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Preface to the First Edition

Basic principles underlying the transactions of financial markets are tied to
probability and statistics. Accordingly it is natural that books devoted to
mathematical finance are dominated by stochastic methods. Only in recent
years, spurred by the enormous economical success of financial derivatives,
a need for sophisticated computational technology has developed. For ex-
ample, to price an American put, quantitative analysts have asked for the
numerical solution of a free-boundary partial differential equation. Fast and
accurate numerical algorithms have become essential tools to price financial
derivatives and to manage portfolio risks. The required methods aggregate to
the new field of Computational Finance. This discipline still has an aura of
mysteriousness; the first specialists were sometimes called rocket scientists.
So far, the emerging field of computational finance has hardly been discussed
in the mathematical finance literature.

This book attempts to fill the gap. Basic principles of computational
finance are introduced in a monograph with textbook character. The book is
divided into four parts, arranged in six chapters and seven appendices. The
general organization is

Part I (Chapter 1): Financial and Stochastic Background
Part II (Chapters 2, 3): Tools for Simulation
Part III (Chapters 4, 5, 6): Partial Differential Equations for Options
Part IV (Appendices A1...A7): Further Requisits and Additional Material.

The first chapter introduces fundamental concepts of financial options and
of stochastic calculus. This provides the financial and stochastic background
needed to follow this book. The chapter explains the terms and the function-
ing of standard options, and continues with a definition of the Black-Scholes
market and of the principle of risk-neutral valuation. As a first computational
method the simple but powerful binomial method is derived. The following
parts of Chapter 1 are devoted to basic elements of stochastic analysis, in-
cluding Brownian motion, stochastic integrals and Itô processes. The material
is discussed only to an extent such that the remaining parts of the book can
be understood. Neither a comprehensive coverage of derivative products nor
an explanation of martingale concepts are provided. For such in-depth cov-
erage of financial and stochastic topics ample references to special literature
are given as hints for further study. The focus of this book is on numerical
methods.

V
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Chapter 2 addresses the computation of random numbers on digital
computers. By means of congruential generators and Fibonacci generators,
uniform deviates are obtained as first step. Thereupon the calculation of
normally distributed numbers is explained. The chapter ends with an intro-
duction into low-discrepancy numbers. The random numbers are the basic
input to integrate stochastic differential equations, which is briefly developed
in Chapter 3. From the stochastic Taylor expansion, prototypes of numerical
methods are derived. The final part of Chapter 3 is concerned with Monte
Carlo simulation and with an introduction into variance reduction.

The largest part of the book is devoted to the numerical solution of those
partial differential equations that are derived from the Black-Scholes analysis.
Chapter 4 starts from a simple partial differential equation that is obtained by
applying a suitable transformation, and applies the finite-difference approach.
Elementary concepts such as stability and convergence order are derived. The
free boundary of American options —the optimal exercise boundary— leads
to variational inequalities. Finally it is shown how options are priced with
a formulation as linear complimentarity problem. Chapter 5 shows how a
finite-element approach can be used instead of finite differences. Based on
linear elements and a Galerkin method a formulation equivalent to that of
Chapter 4 is found. Chapters 4 and 5 concentrate on standard options.

Whereas the transformation applied in Chapters 4 and 5 helps avoiding
spurious phenomena, such artificial oscillations become a major issue when
the transformation does not apply. This is frequently the situation with the
non-standard exotic options. Basic computational aspects of exotic options
are the topic of Chapter 6. After a short introduction into exotic options,
Asian options are considered in some more detail. The discussion of numer-
ical methods concludes with the treatment of the advanced total variation
diminishing methods. Since exotic options and their computations are under
rapid development, this chapter can only serve as stimulation to study a field
with high future potential.

In the final part of the book, seven appendices provide material that may
be known to some readers. For example, basic knowledge on stochastics and
numerics is summarized in the appendices A2, A4, and A5. Other appendices
include additional material that is slightly tangential to the main focus of the
book. This holds for the derivation of the Black-Scholes formula (in A3) and
the introduction into function spaces (A6).

Every chapter is supplied with a set of exercises, and hints on further study
and relevant literature. Many examples and 52 figures illustrate phenomena
and methods. The book ends with an extensive list of references.

This book is written from the perspectives of an applied mathematician.
The level of mathematics in this book is tailored to readers of the advanced
undergraduate level of science and engineering majors. Apart from this basic
knowledge, the book is self-contained. It can be used for a course on the sub-
ject. The intended readership is interdisciplinary. The audience of this book
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includes professionals in financial engineering, mathematicians, and scientists
of many fields.

