SOLAR SYSTEM MAPS From Antiquity to the Space Age

NICK KANAS

Solar System Maps

From Antiquity to the Space Age

Solar System Maps

From Antiquity to the Space Age

Published in association with Praxis Publishing Chichester, UK

Professor Emeritus Nick Kanas M.D. University of California San Francisco U.S.A.

SPRINGER-PRAXIS BOOKS IN POPULAR ASTRONOMY

ISBN: 978-1-4614-0895-6 ISBN 97 DOI: 10.1007/ 978-1-4614-0896-3 Springer New York Heidelberg Dordrecht London

ISBN 978-1-4614-0896-3 (eBook)

Library of Congress Control Number: 2013945404

© Springer Science+Business Media New York 2014

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science + Business Media, LCC, 233 Spring Street, New York, NY 10013, U.S.A.) except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Cover design: Jim Wilkie Project copy editor: Christine Cressy Typesetting: David Peduzzi

Printed on acid-free paper

Springer is a part of Springer Science + Business Media (www.springer.com)

About the Author

Nick Kanas is Emeritus Professor of Psychiatry at the University of California, San Francisco, where he directed the group therapy training program. For over 20 years, he has conducted research in group therapy and, for over 20 years after that, conducted space-related research with the European Space Agency and NASA. He was a Principal Investigator of NASA-funded research on astronauts and cosmonauts for over 15 of these years, with over 200 professional publications. Dr. Kanas has been writing and conducting research in space-related activities since 1969 and, in 1971, was the senior author of a NASA technical monograph entitled *Behavioral, Psychiatric and Sociological Problems of Long-Duration Space Missions* (NASA TM X-58067). He is currently the co-author of a Springer textbook entitled *Space Psychology and Psychiatry*, which was given the 2004 International Academy of Astronautics Life Science Book Award, is now in its second edition, and has been translated into Chinese. In 1999, he received the Aerospace Medical Association's Longacre Award and, in 2008, received the International Academy of Astronautics.

Dr. Kanas has collected antiquarian star maps for over 30 years and has given a number of talks on celestial cartography to amateur and professional groups at the Adler Planetarium, the Lick Observatory, the International Conference on the History of Cartography at Harvard, International Map Collectors Society Conferences in Wellington and Vienna, the Society for the History of Astronomy Meeting in Birmingham, and the Flamsteed Astronomical Society Meeting in Greenwich. He has published articles on celestial cartography in magazines and journals including *Sky & Telescope, Imago Mundi*, and the *Journal of the International Map Collectors Society* and is a Fellow of the Royal Astronomical Society in London. An amateur astronomer for over 50 years and an avid reader of science fiction, Dr. Kanas has presented talks on space psychology and on celestial mapping at several regional and WorldCon science-fiction and Fact magazine, and written a book for upcoming publication Springer's new Science and Fiction series entitled *The New Martians: A Scientific Novel*. He has also written another map-related book for Praxis/Springer entitled *Star Maps: History, Artistry, and Cartography*, which is now in its second edition.

Contents

For	eword			xi
Pre	face			xiii
Acl	knowled	gments		xvii
Lis	t of figu	res		xix
Lis	t of table	es		xxvii
1	World	Views ar	nd the Solar System	1
	1.1	Paradign	n Shifts and World Views	2
	1.2	Circles i	n the Sky	4
		1.2.1	Projections of the Earth's Circles	4
		1.2.2	The Armillary Sphere	7
	1.3	Cosmos	and Solar System: The Geocentric Spheres	8
	1.4	The View	w from Mars	14
2	Earth-	Centered	l World Views in Classical Europe	
	2.1	Greek W	Vorld Views	15
		2.1.1	Early Greek Philosophers	15
		2.1.2	Pythagoras and His Followers	17
		2.1.3	Plato	18
		2.1.4	Eudoxus	19
		2.1.5	Aristotle	
		2.1.6	Eratosthenes and the Alexandria Library	
		2.1.7	The Eccentric Model	
		2.1.8	Apollonius and the Epicycle Model	
		2.1.9	Hipparchus	
		2.1.10	The Stoics	
		2.1.11	Claudius Ptolemy	
	2.2	The Gree	ek Constellations	

	2.3	Roman	World Views	
		2.3.1	Pliny the Elder	
		2.3.2	Neoplatonists	
3	Non-	Europear	1 World Views	39
	3.1	Prehist	oric Man and Megalithic Britain	
	3.2	Sub-Sa	hara Africa	
	3.3	Egypt		
	3.4	Mesopo	otamia	
	3.5	India		
	3.6	China		
	3.7	Austral	ia and Polynesia	
	3.8	The An	nericas	66
4	Eartl	h-Centere	ed World Views in the Middle Ages and Renaissance	75
	4.1	The Fa	Il of Rome and the early middle ages in Europe	
	4.2	Islamic	World Views	
	4.3	Byzant	ine World View	
	4.4	Classic	al Greek Astronomy returns to Europe	
		4.4.1	Entry in the West from the Muslims	
		4.4.2	Johannes de Sacrobosco	
		4.4.3	Entry in the East from the Byzantines	
	4.5	Contrib	outions from Central Europe	
		4.5.1	Georg Peurbach	
		4.5.2	Regiomontanus	
		4.5.3	Hartmann Schedel	
		4.5.4	Peter Apian	89
5	Sun-	Centered	and Hybrid World Views	
	5.1	Paradig	m Shift: Heliocentrism with Circular Orbits	
		5.1.1	The Pre-Copernicans	
		5.1.2	Nicholas Copernicus	
	5.2	Persiste	ence of the Geocentric World View: Joseph Moxon	
	5.3	Geohel	iocentric Hybrids	
		5.3.1	Martianus Capella	
		5.3.2	Tycho Brahe	
		5.3.3	Giovanni Battista Riccioli	
	5.4	Early S	upporters of the Copernican System: Thomas Hood	
	5.5	Paradig	m Shift: The Elliptical Orbits of Johannes Kepler	105
		5.5.1	Kepler's Early Contributions	105
		5.5.2	Elliptical Orbits and Later Work	107
		5.5.3	Somnium, Science Fiction, and Life on the Moon	108
	5.6	Paradig	m Shift: The Telescope and Galileo	110
		5.6.1	Whither the Spyglass?	110
		5.6.2	Galileo Galilei: A Brief Biography	112

