdale, also referred to as the hexagonal diamond.
9Source of the figure: WebElements (http://www.webelements.com/).

http://www.webelements.com/


1 Introduction 3

Fig. 1.2 Diamond and Lonsdaleite

indeed, the maximal abelian covering graph over (C) is five-dimensional. Therefore
crystal structures of general dimension turn up even when we are handling three-
dimensional crystals.

The simple answer above to the question about the mathematical nature of crystal
nets is a sort of folklore in the community of mathematicians, and hence it is not
attributed to anyone. It is no wonder, however, that Henri Poincaré (1854–1912),
founder of algebraic topology, could have easily conceived this answer if he would
have witnessed Max von Laue’s discovery of crystal structures by the diffraction of
X-rays, which was coincidentally accomplished in the last year of Poincaré’s life.

Chemical crystallographers adopt the term “periodic graphs” for the underlying
topology of crystal structures, based on the same reasoning as mathematicians that a
crystal structure is a graph with a translational action which becomes a finite graph
when factored out.10 This difference of nomenclature11 for the same objects makes
crystallographers say “the rich world of periodic graphs has been largely neglected
by mathematicians” [50]. The fact is that mathematicians have been interested in
general covering spaces over cell complexes, not only of one-dimension but also
of higher dimensions, and that our machinery in algebraic topology to tackle this
important subject had been well developed long before. For all this, mathematicians’
predisposition for liking general theories has hindered them from turning their eyes
to crystal structures as illuminating examples of covering spaces.

The primary purpose of this book is to provide the reader with some funda-
mentals about “topological crystallography”12 (or “topological methods in crystal-
lography”) in order to bridge the gap of knowledge between mathematicians and

10They also use the term “minimal nets” for maximal abelian covering graphs [9] and the term
“cycle spaces” for homology groups [42]. See Notes (V) in Chap. 8.
11Even for the description of crystallographic groups there are three main systems of notations;
one used in mathematics, and other two (the Schoenflies system and International system) used by
chemists and crystallographers.
12In chemistry, the term “topological crystal(lography)” is used sometimes in a different context.
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crystallographers.13 Thus no knowledge of algebraic topology and crystallography
is presupposed. What the reader needs to be familiar with is basic material in
undergraduate mathematics such as sets, maps, matrices,vector spaces (with inner
products) and an elementary part of group theory (abelian groups, homomorphism,
factor groups, etc.). Some of these prerequisites are briefly explained in the
appendix for the convenience of the reader who is not knowledgeable about modern
mathematics.

Moreover, this book is designed, for the most part, to be as self-contained as pos-
sible, taking into consideration as the reader practical scientists and undergraduate
students with a modest background in mathematics. To accomplish this, we divide
the book into three parts. Based on the fundamental material mentioned above,
Part I starts with a quick review of the notions of quotient sets (Chap. 2) and graphs
(Chap. 3). These notions are fairly standard in pure mathematics, and indispensable
in modern crystallography. Subsequently, we provide a comprehensive account of
homology (Chap. 4) and covering maps of graphs (Chap. 5) from the combinatorial
viewpoint. Since they are usually not treated as independent topics in the literature
of algebraic topology and combinatorics, we find it worthwhile to include these
chapters here. Furthermore, the notions introduced in Chap. 5 will be useful in a set-
up for the analysis and geometry of “non-commutative crystals”, a generalization of
crystal structures [see [95] and Notes (IV) in Chap. 9].

The contents up to this point are preliminaries to topological crystallography.
The heart of the matter begins with Part II. After skimming through the preceding
chapters, and if necessary going through the terminology employed as well as our
own usage of notations, the reader having mathematics at his/her fingertips may then
start from Chap. 6 containing some details about abelian covering graphs.