An expository style may attract a readership ranging from graduate stu-
dents to practitioners. Methods are introduced as tools for immediate appli-
cation. Formulated and summarized as algorithms, a straightforward imple-
mentation in computer programs should be possible. In this way, the reader
may learn by computational experiment. Learning by calculating will be a
possible way to explore several aspects of the financial world. In some parts,
this book provides an algorithmic introduction into computational finance.
To keep the text readable for a wide range of readers, some of the proofs
and derivations are exported to the exercises, for which frequently hints are
given.

This book is based on courses I have given on computational finance since
1997, and on my earlier German textbook Einführung in die numerische
Berechnung von Finanz-Derivaten, which Springer published in 2000. For
the present English version the contents have been revised and extended
significantly.

The work on this book has profited from cooperations and discussions
with Alexander Kempf, Peter Kloeden, Rainer Int-Veen, Karl Riedel and
Roland Seydel. I wish to express my gratitude to them and to Anita Rother,
who TEXed the text. The figures were either drawn with xfig or plotted and
designed with gnuplot, after extensive numerical calculations.

Additional material to this book, such as hints on exercises and colored
figures and photographs, is available at the website address

www.mi.uni-koeln.de/numerik/compfin/

It is my hope that this book may motivate readers to perform own com-
putational experiments, thereby exploring into a fascinating field.

Köln Rüdiger Seydel
February 2002
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This edition contains more material. The largest addition is a new section
on jump processes (Section 1.9). The derivation of a related partial integro-
differential equation is included in Appendix A3. More material is devoted
to Monte Carlo simulation. An algorithm for the standard workhorse of in-
verting the normal distribution is added to Appendix A7. New figures and
more exercises are intended to improve the clarity at some places. Several
further references give hints on more advanced material and on important
developments.

Many small changes are hoped to improve the readability of this book.
Further I have made an effort to correct misprints and errors that I knew
about.

A new domain is being prepared to serve the needs of the computational
finance community, and to provide complementary material to this book. The
address of the domain is

www.compfin.de
The domain is under construction; it replaces the website address www.mi.uni-
koeln.de/numerik/compfin/.

Suggestions and remarks both on this book and on the domain are most
welcome.

Köln Rüdiger Seydel
July 2003
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Preface to the Third Edition

The rapidly developing field of financial engineering has suggested extensions
to the previous editions. Encouraged by the success and the friendly reception
of this text, the author has thoroughly revised and updated the entire book,
and has added significantly more material. The appendices were organized in
a different way, and extended. In this way, more background material, more
jargon and terminology are provided in an attempt to make this book more
self-contained. New figures, more exercises, and better explanations improve
the clarity of the book, and help bridging the gap to finance and stochastics.

The largest addition is a new section on analytic methods (Section 4.8).
Here we concentrate on the interpolation approach and on the quadratic
approximation. In this context, the analytic method of lines is outlined. In
Chapter 4, more emphasis is placed on extrapolation and the estimation of
the accuracy. New sections and subsections are devoted to risk-neutrality.
This includes some introducing material on topics such as the theorem of
Girsanov, state-price processes, and the idea of complete markets. The anal-
ysis and geometry of early-exercise curves is discussed in more detail. In
the appendix, the derivations of the Black-Scholes equation, and of a partial
integro-differential equation related to jump diffusion are rewritten. An extra
section introduces multidimensional Black-Scholes models. Hints on testing
the quality of random-number generators are given. And again more ma-
terial is devoted to Monte Carlo simulation. The integral representation of
options is included as a link to quadrature methods. Finally, the references
are updated and expanded.

It is my pleasure to acknowledge that the work on this edition has bene-
fited from helpful remarks of Rainer Int-Veen, Alexander Kempf, Sebastian
Quecke, Roland Seydel, and Karsten Urban.

The material of this Third Edition has been tested in courses the author
gave recently in Cologne and in Singapore. Parallel to this new edition, the
website www.compfin.de is supplied by an option calculator.

Köln Rüdiger Seydel
October 2005
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Preface to the Fourth Edition

Financial engineering is evolving at a fast pace; new methods are being de-
veloped and efficient algorithms are being demanded. This fourth edition of
Tools for Computational Finance carefully integrates new directions set forth
by recent research. Insight from conferences and workshops has been vali-
dated by us and tested in the class room. In this fourth edition the main
focus is still largely, albeit not exclusively, on the Black–Scholes world, which
is considered a bench mark and the central point within a slightly more gen-
eral setting.

New topics of this fourth edition include a section on calibration, with
background material on minimization in the Appendix. Heston’s model is
also included. Two examples of exotic options have been added, namely: a
two-dimensional barrier option and a two-dimensional binary option. And
the exposition on Monte Carlo methods for American options has been ex-
tended by regression methods, including the Longstaff–Schwartz algorithm.
Furthermore, the tradeoff bias versus variance is discussed. Bermudan-based
algorithms play a larger role in this edition, with more emphasis on the dy-
namic programming principle based on continuation values. Section 4.6 on
finite-difference methods has been reorganized, now stressing the efficiency of
direct methods. — A few minor topics of the previous edition have become
obsolete and have been removed.