	5.7	World `	View Comparisons	113
6	No C	enter: Ar	u Unbounded Universe and the Plurality of Worlds	117
	6.1	Open S	paces and Many Planets	117
		6.1.1	Thomas Digges	117
		6.1.2	Giordano Bruno	120
		6.1.3	Rene Descartes	
		6.1.4	Christiaan Huvgens	
		6.1.5	Newton	
		6.1.6	Plurality of Worlds after Newton	
	6.2	Paradia	m Shift: The New Universe	
		6.2.1	Advances in Telescope Technology	128
		6.2.2	Emergence of Astrophotography	
		6.2.3	The Classification of Deep-Sky Objects	
		6.2.4	Deep-Sky Objects From Galileo's Time to 1900	135
		6.2.5	Deep-Sky Objects and the 20th Century	
7	Our	Expandir	ng Solar System: Planets and Moons	
	7.1	Galileo	o's Telescopes and <i>Sidereus Nuncius</i>	142
	7.2	Moon		143
		7.2.1	Naked-Eye Observations	143
		7.2.2	Galileo	143
		7.2.3	Thomas Harriot	144
		7.2.4	The Need for an Accurate Lunar Map	146
		7.2.5	Johannes Hevelius and the First Lunar Atlas	147
		7.2.6	Riccioli and the Double Moon Dilemma	151
		7.2.7	Later Developments in Lunar Cartography	151
	7.3	Sun		159
	7.4	Mercur	ту	161
	7.5	Venus.		164
	7.6	Mars		166
		7.6.1	Planetary Body	166
		7.6.2	Giovanni Schiaparelli and the Canals of Mars	169
		7.6.3	Percival Lowell and Life on Mars	173
		7.6.4	The Canals Debunked	176
		7.6.5	Moons of Mars	179
	7.7	Jupiter		179
		7.7.1	Planetary Body	179
		7.7.2	Moons of Jupiter	
	7.8	Saturn.		
		7.8.1	Planetary Body and Ring System	
		7.8.2	Moons of Saturn	
	7.9	Uranus		189
		7.9.1	Planetary Body and Ring System	189
		7.9.2	Moons of Uranus	191

	7.10	Neptune	<u>م</u>	191
		7.10.1	Planetary Body and Ring System	191
		7.10.2	Moons of Neptune	191
8	Our E	xpandin	g Solar System: Pluto, Asteroids, and the Far Reaches .	193
	8.1	Pluto ar	nd the Search for Planet X	193
		8.1.1	Planetary Body	193
		8.1.2	Charon	195
	8.2	Vulcan:	The Planet of Romance	195
	8.3	Asteroi	ds	196
	8.4	Comets		199
		8.4.1	Stansilaw Lubieniecki's Theatrum Cometicum	202
		8.4.2	Edmond Halley's Comet	202
		8.4.3	Charles Messier's Catalog	
		8.4.4	Origin of Comets	
	8.5	Oort Cl	oud	
	8.6	Gerard	Kuiper and the Kuiper Belt	
	8.7	Paradig	m Shift: Kuiper Belt Objects (KBOs)	
		8.7.1	Objects Still within the Kuiper Belt	
		8.7.2	Scattered Disk Objects	
		8.7.3	Centaurs	
	8.8	Pluto's	Fall from Grace and the Rise of Dwarf Planets	
	8.9	The Me	teor Family	
	8.10	Transits	and Occultations	
	8.11	Eclipses	S	
	8.12	Paradig	m Shift: Exoplanets	227
9	Popul	arizing t	he Solar System in the Early United States	
	9.1	Astrono	my in Colonial and Early America	
	9.2	Almana	cs	232
	9.3	Astrono	my Books for Students	
	9.4	Astrono	my Books for Adults	
	9.5	General	Geography Books	
	9.6	Early A	merican Maps of the Solar System	
	9.7	O.M. M	litchel	
	9.8	The Gro	owth of Observational Astronomy in the United States	
10	Space	Age Ima	ges of the Solar System	
	10.1	Today's	Solar System: An Overview	
	10.2	Moon		252
	10.3	Sun		255
	10.4	Mercur	у	257
	10.5	Venus		259
	10.6	Mars		
		10.6.1	Planetary Body	

	10.6.2	Life on Mars	
	10.6.3	Moons of Mars	
10.7	Jupiter		
	10.7.1	Planetary Body and Ring System	
	10.7.2	Moons of Jupiter	
10.8	Saturn	-	
	10.8.1	Planetary Body and Ring System	
	10.8.2	Moons of Saturn	
10.9	Uranus		
	10.9.1	Planetary Body and Ring System	
	10.9.2	Moons of Uranus	
10.10	Neptune		286
	10.10.1	Planetary Body and Ring System	
	10.10.2	Moons of Neptune	
10.11	Pluto and	d the Kuiper Belt	
	10.11.1	Planetary Body	
	10.11.2	Moons of Pluto	
	10.11.3	Kuiper Belt	
10.12	Asteroid	s	
10.13	Comets.		
Notes			
Bibliograp	hy		
Closeam			201
Giossary	•••••		
Index			

Foreword

In 1543, Nicolaus Copernicus invented the solar system. "Hold on!" you say. Surely the solar system had been there forever, and Copernicus didn't just invent it.

Yes and no! What Copernicus had revealed and invented was the arrangement of the planets—a stunningly new way of mapping them. He revolutionized the way humankind would conceive of the planets as a system, controlled by the Sun. "Thus indeed," Copernicus wrote, "the sun, as though seated on a royal throne, governs the family of planets revolving around it."

Nick Kanas has documented this revolutionary shift in his ingeniously illustrated album of solar system images, all historical even though the modern views, "postcards from space", are scarcely a few decades old. Joining the pictures is a rich commentary that points out subtle details and places them in a developing astronomical context.

To those of us impressed with the rapidity of change in the 21st Century, it may seem odd that the authors and illustrators of the 16th Century were so slow to switch their astronomical imagery in the years following the publication of Copernicus's epoch-making work. But the heliocentric system appeared to attack common sense. Beautiful as it may have appeared to cartographers who could map the heavenly spheres with circles conveniently ringing the Sun, the idea of living on a rapidly spinning ball hurtling around the Sun seemed totally ridiculous. Surely the Earth's inhabitants would be spun off into space!

