

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author ���xiii

About the Technical Reviewer �� xv

Acknowledgments �� xvii

Part 1: Getting Comfortable ■ �� 1

Chapter 1: Introduction to Computer Vision and OpenCV ■ ��3

Chapter 2: Setting up OpenCV on Your Computer ■ ��7

Chapter 3: CV Bling—OpenCV Inbuilt Demos ■ ���13

Chapter 4: Basic Operations on Images and GUI Windows ■ ��23

 Part 2: Advanced Computer Vision Problems and Coding Them ■
in OpenCV ��� 39

Chapter 5: Image Filtering ■ ���41

Chapter 6: Shapes in Images ■ ���67

Chapter 7: Image Segmentation and Histograms ■ ��95

Chapter 8: Basic Machine Learning and Object Detection Based on Keypoints ■ ������������119

 Chapter 9: Affine and Perspective Transformations and Their Applications ■
to Image Panoramas��155

Chapter 10: 3D Geometry and Stereo Vision ■ ��173

 Chapter 11: Embedded Computer Vision: Running OpenCV Programs ■
on the Raspberry Pi ��� 201

Index ���219

Part 1

Getting Comfortable

3

Chapter 1

Introduction to Computer Vision
and OpenCV

A significant share of the information that we get from the world while we are awake is through sight. Our eyes do
a wonderful job of swiveling about incessantly and changing focus as needed to see things. Our brain does an even
more wonderful job of processing the information stream from both eyes and creating a 3D map of the world around
us and making us aware of our position and orientation in this map. Wouldn't it be cool if robots (and computers in
general) could see, and understand what they see, as we do?

For robots, seeing in itself is less of a problem—cameras of all sorts are available and quite easy to use. However,
to a computer with a camera connected to it, the camera feed is technically just a time-varying set of numbers.

Enter computer vision.
Computer vision is all about making robots intelligent enough to take decisions based on what they see.

Why Was This Book Written?
In my opinion, robots today are like personal computers 35 years ago—a budding technology that has the potential
to revolutionize the way we live our daily lives. If someone takes you 35 years ahead in time, don't be surprised to see
robots roaming the streets and working inside buildings, helping and collaborating safely with humans on a lot of
daily tasks. Don't be surprised also if you see robots in industries and hospitals, performing the most complex and
precision-demanding tasks with ease. And you guessed it right, to do all this they will need highly efficient, intelligent,
and robust vision systems.

Computer vision is perhaps the hottest area of research in robotics today. There are a lot of smart people all
around the world trying to design algorithms and implement them to give robots the ability to interpret what they see
intelligently and correctly. If you too want to contribute to this field of research, this book is your first step.

In this book I aim to teach you the basic concepts, and some slightly more advanced ones, in some of the most
important areas of computer vision research through a series of projects of increasing complexity. Starting from
something as simple as making the computer recognize colors, I will lead you through a journey that will even teach
you how to make a robot estimate its speed and direction from how the objects in its camera feed are moving.

We shall implement all our projects with the help of a programming library (roughly, a set of prewritten functions
that can execute relevant higher-level tasks) called OpenCV.

This book will familiarize you with the algorithm implementations that OpenCV provides via its built-in functions,
theoretical details of the algorithms, and the C++ programming philosophies that are generally employed while using
OpenCV. Toward the end of the book, we will also discuss a couple of projects in which we employ OpenCV’s framework
for algorithms of our own design. A moderate level of comfort with C++ programming will be assumed.

Chapter 1 ■ IntroduCtIon to Computer VIsIon and openCV

4

OpenCV
OpenCV (Open-source Computer Vision, opencv.org) is the Swiss Army knife of computer vision. It has a wide range
of modules that can help you with a lot of computer vision problems. But perhaps the most useful part of OpenCV
is its architecture and memory management. It provides you with a framework in which you can work with images
and video in any way you want, using OpenCV’s algorithms or your own, without worrying about allocating and
deallocating memory for your images.

History of OpenCV
It is interesting to delve a bit into why and how OpenCV was created. OpenCV was officially launched as a research
project within Intel Research to advance technologies in CPU-intensive applications. A lot of the main contributors to
the project included members of Intel Research Russia and Intel's Performance Library Team. The objectives of this
project were listed as:

Advance vision research by providing not only open but also optimized code for basic vision •	
infrastructure. (No more reinventing the wheel!)

Disseminate vision knowledge by providing a common infrastructure that developers could •	
build on, so that code would be more readily readable and transferable.

Advance vision-based commercial applications by making portable, performance-optimized •	
code available for free—with a license that did not require the applications to be open or free
themselves.

The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and
Pattern Recognition in 2000. Currently, OpenCV is owned by a nonprofit foundation called OpenCV.org.

Built-in Modules
OpenCV’s built-in modules are powerful and versatile enough to solve most of your computer vision problems
for which well-established solutions are available. You can crop images, enhance them by modifying brightness,
sharpness and contrast, detect shapes in them, segment images into intuitively obvious regions, detect moving objects
in video, recognize known objects, estimate a robot’s motion from its camera feed, and use stereo cameras to get a 3D
view of the world—to name just a few applications. If, however, you are a researcher and want to develop a computer
vision algorithm of your own for which these modules themselves are not entirely sufficient, OpenCV will still help
you a lot by its architecture, memory-management environment, and GPU support. You will find that your own
algorithms working in tandem with OpenCV’s highly optimized modules make a potent combination indeed.