Every endeavor has been made to further improve the clarity of this expo-
sition. Amendments have been made throughout. And numerous additional
references provide hints for further study.

It is my pleasure to acknowledge that this edition has benefited from
inspiring discussions with several people, including Marco Avellaneda, Peter
Carr, Peter Forsyth, Tat Fung, Jonathan Goodman, Pascal Heider, Christian
Jonen, Jan Kallsen, Sebastian Quecke, and Roland Seydel.

Köln, August 2008 Rüdiger Seydel
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Notations

elements of options:

t time
T maturity date, time to expiration
S price of underlying asset

Sj , Sji specific values of the price S
St price of the asset at time t
K strike price, exercise price
Ψ payoff function
V value of an option (VC value of a call, VP value of a put,

Am American, Eur European)
σ volatility
r interest rate (Appendix A1)

general mathematical symbols:

IR set of real numbers
IN set of integers > 0
∈ element in
⊆ subset of, ⊂ strict subset
[a, b] closed interval {x ∈ IR : a ≤ x ≤ b}
[a, b) half-open interval a ≤ x < b (analogously (a, b], (a, b))
P probability
E expectation (Appendix B1)
Var variance
Cov covariance
log natural logarithm
:= defined to be
.= equal except for rounding errors
≡ identical
=⇒ implication
⇐⇒ equivalence
O(hk) Landau-symbol: for h → 0

f(h) = O(hk) ⇐⇒ f(h)
hk is bounded

∼ N (μ, σ2) normal distributed with expectation μ and variance σ2

∼ U [0, 1] uniformly distributed on [0, 1]

XIX



XX Notations

Δt small increment in t
tr transposed; Atr is the matrix where the rows

and columns of A are exchanged.
C0[a, b] set of functions that are continuous on [a, b]
∈ Ck[a, b] k-times continuously differentiable
D set in IRn or in the complex plane, D̄ closure of D,

D◦ interior of D
∂D boundary of D
L2 set of square-integrable functions
H Hilbert space, Sobolev space (Appendix C3)
[0, 1]2 unit square
Ω sample space (in Appendix B1)
f+ := max{f, 0}
d symbol for differentiation
u̇ time derivative du

dt of a function u(t)
f ′ derivative of a function f
i symbol for imaginary unit
e symbol for the basis of the exponential function exp
∂ symbol for partial differentiation
1M =1 on M, =0 elsewhere (indicator function)

integers:

i, j, k, l,m, n,M,N, ν

various variables:

Xt,X,X(t) random variable
Wt Wiener process, Brownian motion (Definition 1.7)
y(x, τ) solution of a partial differential equation for (x, τ)
w approximation of y
h discretization grid size
ϕ basis function (Chapter 5)
ψ test function (Chapter 5)

abbreviations:

BDF Backward Difference Formula, see Section 4.2.1
CIR Cox Ingersoll Ross model, see Section 1.7.4
CFL Courant-Friedrichs-Lewy, see Section 6.5.1
Dow Dow Jones Industrial Average
FE Finite Element
FFT Fast Fourier Transformation
FTBS Forward Time Backward Space, see Section 6.5.1
FTCS Forward Time Centered Space, see Section 6.4.2
GBM Geometric Brownian Motion, see (1.33)
LCP Linear Complementary Problem
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MC Monte Carlo
ODE Ordinary Differential Equation
OTC Over the Counter
OU Ornstein Uhlenbeck
PDE Partial Differential Equation
PIDE Partial Integro-Differential Equation
PSOR Projected Successive Overrelaxation
QMC Quasi Monte Carlo
SDE Stochastic Differential Equation
SOR Successive Overrelaxation
TVD Total Variation Diminishing
i.i.d. independent and identical distributed
inf infimum, largest lower bound of a set of numbers
sup supremum, least upper bound of a set of numbers
supp(f) support of a function f : {x ∈ D : f(x) �= 0}
t.h.o. terms of higher order

hints on the organization:

(2.6) number of equation (2.6)
(The first digit in all numberings refers to the chapter.)