There were alternative views. Perhaps the planets did circle the Sun, while the Sun itself carried the entire retinue around a fixed Earth. A theory of this sort was seriously proposed by the great Danish observer, Tycho Brahe. And this, too, is documented in Kanas's fascinating collection. But by the mid-1700s, such alternative views, along with the ancient geocentric system, were quaint has-beens.

In 1608, the telescope arrived on the scene. Galileo Galilei promptly converted this carnival toy into a scientific discovery machine, and soon there were planets with their moons, new worlds to map and depict. And more charts and maps to collect, for Nick Kanas is an astute collector, always searching for new worlds to conquer. So his quest has taken him from worldwide ancient views to popularizations in a growing America, where curiosity about the heavens and ever-bigger telescopes caught the public imagination. Surely some

xiv Foreword

of that unbounded enthusiasm has fueled the Space Age, with new and different ways of depicting the solar system. Images from a decade ago are already history.

It's a great trip! Get your ticket here!

Owen Gingerich Harvard-Smithsonian Center for Astrophysics Cambridge, MA

Preface

In my previous book, *Star Maps: History, Artistry, and Cartography*, now in its second edition, I commented that antiquarian celestial books and atlases used two types of illustrations to describe the heavens: constellation maps and cosmological maps. The first type focused on the location of the stars and other heavenly bodies in the sky with reference to constellations and coordinate systems that measured celestial latitude and longitude (or declination and right ascension in modern parlance). *Star Maps* generally dealt with these kinds of images.

In contrast, the book you hold in your hand, *Solar System Maps: From Antiquity to the Space Age*, focuses on the second type of image and in a sense is a sequel to the first book. It traces how we have conceptualized our place in the cosmos and illustrates this using world view and solar system images from antiquity to the Space Age. Cultural factors are woven into the story from both European and non-European perspectives. Initially, there was no distinction between our solar system and the rest of the universe. The Earth was simply the center of everything, with the planets and stars surrounding it in aethereal shells. Gradually, this world view shifted, with the Sun becoming the center, then its retime of planets being separated from the rest of the cosmos as a true solar system. This required dramatic paradigm shifts in the way we viewed the heavens, sparked by the telescope and our ability to think critically.

In telling this story, I have enhanced the text using images from antiquarian books and atlases, from powerful telescopes on Earth and in space, and from instruments on space probes visiting the planets and their moons. The result is a mapping of the solar system that shows not only the way its grand scheme has been visualized over the centuries, but also the way each component (such as a planet or moon) presented itself topographically and has been interpreted by the observer. A notable exception is the Earth. Entire books have been devoted to terrestrial maps and to images of our planet's surface from space, and to include our home planet in this book would exceed its space limitations (no pun intended!).

Chapter 1 introduces the reader to the general theme of the book, discusses the concepts of world views and paradigm shifts, considers how early maps of the solar system were really maps of the cosmos, and orients the reader to the sky as seen from an Earth-bound perspective. Chapter 2 discusses and illustrates the geocentric Earth-centered world view/ solar system model developed by the Classical Greeks, provides an overview of their constellation system, and describes the continuation of their ideas into the Roman period.

Chapter 3 considers the world views of megalithic Britain and a number of non-European cultures in Sub-Sahara Africa, Egypt, Mesopotamia, India, China, Australia and Polynesia, and the Americas. Chapter 4 continues the Greek geocentric focus into the Middle Ages and early Renaissance, covering Islamic, Byzantine, and central European contributions. Chapter 5 deals with three major paradigm shifts and their sequelae: the development of a heliocentric model by Copernicus (and the various geoheliocentric hybrids that competed with it), the conceptualization of elliptical planetary orbits by Kepler, and the observations made through the telescope by Galileo. Chapter 6 discusses the notions that the universe may be unbounded, that there is a plurality of worlds, and that our solar system can be discussed separately from deep-sky objects (e.g., star clusters, nebulae, galaxies). Chapter 7 describes the conceptualizations of the solar system up to the Space Age, dealing with our Sun, Moon, and the planets and their moons. Chapter 8 continues this story with the special case of Pluto, asteroids, meteors, comets, and components of the Kuiper Belt and Oort Cloud. There is also a discussion of the observations of exoplanets in other star systems. Chapter 9 takes us away from Europe and into the United States, reviewing how this young country quickly moved from being a relative backwater to a major player in the way our solar system and universe are observed and mapped. Finally, Chapter 10 describes advances made since the launch of Sputnik in how our solar system is conceived and visualized.

In an effort to make the text flow more naturally, detailed information and references are placed at the end of the book in separate notes, bibliography, and glossary sections. A unique feature is the inclusion of comparable images from both antiquarian and Space Age sources, which allow the reader to compare and contrast traditional views of the heavens with the latest images acquired by Earth-orbiting telescopes and traveling space probes. Hopefully, these images will enhance the text and provide a vivid reminder of the beauty of our solar system.

> Nick Kanas May 1, 2013

To my wife Carolynn, who continues to be my partner in celestial map collecting and who has encouraged me to write this book.

Acknowledgments

A book of this type cannot be written in a vacuum, and I would like to thank a number of people for their help and support. First and foremost is my wife Carolynn, who has joined me in my quest for finding just the right celestial prints and encouraged me to write this book. Owen Gingerich, Professor Emeritus of Astronomy and History of Science at the Harvard-Smithsonian Center for Astrophysics, has provided valuable astronomical advice and helpful editorial suggestions to an earlier draft of this book and has kindly written a thoughtful Foreword. Both he and my friend and fellow collector Robert Gordon have contributed digital images to the book from their celestial map collections. Peter Barber, Tom Harper, and their staff at the British Library in London have been supportive and helpful during my research and have allowed me to inspect celestial maps and atlases from their vast holdings.

Clive Horwood, my publisher at Praxis Publishing Ltd. in Chichester, England, and his associate Romy Blott have been instrumental in the conceptualization and production of this book. Similarly, Maury Solomon, Editor for Physics and Astronomy at Springer Publishing Company, and her associate Megan Ernst, have been very supportive and helpful during the publication process. David Peduzzi has done a beautiful job with the typesetting, and Christine Cressy has been a diligent copy editor. As with the my previous book *Star Maps*, Jim Wilkie has used his magic to create a stunning cover design that I think captures the scope and beauty of the book's content.