In this book, the term “topological crystal” is adopted for an infinite-fold abelian
covering graph over a finite graph.14 The reason is to emphasize its abstract nature
and at the same time to keep the word “crystal” in order to make it clear that we are
addressing the problem of crystals, not the problem of general graphs. In any case,
topological crystals are purely mathematical objects “living in the logical world
and not in real space”, in the sense that they are constructed on the basis of pure
reflection.15

The issue on how to place (realize) them “canonically” in space is discussed
at length in Chap. 7, where we give a down-to-earth account, together with an
algorithm (in a loose sense16) and many examples, of the mathematical construction

13See the book [44] by J-G. Eon, W.E. Klee, B. Souvignier and J.S. Rutherford as a reference in
crystallography.
14In [58], we have used the term “crystal lattice” instead.
15This is the so-called Platonic view; that is, we mathematicians insist that mathematical entities
are abstract in not being spatiotemporally located, and hence lie outside of the real world.
16Algorithm means a step-by-step procedure involving a precise set of instructions for what to do
next. With access to a computer and with some work in computer graphics based on our algorithm,
3D crystal structures may be displayed on a screen.
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Fig. 1.3 A harmonic realization and the standard realization

stated in Kotani and Sunada [58]. The standard realization17 spelled out here is most
symmetric among all realizations (hence deserves to be described as “standard”),
and is characterized uniquely by a minimal principle for the potential energy (per
unit cell) when we look at a realization as a simple system of harmonic oscillators.
This may remind the reader of the classical isoperimetric inequality characterizing
the round circle, the most symmetric closed curve.18

One remark is in order here. Crystallographers also sought independently
canonical ways to place periodic graphs and thus proposed several notions:

1. Archetype embedding [42]. This turns out to be the same as the standard
realization of the maximal abelian covering graph.

2. Equilibrium placement [30]. This notion, inspired by Tutte [102, 103] and sug-
gested by Klein [55], coincides with the harmonic realization introduced in [58]
as a special case of harmonic maps [39,69] [see Notes (IV) in Chap. 7]. Roughly
speaking, harmonic realizations (equilibrium placements) are characterized as
minimizers19 of the energy functional when a period lattice is fixed.20 On the
other hand, standard realizations are minimizers without any constraint on period
lattices (except for the one on the volume of unit cells). Therefore standard
realizations are special harmonic realizations (Fig. 1.3 illustrates the difference
between a general harmonic realization and the standard realization in the case of
the quadrangle lattice). Based on the notion of equilibrium placement, Delgado-
Friedrichs constructed a poweful algorithm (SYSTRE21) for the barycentric
drawing, a special equilibrium placement (see [32]), which seems to coincide
with the standard realization as far as several examples are examined (at least in
the two-dimensional case).

17In [96], I used the term “canonical placement”.
18For a closed curve in the plane, if its perimeter is L and the area that it encloses is A, then
4πA ≤ L2, where equality holds if and only if the curve is a circle.
19A minimizer of a given function (or functional) is a point (or function) at which the minimum
value is attained.
20Fixing a period lattice is equivalent to imposing a periodic boundary condition.
21The program is available at http://www.gavrog.org/.

http://www.gavrog.org/
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Fig. 1.4 CG image of the K4 crystal (created by Kayo Sunada)

3. Archetypical representation [43]. This is an appropriate orthogonal projection of
the archetype embeddings, and turns out to be identical to the standard realization
(see Chap. 8).

Admittedly the nature of standard realizations is purely mathematical, and has
almost nothing to do with the physical and chemical aspects of real crystals. Thus
one can say that the nets obtained by standard realizations are merely toy models
of hypothetical crystal,22 i.e., not necessarily in actual existence. Nevertheless, as
will be observed in Chap. 8, the nets corresponding to several typical real crystals
turn out to be canonically placed in our sense. Diamond and Lonsdaleite are such
examples. The nets obtained from the face-centered cubic lattice and the body-
centered cubic lattice are also standard realizations. Incidentally, the hypothetical K4

crystal mentioned above is constructed by means of a standard realization (Fig. 1.4).
The nets of real crystals are usually different from the standard realization

because the mechanism of crystallization is much more complicated than the
one explained by the harmonic-oscillator model for a crystal. Even in this case,
however, the standard realization offers, in the light of its uniqueness, a basis for
comparison with which one may talk quantitatively about how much the net is
distorted (Sect. 7.5).