(A4.10) equation in Appendix A; similarly B, C, D
−→ hint (for instance to an exercise)



Chapter 1 Modeling Tools
for Financial Options

1.1 Options

What do we mean by option? An option is the right (but not the obligation) to
buy or sell a risky asset at a prespecified fixed price within a specified period.
An option is a financial instrument that allows —amongst other things— to
make a bet on rising or falling values of an underlying asset. The underlying
asset typically is a stock, or a parcel of shares of a company. Other examples
of underlyings include stock indices (as the Dow Jones Industrial Average),
currencies, or commodities. Since the value of an option depends on the
value of the underlying asset, options and other related financial instruments
are called derivatives (−→ Appendix A2). An option is a contract between
two parties about trading the asset at a certain future time. One party is
the writer, often a bank, who fixes the terms of the option contract and
sells the option. The other party is the holder, who purchases the option,
paying the market price, which is called premium. How to calculate a fair
value of the premium is a central theme of this book. The holder of the
option must decide what to do with the rights the option contract grants.
The decision will depend on the market situation, and on the type of option.
There are numerous different types of options, which are not all of interest
to this book. In Chapter 1 we concentrate on standard options, also known
as vanilla options. This Section 1.1 introduces important terms.

Options have a limited life time. The maturity date T fixes the time hori-
zon. At this date the rights of the holder expire, and for later times (t > T )
the option is worthless. There are two basic types of option: The call option
gives the holder the right to buy the underlying for an agreed price K by the
date T . The put option gives the holder the right to sell the underlying for
the price K by the date T . The previously agreed price K of the contract is
called strike or exercise price1. It is important to note that the holder is
not obligated to exercise —that is, to buy or sell the underlying according
to the terms of the contract. The holder may wish to close his position by
selling the option. In summary, at time t the holder of the option can choose
to

1 The price K as well as other prices are meant as the price of one unit of
an asset, say, in $.
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2 Chapter 1 Modeling Tools for Financial Options

• sell the option at its current market price on some options exchange
(at t < T ),

• retain the option and do nothing,
• exercise the option (t ≤ T ), or
• let the option expire worthless (t ≥ T ).

In contrast, the writer of the option has the obligation to deliver or buy
the underlying for the price K, in case the holder chooses to exercise. The
risk situation of the writer differs strongly from that of the holder. The writer
receives the premium when he issues the option and somebody buys it. This
up-front premium payment compensates for the writer’s potential liabilities in
the future. The asymmetry between writing and owning options is evident.
This book mostly takes the standpoint of the holder (long position in the
option).

Not every option can be exercised at any time t ≤ T . For European
options, exercise is only permitted at expiration T . American options can
be exercised at any time up to and including the expiration date. For options
the labels American or European have no geographical meaning. Both types
are traded in each continent. Options on stocks are mostly American style.

The value of the option will be denoted by V . The value V depends
on the price per share of the underlying, which is denoted S. This letter
S symbolizes stocks, which are the most prominent examples of underlying
assets. The variation of the asset price S with time t is expressed by St or
S(t). The value of the option also depends on the remaining time to expiry
T − t. That is, V depends on time t. The dependence of V on S and t is
written V (S, t). As we shall see later, it is not easy to define and to calculate
the fair value V of an option for t < T . But it is an easy task to determine
the terminal value of V at expiration time t = T . In what follows, we shall
discuss this topic, and start with European options as seen with the eyes of
the holder.

S

V

K

Fig. 1.1. Intrinsic value of a call with exercise price K (payoff function)
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The Payoff Function

At time t = T , the holder of a European call option will check the current
price S = ST of the underlying asset. The holder has two alternatives to
acquire the underlying asset: either buying the asset on the spot market
(costs S), or buying the asset by exercising the call option (costs K). The
decision is easy: the costs are to be minimal. The holder will exercise the call
only when S > K. For then the holder can immediately sell the asset for the
spot price S and makes a gain of S −K per share. In this situation the value
of the option is V = S − K. (This reasoning ignores transaction costs.) In
case S < K the holder will not exercise, since then the asset can be purchased
on the market for the cheaper price S. In this case the option is worthless,
V = 0. In summary, the value V (S, T ) of a call option at expiration date T
is given by

V (ST , T ) =

{
0 in case ST ≤ K (option expires worthless)

ST − K in case ST > K (option is exercised)

Hence
V (ST , T ) = max{ST − K, 0} .

Considered for all possible prices St > 0, max{St−K, 0} is a function of St, in
general for 0 ≤ t ≤ T .2 This payoff function is shown in Figure 1.1. Using
the notation f+ := max{f, 0}, this payoff can be written in the compact
form (St − K)+. Accordingly, the value V (ST , T ) of a call at maturity date
T is

V (ST , T ) = (ST − K)+ . (1.1C)

For a European put, exercising only makes sense in case S < K. The
payoff V (S, T ) of a put at expiration time T is

V (ST , T ) =

{
K − ST in case ST < K (option is exercised)

0 in case ST ≥ K (option is worthless)

Hence
V (ST , T ) = max{K − ST , 0} ,

or
V (ST , T ) = (K − ST )+ , (1.1P)

compare Figure 1.2.