Unless otherwise indicated, the images in this book have been produced from digital photographs I took from antiquarian books and prints that are part of the Nick and Carolynn Kanas Collection. Permission to use and photograph images from other sources have been obtained, and these sources are acknowledged in the legends to the figures. Special mention should be made of NASA for allowing their incredibly beautiful images to be available online for books such as mine, to Wikimedia Commons for providing free online images from antiquarian sources, and to Whitney Hasler and the independent Harvard Book Store in Cambridge, Massachusetts, for providing excellent print-on-demand copies of books from the public domain. I have made every effort to source original copyright holders of images used in this book, and I apologize to any that I may have missed through oversight or inability to contact via e-mail or phone.

List of figures

Figure 1.1	The Copernican heliocentric world view	3
Figure 1.2	An image from the first American edition of Flammarion's	
0	Popular Astronomy	5
Figure 1.3	A figure of an armillary sphere	6
Figure 1.4	The geocentric world view, from the 1579 edition of Piccolomini's	
0	La Sfera del Mondo	9
Figure 1.5	A figure from Sir Robert Ball's The Story of the Heavens	. 11
Figure 1.6	The geocentric world view, from the 1653 edition of Boisseur's	
0	Tresor des Cartes Geographiques	. 12
Figure 1.7	World view from the perspective of a Martian, from Camille	
0	Flammarion's Les Terres du Ciel	. 13
Figure 2.1	An illustration of the sphericity of the Earth, from the 1647 Leiden	
0	edition of Sacrobosco's De Sphaera	. 17
Figure 2.2	A plate showing the orbit of the Sun around the central Earth	
-	according to Hipparchus and adapted by Ptolemy	. 22
Figure 2.3	A figure from Sir Robert Ball's The Story of the Heavens	. 23
Figure 2.4	An illustration explaining the retrograde motion of an outer planet in	
	the sky, from the 1647 Leiden edition of Sacrobosco's De Sphaera	. 24
Figure 2.5	A diagram showing the orbit of the Moon around the Earth	
	according to Ptolemy, from Cellarius's Harmonia Macrocosmica	. 25
Figure 2.6	An outer planet's orbit according to Ptolemy from the 1647	
	Leiden edition of Sacrobosco's De Sphaera	. 29
Figure 2.7	A schematic diagram of the world view advocated by Ptolemy	. 31
Figure 2.8	The planetary model of Ptolemy for Mercury from the 1647 Leiden	
	edition of Sacrobosco's De Sphaera	. 32
Figure 2.9	A pull-out plate showing the northern celestial hemisphere	
	("Hemisphaerium Boreale") centered on the north ecliptic pole,	
	from Schaubach's Eratosthenis' Catasterismi, 1795	. 33
Figure 2.10	A pull-out plate showing the southern celestial hemisphere	
	("Hemisphaerium Australe") centered on the south ecliptic pole,	
	from Schaubach's Eratosthenis' Catasterismi, 1795	. 34

Figure 2.11	A schematic diagram of the world views advocated by Plato and the
	Neoplatonist Porphyrius
Figure 3.1	Two pages illustrating Stonehenge, from J. Norman Lockyer's 1894
	The Dawn of Astronomy
Figure 3.2	Traditional contemporary Tsaye mask, Teke tribe, Congo/Gabon,
	Africa
Figure 3.3	Drawing of a ceiling painting from a temple at Thebes, from
	Description de l'Egypte, c.1802
Figure 3.4	Chromolithograph of an Egyptian papyrus "Judgment of the Dead",
0	from Binion's 1887 Ancient Egypt or Mizraim
Figure 3.5	Copper schematic engraving of the famous "Dendera zodiac"
0	planisphere at the Temple of Hathor at Dendera
Figure 3.6	A pull-out plate of the plan of the temples at Karnak, from
0	J. Norman Lockyer's 1894 The Dawn of Astronomy
Figure 3.7	Babylonian clay tablet
Figure 3.8	Indian constellations, from the 1894 American edition of
0	Flammarion's Popular Astronomy
Figure 3.9	The 27 <i>naksatra</i> constellations from Vedic mythology, from G.R.
5	Kaye's Memoirs of the Archaeological Survey of India, No 18:
	Hindu Astronomy
Figure 3.10	A diagram of the 28 Chinese lunar mansions, from the 1901
5	edition of Ryoan's Wakan Sansai Zue
Figure 3.11	The Chinese northern circumpolar constellations, from the
0	1901 edition of a book first written in Japan in 1712 by Terashima
	Ryoan,
Figure 3.12	The 12 Chinese constellations of the zodiac (left), from the 1894
0	American edition of Flammarion's Popular Astronomy
Figure 3.13	Contemporary Aboriginal painting of the Pleiades star cluster
Figure 3.14	Frontal, side, and rear views of a Mayan stone idol at Copan
Figure 3.15	Catherwood engraving of the Caracol at Chichen Itza, from Stephens's
-	Incidents of Travel in Central America, Chiapas and Yucatan, 1843 69
Figure 3.16	A depiction of the Aztec calendar ("Roue Chronologique des
	Mexiquains"), from Bellin's Historie Generale des Voyages, 175470
Figure 3.17	An original Navaho sand painting of the "Lightning People"72
Figure 4.1	A page from a 13 th -Century Byzantine manuscript
Figure 4.2	Copper engraving from the first printed Ottoman Turkish world atlas,
	the Cihannuma, produced by Katip Celebi in 173279
Figure 4.3	A page from a 13 th -Century Byzantine manuscript
Figure 4.4	The prevailing geocentric world view of the Middle Ages
	and Renaissance, from the 1647 Leiden edition of Sacrobosco's
	De Sphaera
Figure 4.5	Woodcut illustration depicting the 7 th day of Creation, from a page
-	of the 1493 Latin edition of Schedel's Nuremberg Chronicle
Figure 4.6	A beautifully colored volvelle from the 1584 edition of
-	Peter Apian's Cosmographia