Apart from crystallography handling forms of Angstrom scale, the concept of
standard realization is of some interest from the view of beautiful “ornamental
patterns” that are visible to the naked eye, both in nature and art, such as the

22Once we find a hypothetical crystal, a systematic prediction of its physical properties for
appropriate atoms can be carried out by first principles calculations used in chemistry. The
prediction appealing to the computer power encourages (or discourages) material scientists to
synthesize the hypothetical crystals [26].
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Fig. 1.5 Patterns in nature and architecture

honeycomb pattern built by beehives which is used in countless artistic structures.
The honeycomb is actually the standard realization of the hexagonal lattice,23 a two-
dimensional topological crystal described as the maximal abelian covering graph
over the graph with two vertices joined by three parallel edges; thus the net of
diamond crystal is regarded as the three-dimensional analogue of the honeycomb;
see Sect. 8.3.

What is more, the beauty of shapes is somehow bound up with the mechanical
functions of architectural structures e.g., as beehives instinctively know that their
honeycomb is the best structure to reach minimal weight and minimal material cost.
The picture on the right side in Fig. 1.5 is a light weight rigid structure in architecture
(due to Alexander Graham Bell and Buckminster Fuller), which turns out to tie up
with the net associated with the face-centered cubic lattice, an example of standard
realizations as mentioned above; see Sect. 8.3 (III).

Let us return to the structure of the book. Part III, mainly targeting mathemati-
cians and graduate students, is concerned with two idiosyncratic topics closely
related to standard realizations; more specifically, we deal with random walks on
topological crystals, and a discrete analogue of classical algebraic geometry. I would
like to emphasize that a remarkable relation between random walks and standard
realizations, the subject in Chap. 9, is my starting point to develop topological
crystallography. Chapter 10 introduces the notion of discrete Abel–Jacobi map
which is relevant to the standard realizations of maximal abelian covering graphs.
What we discuss in this final chapter is considered a ramification of algebraic graph
theory and also of tropical geometry, a relatively new and thriving area.

Each chapter ends with a section entitled “Notes” wherein, except for historical
remarks added for the pedagogical reason, we make liberal use of concepts in

23The usage of the term “lattice” for crystal structures may give rise to confusion because
customarily a lattice means a discrete subgroup of R

d (or more generally a discrete subgroup
of a Lie group). But we will follow the convention to use “lattice” for some crystal structures (see
Remark in Sect. 2.2).
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advanced mathematics. The overall purpose is to inform the reader, somewhat in
a rambling style, how the subject discussed in the chapter is related to other fields of
mathematics, say, the Ihara zeta function, a graph-theoretic analogue of class field
theory, discrete Laplacians, and harmonic maps. Although not necessarily needed
for what follows in Parts I and II, it offers the reader with a mathematical bent
some additional insights into our subject and a underlying motive. Part III also has
a similar nature, and may give a surprise to the reader. He or she will discover that
a problem in one area leads us into a quite different area of mathematics.

In writing this book, I followed the conventional style of mathematical books.
That is, in accordance with mathematics culture, I will give proofs to almost all
claims that the reader might find difficult to verify by himself/herself (except for
those in Notes). The reason for doing so is that I want to remind the reader
of the significant function of proofs. Proofs in mathematics play the same role
as verifications by experiments in other sciences.24 In view of this, I strongly
recommend the reader (even a practical scientist) to try to understand proofs.

24A “proof” is a logical procedure to derive what we anticipate to be true from what we have
already known to be true.



Part I
Prerequisites for Modern Crystallography



Chapter 2
Quotient Objects

Crystallographers employ the concept of “quotient graph” in a systematic
enumeration of crystal structures (see for instance [20,41,76,86]). Behind this con-
cept is the periodic nature of crystal structures with respect to parallel translations;
that is, a quotient graph in crystallography is nothing but the quotient graph of a
3D network by the translational action of a lattice group; see the next chapter for
details.