2 In this chapter, the payoff evaluated at t only depends on the current
value St. Payoffs that depend on the entire path St for all 0 ≤ t ≤ T occur
for exotic options, see Chapter 6.
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S

V

K

K

Fig. 1.2. Intrinsic value of a put with exercise price K (payoff function)

The curves in the payoff diagrams of Figures 1.1 and 1.2 show the option
values from the perspective of the holder. The profit is not shown. For an
illustration of the profit, the initial costs for buying the option at t = t0 must
be subtracted. The initial costs basically consist of the premium and the
transaction costs. Since both are paid upfront, they are multiplied by er(T−t0)

to take account of the time value; r is the continuously compounded interest
rate. Subtracting the costs leads to shifting down the curves in Figures 1.1
and 1.2. The resulting profit diagram shows a negative profit for some range
of S-values, which of course means a loss (see Figure 1.3).

K

S

V

K

Fig. 1.3. Profit diagram of a put

The payoff function for an American call is (St−K)+ and for an American
put (K−St)+ for any t ≤ T . The Figures 1.1 and 1.2 as well as the equations
(1.1C), (1.1P) remain valid for American type options.

The payoff diagrams of Figures 1.1, 1.2 and the corresponding profit dia-
grams show that a potential loss for the purchaser of an option (long position)
is limited by the initial costs, no matter how bad things get. The situation for
the writer (short position) is reverse. For him the payoff curves of Figures 1.1,
1.2 as well as the profit curves must be reflected on the S-axis. The writer’s
profit or loss is the reverse of that of the holder. Multiplying the payoff of a
call in Figure 1.1 by (−1) illustrates the potentially unlimited risk of a short
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call. Hence the writer of a call must carefully design a strategy to compensate
for his risks. We will come back to this issue in Section 1.5.

A Priori Bounds

No matter what the terms of a specific option are and no matter how the
market behaves, the values V of the options satisfy certain bounds. These
bounds are known a priori. For example, the value V (S, t) of an American
option can never fall below the payoff, for all S and all t. These bounds follow
from the no-arbitrage principle (−→ Appendices A2, A3).

To illustrate the strength of no-arbitrage arguments, we assume for an
American put that its value is below the payoff. V < 0 contradicts the def-
inition of the option. Hence V ≥ 0, and S and V would be in the triangle
seen in Figure 1.2. That is, S < K and 0 ≤ V < K − S. This scenario would
allow arbitrage. The strategy would be as follows: Borrow the cash amount
of S + V , and buy both the underlying and the put. Then immediately exer-
cise the put, selling the underlying for the strike price K. The profit of this
arbitrage strategy is K −S −V > 0. This is in conflict with the no-arbitrage
principle. Hence the assumption that the value of an American put is below
the payoff must be wrong. We conclude for the put

V Am
P (S, t) ≥ (K − S)+ for all S, t .

Similarly, for the call

V Am
C (S, t) ≥ (S − K)+ for all S, t .

(The meaning of the notations V Am
C , V Am

P , V Eur
C , V Eur

P is evident.)
Other bounds are listed in Appendix D1. For example, a European put

on an asset that pays no dividends until T may also take values below the
payoff, but is always above the lower bound Ke−r(T−t) − S. The value of
an American option should never be smaller than that of a European option
because the American type includes the European type exercise at t = T and
in addition early exercise for t < T . That is

V Am ≥ V Eur

as long as all other terms of the contract are identical. When no dividends
are paid until T , the values of put and call for European options are related
by the put-call parity

S + V Eur
P − V Eur

C = Ke−r(T−t) ,

which can be shown by applying arguments of arbitrage (−→ Exercise 1.1).

Options in the Market

The features of the options imply that an investor purchases puts when the
price of the underlying is expected to fall, and buys calls when the prices are
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about to rise. This mechanism inspires speculators. An important application
of options is hedging (−→ Appendix A2).

The value of V (S, t) also depends on other factors. Dependence on the
strike K and the maturity T is evident. Market parameters affecting the
price are the interest rate r, the volatility σ of the price St, and dividends
in case of a dividend-paying asset. The interest rate r is the risk-free rate,
which applies to zero bonds or to other investments that are considered free
of risks (−→ Appendices A1, A2). The important volatility parameter σ can
be defined as standard deviation of the fluctuations in St, for scaling divided
by the square root of the observed time period. The larger the fluctuations,
respresented by large values of σ, the harder is to predict a future value of
the asset. Hence the volatility is a standard measure of risk. The dependence
of V on σ is highly sensitive. On occasion we write V (S, t; T,K, r, σ) when
the focus is on the dependence of V on market parameters.