Figure 4.7	A volvelle from Peter Apian's Astronomicum Caesarium,	
	published in 1540	91
Figure 5.1	A schematic diagram of the heliocentric world view proposed	
	by Copernicus	96
Figure 5.2	A double print from Coronelli's Corso Geografico Universale,	
	published in 1692	98
Figure 5.3	A schematic diagram of the world view advocated by Martianus	
	Capella	101
Figure 5.4	A schematic diagram of the world view advocated by	
0	Tycho Brahe	103
Figure 5.5	A schematic diagram of the world view advocated by Riccioli	106
Figure 5.6	Plate from a 1969 facsimile of Part I (<i>Pars Prior</i>) of Hevelius's	
8	Machinae Coelestis	109
Figure 5.7	Frontispiece from volume 4 of a mid-1700s French book	111
Figure 5.8	Print entitled "Le Nom de Systeme"	114
Figure 5.9	A plate produced by Doppelmayr for Homann Publications.	
8	c 1720	. 115
Figure 5.10	An enlargement of the right lower portion of the plate shown	110
i igui e e i i o	in Figure 5.9	116
Figure 6.1	A diagram of the world view proposed by Thomas Digges	110
i igui e oir	which first appeared in his father's almanac in 1576	119
Figure 6 2	Print from Brion de la Tour's Atlas General Civil et Ecclesiastiau	ο
I Iguite 0.2	nublished in 1766	123
Figure 6 3	Conner engraving from Bion's L'Usage des Globes Celestes et	120
rigure 0.5	Torrostros	124
Figure 6.4	Frontispiece from the 1742 edition of Doppelmayr's	147
riguit 0.4	Atlas Coelestis	127
Figure 6 5	Frontispiece from Todd's 1800 revised edition of Staale's	141
Figure 0.5	Popular Astronomy	120
Figuro 6 6	Photograph of the Moon at day 10 of its cycle from Camille	149
Figure 0.0	Flommarion's Las Tarras du Cial, published in 1884	130
Figure 67	An angrowing from the 1848 adjuin of Mitchel's The Planetary	150
Figure 0.7	and Stallar Worlds	122
Figuro 6 8	An angrowing from the 1848 edition of Mitchel's The Planetary	134
Figure 0.0	All engraving from the 1848 edition of whicher's <i>The Flanetary</i>	122
Figure 6.0	Dista IV from a loose set of four plates entitled The Miller Wer	133
rigure 0.9	from the North Pole to 100 of South Declination	124
Figure (10	from the North Pole to 10° of South Declination	134
Figure 6.10	An engraving from the 1848 edition of Mitchel's <i>The Planetary</i>	120
F* < 11	ana Stellar worlds	136
Figure 6.11	An engraving from the 1848 edition of Mitchel's <i>The Planetary</i>	107
TH < 44	and Stellar Worlds	137
Figure 6.12	A contemporary image of the NGC4414 spiral galaxy, as taken	100
	by the Hubble Space Telescope	138

Figure 7.1	Two maps of the Moon from Carlos's <i>The Sidereal Messenger of</i>
	Galileo Galilei and a Part of the Preface to Kepler's Dioptrics 145
Figure 7.2	Diagram of Hevelius's "Fig.Q" image of the Moon, reproduced in
	Flammarion's Les Terres du Ciel, published in 1884 148
Figure 7.3	Plate showing a map of the Moon at quadrature, from the first
	true lunar atlas, <i>Selenographia</i> , by Hevelius, which was published
-	in 1647
Figure 7.4	Plate showing a map of the full Moon, from the first true lunar atlas,
	Selenographia, by Hevelius, which was published in 1647 150
Figure 7.5	Diagram of Riccioli's image of the Moon, reproduced in
	Flammarion's Les Terres du Ciel, published in 1884 152
Figure 7.6	This "double Moon" image is from a copper engraving by Johann
	Doppelmayr and published by Homann Publications, c.1730 153
Figure 7.7	Map of the Moon, probably from Bion's L'Usage des Globes
	Celeste et Terrestres, 1728
Figure 7.8	Map of the Moon printed in 1876, from the popular <i>Stieler's</i>
	Hand-Atlas
Figure 7.9	Photograph of the Apennine Mountains (below) and meteorite
	impact craters (above) on the Moon taken by E.E. Barnard c.1880 157
Figure 7.10	Engraving entitled "Le Globe Celeste" that shows a double celestial
	hemisphere, planetary and terrestrial figures, and other celestial
	phenomena, from Le Rouge's Atlas Nouveau Portatif a L'Usage
	des Militaires et du Voyageur, c.1761 158
Figure 7.11	A photograph of sunspots taken in 1861, from Sir Robert Ball's
F' 7 10	The Story of the Heavens, published in 1897 159
Figure 7.12	A drawing of solar prominences by Trouvelot at Harvard College
E' 710	100 1.100 1.100 1.100
Figure 7.13	Lines observed on Mercury, from the 1909 second printing of
F: 7 14	Lowell's <i>Mars as the Abode of Life</i> , first published in 1908
Figure 7.14	A map of Mercury produced by E.M. Antoniadi, c.1920
rigure /.15	from Douvier's Equiliar Astronomy published in 1957
Figure 7 16	Changing surface features abserved on Vanus over time, from
Figure 7.10	Comillo Elemention's Les Terres du Cial published in 1884
Figure 7 17	The orbits of Earth and Mars from the 1804 American edition of
Figure 7.17	Flammarion's <i>Popular Astronom</i> y
Figure 7 18	Figure drawings of Mars made by Dawes during the opposition of
Figure 7.10	1864 from the 1871 edition of Proctor's Other Worlds than Ours 168
Figure 7 19	A map of Mars, from the 1871 edition of Proctor's Other Worlds
Figure 7.19	than Ours
Figure 7 20	A reproduction of Green's map of Mars 1877 taken from the 1804
1 iguit / .40	American edition of Flammarion's <i>Popular Astronomy</i> 171
Figure 7 21	Schiaparelli's map of Mars, compiled over the period 1877–1886 172
Figure 7 22	A map of Mars from the 1909 second printing of Lowell's Mars
1 iguit / .44	as the Abode of Life first published in 1908
	us me novue of Life, mist published in 1700