As a matter of fact the idea of “quotient” shows up in various fields of
modern mathematics; say, quotient vector spaces in linear algebra, the cut-and-
paste technique in topology, coset spaces and factor groups in group theory, to
name several. If we identify graphs with one-dimensional cell complexes,1 then
a quotient graph is a special case of quotient spaces introduced in topology. Even
if our discussion is confined to crystallography, the reader will come across many
quotient objects.

Related to the idea of “quotient” is the word “well defined”. This rather strange
locution is used when we want to define a new object such as a map or an operation
among quotient objects and we need to ensure the consistency of the definition. The
issue of well-definedness is hardly avoided in modern mathematics. Beginners are
expected to get used to it by verifying many examples appearing in our discussion.2

Hereafter the reader is assumed to know set-theoretic language and some basic
notions in group theory. I recommend the reader to consult Appendices 1 and 2 for
the meaning of the terminology used in this chapter.

1A cell complex is a topological space obtained by gluing together certain basic building blocks
called cells. Here an n-dimensional cell is a topological space that is homeomorphic to an
n-dimensional closed ball.
2According to my experience, the issue of well-definedness is often a hindrance to students who
are struggling to learn modern mathematics.

T. Sunada, Topological Crystallography, Surveys and Tutorials in the Applied
Mathematical Sciences 6, DOI 10.1007/978-4-431-54177-6 2, © Springer Japan 2013
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12 2 Quotient Objects

2.1 Equivalence Relations

The meaning of “quotient” is roughly interpreted as follows. Suppose we are given
an aggregation of objects (animals or plants for instance). We classify these objects
according to certain properties, and form groups by gathering classified objects.
Following this procedure, we give a name to each group (mammals, birds, reptiles,
etc., for animals). Then the set of names is what we call the quotient set.

One can make this plain-language explanation rigorous by introducing the notion
of equivalence relations as follows. Let A be a set with a relation ∼ among elements
in A. More precisely, we are given a subset R of the cartesian product A×A with
which the statement “(x,y) ∈ R” is read “x is related to y” and is written x ∼ y.
A relation ∼ satisfying the following three conditions is said to be an equivalence
relation.

1. x ∼ x for every x.
2. If x ∼ y, then y ∼ x.
3. If x ∼ y and y ∼ z, then x ∼ z.

When x ∼ y for an equivalence relation ∼, we say that x and y are equivalent
(what we have in mind is a statement like “x and y have the same property”).
In essence, an equivalence relation is a generalization of equality “=” which, of
course, satisfies the above conditions.

The equivalence relation yields a partition of A as follows. For x ∈ A, we denote
by E(x) the equivalence class of x; that is, the subset consisting of all elements
equivalent to x. Then x ∈ E(x), and either E(x)∩E(y) = /0 (empty set) or E(x) =
E(y), which implies that different equivalence classes do not overlap, and they cover
the whole set A, thereby inducing a partition of A. Conversely, a partition of A yields
an equivalence relation in a natural manner.

Now consider the set of equivalence classes for which we use the notation A/∼,
and call it the quotient set with respect to the relation ∼. Therefore each equivalence
class, originally a subset of A, becomes a single element in the quotient set A/∼. The
canonical projection is the map p : A−→A/∼ that carries x∈ A into the equivalence
class of x.

Useful later on in our discussion is the following observation. Let A and B be two
sets with equivalence relations ∼A and ∼B, respectively, and let f : A−→B be a map
having the property that if x ∼A y, then f (x) ∼B f (y). For the canonical projections
pA : A −→ A/∼A and pB : B −→ B/∼B, there is a map F : A/∼A−→ B/∼B such that
F ◦ pA = pB ◦ f . The following diagram, called a commutative diagram, will help
the reader understand visually this equality of maps.