Time is measured in years. The units of r and σ2 are per year. Writing
σ = 0.2 means a volatility of 20%, and r = 0.05 represents an interest rate of
5%. Table 1.1 summarizes the key notations of option pricing. The notation is
standard except for the strike price K, which is sometimes denoted X, or E.

The time period of interest is t0 ≤ t ≤ T . One might think of t0 denoting
the date when the option is issued and t as a symbol for “today.” But this
book mostly sets t0 = 0 in the role of “today,” without loss of generality.
Then the interval 0 ≤ t ≤ T represents the remaining life time of the option.
The price St is a stochastic process, compare Section 1.6. In real markets,
the interest rate r and the volatility σ vary with time. To keep the mod-
els and the analysis simple, we mostly assume r and σ to be constant on
0 ≤ t ≤ T . Further we suppose that all variables are arbitrarily divisible and
consequently can vary continuously —that is, all variables vary in the set IR
of real numbers.

Table 1.1. List of important variables

t current time, 0 ≤ t ≤ T
T expiration time, maturity

r > 0 risk-free interest rate, continuously compounded
S, St spot price, current price per share of stock/asset/underlying

σ annual volatility
K strike, exercise price per share

V (S, t) value of an option at time t and underlying price S

The Geometry of Options

As mentioned, our aim is to calculate V (S, t) for fixed values of K,T, r, σ.
The values V (S, t) can be interpreted as a piece of surface over the subset
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Fig. 1.4. Value V (S, t) of an American put (schematically)
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Fig. 1.5. Value V (S, t) of an American put with r = 0.06, σ = 0.30, K = 10, T = 1

S > 0 , 0 ≤ t ≤ T

of the (S, t)-plane. Figure 1.4 illustrates the character of such a surface for
the case of an American put. For the illustration assume T = 1. The figure
depicts six curves obtained by cutting the option surface with the planes
t = 0, 0.2, . . . , 1.0. For t = T the payoff function (K − S)+ of Figure 1.2 is
clearly visible.
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Shifting this payoff parallel for all 0 ≤ t < T creates another surface,
which consists of the two planar pieces V = 0 (for S ≥ K) and V = K − S
(for S < K). This payoff surface (K − S)+ is a lower bound to the option
surface, V (S, t) ≥ (K − S)+. Figure 1.4 shows two curves C1 and C2 on
the option surface. The curve C1 is the early-exercise curve, because on the
planar part with V (S, t) = K−S holding the option is not optimal. (This will
be explained in Section 4.5.) The curve C2 has a technical meaning explained
below. Within the area limited by these two curves the option surface is
clearly above the payoff surface, V (S, t) > (K − S)+. Outside that area,
both surfaces coincide. This is strict “above” C1, where V (S, t) = K − S,
and holds approximately for S beyond C2, where V (S, t) ≈ 0 or V (S, t) < ε
for a small value of ε > 0. The location of C1 and C2 is not known, these
curves are calculated along with the calculation of V (S, t). Of special interest
is V (S, 0), the value of the option “today.” This curve is seen in Figure 1.4
for t = 0 as the front edge of the option surface. This front curve may be seen
as smoothing the corner in the payoff function. The schematic illustration of
Figure 1.4 is completed by a concrete example of a calculated put surface in
Figure 1.5. An approximation of the curve C1 is shown.

The above was explained for an American put. For other options the
bounds are different (−→ Appendix D1). As mentioned before, a European
put takes values above the lower bound Ke−r(T−t) − S, compare Figure 1.6
and Exercise 1.1b.

In summary, this Section 1.1 has introduced an option with the following
features: it depends on one underlying, and its payoff is (K − S)+ or (S −
K)+, with S evaluated at the current time instant. This is the standard
option called vanilla option. All other options are called exotic. To clarify the
distinction between vanilla options and exotic options, we hint at ways how
an option can be “exotic.” For example, an option may depend on a basket
of several underlying assets, or the payoff may be different, or the option may
be path-dependent in that V no longer depends solely on the current (St, t)
but on the entire path St for 0 ≤ t ≤ T . To give an example of the latter,
we mention an Asian option, where the payoff depends on the average value
of the asset for all times until expiry. Or for a barrier option the value also
depends on whether the price St hits a prescribed barrier during its life time.
We come back to exotic options later in the book.

1.2 Model of the Financial Market

Ultimately it is the market which decides on the value of an option. If we try
to calculate a reasonable value of the option, we need a mathematical model
of the market. Mathematical models can serve as approximations and ideal-
izations of the complex reality of the financial world. For modeling financial
options, the models named after the pioneers Black, Merton and Scholes have
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Fig. 1.6. Value of a European put V (S, 0) for T = 1, K = 10, r = 0.06, σ = 0.3.
The payoff V (S, T ) is drawn with a dashed line. For small values of S the value V
approaches its lower bound, here 9.4 − S.

been both successful and widely accepted. This Section 1.2 introduces some
key elements of market models.