Figure 7.23	Drawings by Dreyer made at Birr Castle during the 1877
	opposition of Mars, from the Scientific Transactions of the
D : 7.04	Royal Dublin Society, November, 1878
Figure 7.24	Drawings by Boeddicker made at Birr Castle during the 1881
	opposition of Mars, from the Scientific Transactions of the Royal
	Dublin Society, December, 1882
Figure 7.25	Spectrograms of Mars and the Moon taken by V.M. Slipher at
	Lowell Observatory in 1908, from the 1909 second printing of
	Lowell's <i>Mars as the Abode of Life</i> , first published in 1908 178
Figure 7.26	Woodbury-type photograph (which reduces image size) of 25
	Boeddicker drawings of Jupiter made at Birr Castle from
	November 18, 1880 to February 5, 1881, from the <i>Scientific</i>
	Transactions of the Royal Dublin Society, January, 1882 181
Figure 7.27	A table showing nightly views of Jupiter and its Medicean moons,
	from Carlos's The Sidereal Messenger of Galileo Galilei and
	a Part of the Preface to Kepler's Dioptrics
Figure 7.28	Early telescopic representations of Saturn depicted in Huygens'
	1659 Systema Saturnium
Figure 7.29	A diagram showing the different orientation of Saturn's rings
	as the planet revolves around the Sun and the way it appears to
	someone on the Earth, from Huygens's Systema Saturnium,
	published in 1659
Figure 7.30	Changing views of Saturn and its rings over a 20-year period, from
	the first American edition of Flammarion's Popular Astronomy 188
Figure 7.31	This Figure is from the 19th edition of Asa Smith's Illustrated
	Astronomy, an American astronomy text written around 1860 190
Figure 8.1	A diagram showing the solar transit of the hypothetical planet
	Vulcan, the "planet of romance", from Sir Robert Ball's The Story
	of the Heavens, published in 1897 196
Figure 8.2	An astronomy print labeled "Tableau Analytique", from
	Delamarche's 1823 edition of Geographe 197
Figure 8.3	An enlargement of the upper left part of the plate shown in Figure
	8.2, from Delmarche's Geographe 198
Figure 8.4	A depiction of the solar system, from a British daily periodical called
	The Guide to Knowledge, dated Saturday, July 21, 1832 200
Figure 8.5	Drawings by Boeddicker made at Birr Castle of Comets 1881b
	and 1881c, from the Scientific Transactions of the Royal Dublin
	Society, August, 1882 201
Figure 8.6	An engraving of the Great Comet of 1858 (Donati's Comet)
	from the 1874 edition of Mitchel's Popular Astronomy 203
Figure 8.7	Plate from a 1969 facsimile of Part II (Pars Posterior) of Hevelius's
	Machinae Coelestis, originally published in 1679 204
Figure 8.8	Plate from Stanislaw Lubieniecki's Theatrum Cometcium
-	(Pars Posterior), published in 1667 205

Figure 8.9	A map of the path of Halley's Comet, from The American	
0	Almanac and Repository of Useful Knowledge for the Year 1835	207
Figure 8.10	A comparison between the sizes of the relatively small and	
0	flat Kuiper Belt and the huge, spherical Oort Cloud	210
Figure 8.11	A comparison between the sizes of some of the largest	
0	known KBOs	214
Figure 8.12	The solar system in the region of Pluto and Eris	215
Figure 8.13	The path of a bright fireball, from Sir Robert Ball's <i>The Story</i>	
8	of the Heavens, published in 1897	217
Figure 8.14	A particularly active meteor shower depicted in the 1894	
0	American edition of Flammarion's <i>Popular Astronomy</i>	219
Figure 8.15	The paths of the transits of Mercury in the 1800s, from the 1894	
0	American edition of Flammarion's <i>Popular Astronomy</i>	220
Figure 8.16	The mechanism for determining the Sun-Earth distance during	
5	a transit of Venus, from the 1894 American edition of	
	Flammarion's Popular Astronomy	221
Figure 8.17	Transit evidence for an atmosphere around Venus, from a drawing	
0	in Camille Flammarion's Les Terres du Ciel, published in 1884	222
Figure 8.18	Image of Venus transiting the Sun, from Sir Robert Ball's	
0	The Story of the Heavens, published in 1897	223
Figure 8.19	A total eclipse of the Sun, from the 1894 American edition of	
-	Flammarion's Popular Astronomy	225
Figure 8.20	The mechanisms behind solar and lunar eclipses, from the 1894	
	American edition of Flammarion's Popular Astronomy	226
Figure 8.21	An illustration of a lunar eclipse, from the 1647 Leiden edition of	
	Sacrobosco's <i>De Sphaera</i>	227
Figure 8.22	An announcement of an annular (i.e., non-total) solar eclipse,	
	from The Illustrated London News, dated October, 1847	229
Figure 8.23	Copper engraving entitled "A Map Exhibiting the Dark Shadow	
	of the Moon," produced by Laurie and Whittle in 1794	230
Figure 9.1	Two pages from Nathan Daboll's 1847 edition of The New	
	England Almanac, and Farmer's Friend	233
Figure 9.2	Eclipse diagrams, from the 19th edition of Asa Smith's <i>Illustrated</i>	
	Astronomy, an American astronomy text written around 1860	236
Figure 9.3	A constellation map from the 19th edition of Asa Smith's	
	Illustrated Astronomy, written around 1860	237
Figure 9.4	Two pages from Bouvier's Familiar Astronomy,	
	published in 1857	238
Figure 9.5	Telescopic appearances of Mars, from the 1845 edition of Elijah	
	Burritt's The Geography of the Heavens	239
Figure 9.6	A constellation map from a colored version of the 1835 edition	
	of Elijah Burritt's Atlas to the Geography of the Heavens,	
	showing the constellations in the Virgo/Leo region of the sky	240
Figure 9.7	Print engraved by Enoch G. Gridley, c.1800	242