The ultimate aim is to value the option —that is, to calculate V (S, t).
It is attractive to define the option surfaces V (S, t) on the half strip S > 0,
0 ≤ t ≤ T as solutions of suitable equations. Then calculating V amounts to
solving the equations. In fact, a series of assumptions allows to characterize
the value functions V (S, t) as solutions of certain partial differential equations
or partial differential inequalities. The model is represented by the famous
Black–Scholes equation, which was suggested in 1973.

Definition 1.1 (Black–Scholes equation)

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (1.2)

Equation (1.2) is a partial differential equation for the value function V (S, t)
of options. This equation may serve as symbol of the classical market model.
But what are the assumptions leading to the Black–Scholes equation?
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Assumptions 1.2 (Black–Merton–Scholes model of the market)
(a) There are no arbitrage opportunities.
(b)The market is frictionless.

This means that there are no transaction costs (fees or taxes), the interest
rates for borrowing and lending money are equal, all parties have immedi-
ate access to any information, and all securities and credits are available
at any time and in any size. Consequently, all variables are perfectly di-
visible —that is, may take any real number. Further, individual trading
will not influence the price.

(c) The asset price follows a geometric Brownian motion.
(This stochastic motion will be discussed in Sections 1.6–1.8.)

(d) r and σ are constant for 0 ≤ t ≤ T . No dividends are paid in that time
period. The option is European.

These are the assumptions that lead to the Black–Scholes equation (1.2).
Some of the assumptions (c), (d) are rather strong, in particular, the volatility
σ being constant. Some of the assumptions can be weakened. We come to
more complex models later in the text. A derivation of the Black–Scholes
partial differential equation (1.2) is given in Appendix A4. Admitting all real
numbers t within the interval 0 ≤ t ≤ T leads to characterize the model as
continuous-time model. In view of allowing also arbitrary S > 0, V > 0, we
speak of a continuous model.

A value function V (S, t) is not fully defined by merely requesting that it
solves (1.2) for all S and t out of the half strip. In addition to solving this
partial differential equation, the function V (S, t) must satisfiy a terminal
condition and boundary conditions. The terminal condition for t = T is

V (S, T ) = Ψ(S) ,

where Ψ denotes the payoff function (1.1C) or (1.1P), depending on the type
of option. The boundaries of the half strip 0 < S, 0 ≤ t ≤ T are defined by
S = 0 and S → ∞. At these boundaries the function V (S, t) must satisfy
boundary conditions. For example, a European call must obey

V (0, t) = 0; V (S, t) → S − Ke−r(T−t) for S → ∞ . (1.3C)

This completes one possibility of defining a value function V (S, t). In
Chapter 4 we will come back to the Black–Scholes equation and to bound-
ary conditions. For (1.2) an analytic solution is known [equation (A4.10) in
Appendix A4]. Note that the partial differential equation (1.2) is linear in
the value function V . The nonlinearity of the Black–Scholes problem comes
from the payoff; the functions Ψ(S) = (K − S)+ or Ψ(S) = (S − K)+ are
convex. The partial differential equation (PDE) is no longer linear when As-
sumptions 1.2(b) are relaxed. For example, for considering trading intervals
Δt and transaction costs as k per unit, one could add the nonlinear term
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to (1.2), see [WDH96], [Kwok98]. Also finite liquidity (feedback of trading
to the price of the underlying) leads to nonlinear terms in the PDE. In the
general case, closed-form solutions do not exist, and a solution is calculated
numerically, especially for American options. For the latter a further non-
linearity stems from the early-exercise feature (−→ Chapter 4). For solving
(1.2) numerically, a variant with dimensionless variables can be used (−→
Exercise 1.2).

Of course, the calculated value V of an option depends on the chosen mar-
ket model. Writing V (S, t; T,K, r, σ) suggests a focus on the Black–Scholes
equation. This could be made definite by writing V BS, for example. Other
market models may involve more parameters. Then, in general, the corre-
sponding value of the value function V is different from V BS. Since we mostly
stick to the market model of Assumptions 1.2, we drop the superscript. All
our prices V are model prices, not market prices. They depend on the under-
lying choice of assumptions. For the relation of our model prices V to market
prices V mar, see Section 1.10.

At this point, a word on the notation is appropriate. The symbol S for the
asset price is used in different roles: First it comes without subscript in the
role of an independent real variable S > 0 on which the value function V (S, t)
depends, say as solution of the partial differential equation (1.2). Second it is
used as St with subscript t to emphasize its random character as stochastic
process. When the subscript t is omitted, the current role of S becomes clear
from the context.