Figure 9.8	A double-page star chart showing the region involving Orion	
	and Taurus, from Mitchel's Atlas designed to Illustrate Mitchel's	
	Edition of the Geography of the Heavens	. 244
Figure 9.9	An engraving from the 1860 edition of Mitchel's	
	Popular Astronomy	. 245
Figure 10.1	Appearance of the Sun and the five known extraterrestrial planets	
	at the end of the 1600s, from Manesson Mallet's Description de	
	<i>l'Univers</i> , 1683	. 248
Figure 10.2	Appearance of the planets at the end of the 1800s, from the first	
	American edition of Flammarion's Popular Astronomy	. 250
Figure 10.3	Appearance of the Moon and planets at the end of the 1900s	. 251
Figure 10.4	One of the first pictures ever taken of the far side of the Moon	
	by Luna 3 on October 7, 1959	. 253
Figure 10.5	A well-known image taken from the Apollo 8 spacecraft as it	
	circled the Moon on December 22, 1968	. 254
Figure 10.6	An image of the Sun taken by SOHO's Extreme-Ultraviolet	
	Imaging Telescope (EIT) at the wavelength of helium on	
	February 28, 2000	. 256
Figure 10.7	A mosaic of Mercury taken by the Mariner 10 spacecraft on	
	March 29, 1974	. 257
Figure 10.8	A mosaic of the area around the Caloris Basin on Mercury taken	
	by the Mariner 10 spacecraft on March 29, 1974	. 258
Figure 10.9	An ultraviolet image of Venus's clouds taken by the Pioneer	
	Venus Orbiter on February 26, 1979	. 260
Figure 10.10	A topographic map of Venus resulting from the radar imaging	
	of Pioneer Venus	. 261
Figure 10.11	A foreshortened radar view of the surface of Venus taken by	
	the Magellan spacecraft on October 29, 1991	. 262
Figure 10.12	A panorama of the Martian surface taken by the Viking 1 lander	. 264
Figure 10.13	A mosaic image of Olympus Mons taken by Viking 1	
	on June 22, 1978	. 266
Figure 10.14	Four views of the surface of Mars taken by the Hubble	
	Space Telescope between April 27 and May 6, 1999	. 267
Figure 10.15	A picture of a large trough on Mars taken by the Mars Global	
	Surveyor in May 2000	. 268
Figure 10.16	A montage of three images of Phobos taken by Viking 1 during	
	its flyby on October 19, 1978	. 270
Figure 10.17	A picture of a prototype Voyager spacecraft shown at the NASA	
	Jet Propulsion Laboratory during vibration testing	. 272
Figure 10.18	A view of Jupiter taken by Voyager 1 as it approached the planet	
	on January 24, 1979	. 273
Figure 10.19	A view of lo taken by the Galileo spacecraft on June 28, 1996	. 274
Figure 10.20	Two images of Europa taken by the Galileo spacecraft	-
	on September 7, 1996	. 276

Figure 10.21	A view of Ganymede taken by the Galileo spacecraft on June 26,	
	1996	. 276
Figure 10.22	A view of Callisto taken by Voyager 1 on March 6, 1979	. 277
Figure 10.23	Two images of Saturn's F ring	. 279
Figure 10.24	A view of Saturn taken by Voyager 2 on July 21, 1981	. 280
Figure 10.25	A picture of the NASA Cassini-Huygens spacecraft shown at	
	the NASA Jet Propulsion Laboratory during vibration and	
	thermal testing	. 281
Figure 10.26	A view of Titan taken by the Cassini orbiter on October 18, 2010	. 282
Figure 10.27	A mosaic of eight images of Mimas taken by the Cassini orbiter	
	on February 13, 2010	. 283
Figure 10.28	Two images of Uranus compiled from pictures returned by	
	Voyager 2 on January 17, 1986	. 285
Figure 10.29	A view of Miranda taken by Voyager 2 in early 1986	. 286
Figure 10.30	A view of Neptune taken by Voyager 2 in August, 1989	. 287
Figure 10.31	A mosaic of Triton from a dozen individual images taken by	
	Voyager 2 on August 25, 1989	. 288
Figure 10.32	A map of Pluto that was computer-assembled from four images	
	taken with ESA's Faint Object Camera on board the Hubble Space	
	Telescope in late June and early July, 1994	. 290
Figure 10.33	An image of Pluto and three of its five moons taken with the	
	Hubble Space Telescope in the spring of 2005	. 291
Figure 10.34	A view of the asteroid Ida and its moon Dactyl taken by the	
	Galileo spacecraft on August 28, 1993	. 292
Figure 10.35	A view of Halley's Comet taken by the Giotto spacecraft	
	on March 13–14, 1986	. 294

List of tables

Table 2.1	Geocentric World Systems: Planetary Order.	19
Table 2.2	Classical Greek Constellations from Ptolemy's Catalog	35
Table 5.1	Heliocentric World Systems: Planetary Order.	95
Table 5.2	Geoheliocentric Hybrid World Systems: Planetary Order	99
Table 6.1	The Classical Solar System in an Unbounded Universe: Planetary	
	Order	120
Table 7.1	The Expanding Solar System: Planetary Order.	192
Table 8.1	The Modern Solar System: Planetary Order	211
Table 8.2	Kuiper Belt Objects (KBOs): In-Belt, Scattered Disk, Centaurs	213
Table 10.1	Planetary Demographics	252

1

World Views and the Solar System

Galileo Galilei rubbed his eyes. Peering through his spyglass was difficult work. The images were not crystal clear, and the night was cold. But he had seen wonders in God's firmament over the past several evenings: the lunar surface had mountains and valleys, more like the Earth than Aristotle's perfect featureless orb, and faint cloudy areas in the sky had resolved into a multitude of stars never before seen with the naked eye. And now, on January 11, 1610, he would once again be checking on the star-like objects lined up to the east and west of Jupiter. When he first observed them four nights earlier, he thought them to be fixed stars, but on subsequent nights his sketchbook revealed that their numbers and pattern had been different in terms of how they presented themselves, first all to the west, then all to the east. How would they look tonight?

He strained to make out Jupiter through his eyepiece. Yes, the mysterious objects had moved again. Only two were visible, and their distances from the giant planet had shifted relative to the night before. The notions of Copernicus came to mind, who 70 years earlier had written that the so-called wandering stars like Jupiter were orbiting the Sun, not the Earth. Only the Moon went around the Earth. Could the strange objects in his telescope be miniature moons revolving around the mighty Jupiter? Astounded, he thought these observations would please his hoped-for patron, Grand Duke Cosmo II de Medici, who like Jupiter was a giant in his times.

In subsequent nights, Galileo would conclude that there were four such moons orbiting Jupiter, and he would name them the "Medicean Stars" in honor of the de Medicis. Galileo would publish his telescopic findings in March 1610, in a booklet entitled *Sidereus Nuncius*, or *The Sidereal Messenger*. This booklet became an instant success throughout Europe, not only for its findings, but also as an illustration of the power of the telescope to reveal heavenly sights never seen before. In fact, Galileo would be an advocate for this new instrument, which he had heard about just 10 months earlier. His subsequent improvements upon the original design allowed him to produce an instrument of sufficient quality and power to make his revolutionary observations.

1.1 PARADIGM SHIFTS AND WORLD VIEWS

The findings of Galileo called for a paradigm shift. A paradigm is a view or model of something that most people accept. Prior to Galileo, most people followed the Aristotelian view that our Moon was made up of a special heavenly substance called aether that was pure, everlasting, and smooth. Features that we see on the lunar surface were merely reflections of the impure and changing Earth. Furthermore, like the Moon and the Sun, the other wandering stars (the planets) were themselves made up of aether, and none had their own moons revolving around them. But with the publication of *Sidereus Nuncius*, this all changed. Now, the Moon was observed to have mountains and valleys like the impure Earth, and another planet, Jupiter, was shown to have its own retinue of moons going around it. The old ideas of what constituted a planet had to change to account for the new observations made by Galileo and his telescope.

But Galileo's findings had even broader implications. They also seemed to shake the current view of the universe and supported the heliocentric ideas put forth by Copernicus, which had our Sun as the center of the cosmos surrounded by the orbiting spheres of the planets and the sphere of fixed stars. This world view is shown schematically in Figure 1.1.¹ (Note that for Figure 1.1 and subsequent images used in this book, the title and year of the source will be given, which may or may not be the first edition. For the listed dimensions, the following principles are followed: 1) measurements are in centimeters; 2) for rectangular images, the distance between the innermost image border is given, first for the vertical then for the horizontal dimension; 3) for circular images, the least distorted vertical or horizontal diameter is given; and 4) the vertical by horizontal dimensions of the entire page are given in cases where the image dimension itself is ambiguous.)

Before Copernicus, most people advocated a geocentric view, where the Earth was in the center of the universe and all the other heavenly bodies revolved around it. But with Copernicus and Galileo, a new world view was called for. The term "world view" refers to the basic concept people have of their total existence: psychological, sociological, political, economic, scientific, religious, etc. It comes from the German term *Weltanschauung*, literally "view or outlook of the world". Changes in world view are usually brought about by paradigm shifts, where a major event or a series of major events leads to a dramatic change in how people view their reality. Copernicus's ideas led to one paradigm shift, Galileo's observations to another.

Note that the world view shown in Figure 1.1 is essentially a view of our solar system, except that the realm of the fixed stars is indicated by the outermost circle in this diagram. At the time, nothing was known about star clusters, nebulae, or galaxies, or for that matter, the outer planets that could not be seen with the naked eye. Consequently, many early maps of our solar system were essentially world view maps, and they will be referred to as such in this book.

Related to the notion of a world view is the expression "world system", or *systema mundi*. The expression *systema mundi* first appeared in the 1580s and 1590s to describe the models put forth by Tycho Brahe (1546–1601) and Nicolas Reimers, a.k.a. Ursus (1551–1600).² The world system concept implies a unit composed of an assemblage of constituent parts representing everything that there is. This notion works very well when referring to a closed geocentric universe that is bounded by the sphere of the fixed stars and progresses

Figure 1.1. The Copernican heliocentric world view, from Blaeu's *Theatrum Orbis Terrarum, sive Atlas Novus*, c.1645, section "Introductio ad Cosmographiam, Eiusque Partes". 11.8 cm diameter (outermost solid circle).

inwardly through a series of concentric spheres representing the planets until reaching the center of it all: the Earth. However, the term begins to lose its meaning when referring to a universe made up of numerous star systems and the heavens become unbounded (although the term is relevant when speaking specifically of an individual "solar system").³

In some cases, "world view" and "world system" may refer to the same thing (e.g., a closed geocentric or heliocentric universe). But since the former expression is more general and does not restrict us to an interlinked system, it will be the preferred term used in this book, where the focus will be on how we have viewed our astronomical place in the universe. Of course, if one sees humanity uniquely situated in the center of an entire cosmos created by God, the world view will be quite different from that seen from a perspective of being in one of many solar systems located in an average galaxy among hundreds of thousands of galaxies in a naturalistic universe that may contain other life forms.

Since a paradigm shift challenges current thinking, there is often resistance to the change, and it may take years for it to take hold. In the case of Copernicus, many people continued to advocate a geocentric orientation for decades after Copernicus died. One problem was that the new heliocentric view did not jive with people's perceptions. For example, when we look up at the sky, the Sun and stars appear to revolve around us with roughly the same speed (i.e., once a day). Also, the giant Earth below our feet seems heavy and permanent, and since all terrestrial objects fall downward, it must be at the center of things. So perhaps we should begin our story where the ancients began, by looking up.

1.2 CIRCLES IN THE SKY

1.2.1 Projections of the Earth's Circles

When looking at the sky throughout the year at the same time each day (say noon), the Sun appears to increase its elevation from the horizon to a certain height, then decrease to a certain depth, and so on. We now know that this apparent rising and falling is due to the fact that the Earth's axis is tilted some $23\frac{1}{2}$ degrees to the plane of its orbit, so that as it revolves around the Sun in a year, this affects the apparent height of the Sun in the sky (Figure 1.2). In the summer, the Sun most directly beams its rays to people in the Northern Hemisphere, so it appears to be higher in the sky (left image in Figure 1.2). If we project a line from this highest elevation of the Sun onto the Earth's surface, a circle of latitude is defined as the Earth revolves which is called the Tropic of Cancer. In the winter, the Sun most directly faces the Southern Hemisphere, so to people in the Northern Hemisphere it appears lowest in the sky (right image in Figure 1.2), and a line projected onto the Earth's surface defines a circle called the Tropic of Capricorn. These two extremes of time when the Sun is at its highest or lowest at noon are called the summer and winter solstices, and they occur around June 21 and December 21, respectively. At the midpoint of these two extremes, the Sun shines most directly on the equator, and we refer to these times as the spring (or vernal) equinox (around March 21) and the autumnal equinox (around September 23).

How did the tropics get their names? For millennia, people realized that the so-called wandering stars (i.e., the Sun, Moon, and planets) appeared to move in a circular region of the sky called the ecliptic. This circular region could actually be visualized as the circumference of a sphere with a central axis and a north and south ecliptic pole. The 12 constellations located in the ecliptic were given special significance, and their order as they appeared throughout the year was well known. Because most of these constellations were perceived as animals, they collectively were referred to as the constellations of the zodiac (like the word "zoo", this term comes from the Greek word for "animal").

Look again at Figure 1.2. Imagine yourself at the summer solstice around 500 BC (when the zodiac was established) and looking at the Sun at noon. Although it is daylight and you cannot see the stars, you know that Capricornus was high in the sky at midnight the evening before, so the Sun must now be located half way around the zodiac in Cancer (if there was a sudden solar eclipse, you would in fact see this constellation behind the Sun). So, during the summer, when the Sun is at its highest in the sky for the Northern Hemisphere