1.3 Numerical Methods

Applying numerical methods is inevitable in all fields of technology includ-
ing financial engineering. Often the important role of numerical algorithms
is not noticed. For example, an analytical formula at hand [such as the
Black–Scholes formula (A4.10)] might suggest that no numerical procedure
is needed. But closed-form solutions may include evaluating the logarithm or
the computation of the distribution function of the normal distribution. Such
elementary tasks are performed using sophisticated numerical algorithms. In
pocket calculators one merely presses a button without being aware of the
numerics. The robustness of those elementary numerical methods is so de-
pendable and the efficiency so large that they almost appear not to exist. Even
for apparently simple tasks the methods are quite demanding (−→ Exercise
1.3). The methods must be carefully designed because inadequate strategies
might produce inaccurate results (−→ Exercise 1.4).



12 Chapter 1 Modeling Tools for Financial Options

Spoilt by generally available black-box software and graphics packages we
take the support and the success of numerical workhorses for granted. We
make use of the numerical tools with great respect but without further com-
ments, and we just assume an elementary education in numerical methods.
An introduction into important methods and hints on the literature are given
in Appendix C1.

Since financial markets undergo apparently stochastic fluctuations, stochas-
tic approaches provide natural tools to simulate prices. These methods are
based on formulating and simulating stochastic differential equations. This
leads to Monte Carlo methods (−→ Chapter 3). In computers, related simu-
lations of options are performed in a deterministic manner. It will be decisive
how to simulate randomness (−→ Chapter 2). Chapters 2 and 3 are devoted
to tools for simulation. These methods can be applied even in case the As-
sumptions 1.2 are not satisfied.

More efficient methods will be preferred provided their use can be justified
by the validity of the underlying models. For example it may be advisable to
solve the partial differential equations of the Black–Scholes type. Then one
has to choose among several methods. The most elementary ones are finite-
difference methods (−→ Chapter 4). A somewhat higher flexibility concerning
error control is possible with finite-element methods (−→ Chapter 5). The
numerical treatment of exotic options requires a more careful consideration of
stability issues (−→ Chapter 6). The methods based on differential equations
will be described in the larger part of this book.

The various methods are discussed in terms of accuracy and speed. Ulti-
mately the methods must give quick and accurate answers to real-time prob-
lems posed in financial markets. Efficiency and reliability are key demands.
Internally the numerical methods must deal with diverse problems such as
convergence order or stability. So the numerical analyst is concerned in error
estimates and error bounds. Technical criteria such as complexity or storage
requirements are relevant for the implementation.

The mathematical formulation benefits from the assumption that all vari-
ables take values in the continuum IR. This idealization is practical since
it avoids initial restrictions of technical nature, and it gives us freedom to
impose artificial discretizations convenient for the numerical methods. The
hypothesis of a continuum applies to the (S, t)-domain of the half strip
0 ≤ t ≤ T , S > 0, and to the differential equations. In contrast to the
hypothesis of a continuum, the financial reality is rather discrete: Neither
the price S nor the trading times t can take any real value. The artificial
discretization introduced by numerical methods is at least twofold:

1.) The (S, t)-domain is replaced by a grid of a finite number of (S, t)-
points, compare Figure 1.7.

2.) The differential equations are adapted to the grid and replaced by a
finite number of algebraic equations.
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Fig. 1.7. Grid points in the (S, t)-domain

Another kind of discretization is that computers replace the real numbers by
a finite number of rational numbers, namely, the floating-point numbers. The
resulting rounding error will not be relevant for much of our analysis, except
for investigations of stability.

The restriction of the differential equations to the grid causes discretiza-
tion errors. The errors depend on the coarsity of the grid. In Figure 1.7,
the distance between two consecutive t-values of the grid is denoted Δt.3 So
the errors will depend on Δt and on ΔS. It is one of the aims of numerical
algorithms to control the errors. The left-hand figure in Figure 1.7 shows a
simple rectangle grid, whereas the right-hand figure shows a tree-type grid
as used in Section 1.4. The type of the grid matches the kind of underly-
ing equations. The values of V (S, t) are primarily approximated at the grid
points. Intermediate values can be obtained by interpolation.

The continuous model is an idealization of the discrete reality. But the
numerical discretization does not reproduce the original discretization. For
example, it would be a rare coincidence when Δt represents a day. The deriva-
tions that go along with the twofold transition

discrete −→ continuous −→ discrete

do not compensate.

3 The symbol Δt denotes a small increment in t (analogously ΔS,ΔW ). In
case Δ would be a number, the product with u would be denoted Δ · u or
uΔ.