One aspect of the OpenCV modules that needs to be emphasized is that they are highly optimized. They are
intended for real-time applications and designed to execute very fast across a variety of computing platforms from
MacBooks to small embedded fitPCs running stripped down flavors of Linux.

OpenCV provides you with a set of modules that can execute roughly the functionalities listed in Table 1-1.

http://opencv.org
http://OpenCV.org

Chapter 1 ■ IntroduCtIon to Computer VIsIon and openCV

5

In this book, I shall cover projects that make use of most of these modules.

Summary
I hope this introductory chapter has given you a rough idea of what this book is all about! The readership I have in
mind includes students interested in using their knowledge of C++ to program fast computer vision applications and
in learning the basic theory behind many of the most famous algorithms. If you already know the theory, and are
interested in learning OpenCV syntax and programming methodologies, this book with its numerous code examples
will prove useful to you also.

The next chapter deals with installing and setting up OpenCV on your computer so that you can quickly get
started with some exciting projects!

Table 1-1. Built-in modules offered by OpenCV

Module Functionality

Core Core data structures, data types, and memory management

Imgproc Image filtering, geometric image transformations, structure, and shape analysis

Highgui GUI, reading and writing images and video

Video Motion analysis and object tracking in video

Calib3d Camera calibration and 3D reconstruction from multiple views

Features2d Feature extraction, description, and matching

Objdetect Object detection using cascade and histogram-of-gradient classifiers

ML Statistical models and classification algorithms for use in computer vision applications

Flann Fast Library for Approximate Nearest Neighbors—fast searches in high-dimensional
(feature) spaces

GPU Parallelization of selected algorithms for fast execution on GPUs

Stitching Warping, blending, and bundle adjustment for image stitching

Nonfree Implementations of algorithms that are patented in some countries

7

Chapter 2

Setting up OpenCV on Your Computer

Now that you know how important computer vision is for your robot and how OpenCV can help you implement a lot of
it, this chapter will guide you through the process of installing OpenCV on your computer and setting up a development
workstation. This will also allow you to try out and play with all the projects described in the subsequent chapters of the
book. The official OpenCV installation wiki is available at http://opencv.willowgarage.com/wiki/InstallGuide,
and this chapter will build mostly upon that.

Operating Systems
OpenCV is a platform independent library in that it will install on almost all operating systems and hardware configurations
that meet certain requirements. However, if you have the freedom to choose your operating system I would advise a Linux
flavor, preferably Ubuntu (the latest LTS version is 12.04). This is because it is free, works as well as (and sometimes
better than) Windows and Mac OS X, you can integrate a lot of other cool libraries with your OpenCV project, and if
you plan to work on an embedded system such as the Beagleboard or the Raspberry Pi, it will be your only option.

In this chapter I will provide setup instructions for Ubuntu, Windows, and Mac OSX but will mainly focus on
Ubuntu. The projects themselves in the later chapters are platform-independent.

Ubuntu
Download the OpenCV tarball from http://sourceforge.net/projects/opencvlibrary/ and extract it to a preferred
location (for subsequent steps I will refer to it as OPENCV_DIR). You can extract by using the Archive Manager or by
issuing the tar –xvf command if you are comfortable with it.

Simple Install
This means you will install the current stable OpenCV version, with the default compilation flags, and support for only
the standard libraries.

 1. If you don’t have the standard build tools, get them by

sudo apt-get install build-essential checkinstall cmake

 2. Make a build directory in OPENCV_DIR and navigate to it by

mkdir build
cd build

 3. Configure the OpenCV installation by

cmake ..

http://opencv.willowgarage.com/wiki/InstallGuide
http://sourceforge.net/projects/opencvlibrary/

Chapter 2 ■ Setting up OpenCV On YOur COmputer

8

 4. Compile the source code by

make

 5. Finally, put the library files and header files in standard paths by

sudo make install

Customized Install (32-bit)
This means that you will install a number of supporting libraries and configure the OpenCV installation to take them
into consideration. The extra libraries that we will install are:

FFmpeg, gstreamer, x264 and v4l to enable video viewing, recording, streaming, and so on•	

Qt for a better GUI to view images•	

 1. If you don’t have the standard build tools, get them by

sudo apt-get install build-essential checkinstall cmake

 2. Install gstreamer

sudo apt-get install libgstreamer0.10-0 libgstreamer0.10-dev gstreamer0.10-tools
gstreamer0.10-plugins-base libgstreamer-plugins-base0.10-dev gstreamer0.10-plugins-good
gstreamer0.10-plugins-ugly gstreamer0.10-plugins-bad gstreamer0.10-ffmpeg

 3. Remove any installed versions of ffmpeg and x264

sudo apt-get remove ffmpeg x264 libx264-dev

 4. Install dependencies for ffmpeg and x264

sudo apt-get update
sudo apt-get install git libfaac-dev libjack-jackd2-dev libmp3lame-dev
libopencore-amrnb-dev libopencore-amrwb-dev libsdl1.2-dev libtheora-dev
libva-dev libvdpau-dev libvorbis-dev libx11-dev libxfixes-dev libxvidcore-dev
texi2html yasm zlib1g-dev libjpeg8 libjpeg8-dev

 5. Get a recent stable snapshot of x264 from

ftp://ftp.videolan.org/pub/videolan/x264/snapshots/, extract it to a folder on your
computer and navigate into it. Then configure, build, and install by

./configure –-enable-static
make
sudo make install

 6. Get a recent stable snapshot of ffmpeg from http://ffmpeg.org/download.html, extract it

to a folder on your computer and navigate into it. Then configure, build, and install by

./configure --enable-gpl --enable-libfaac --enable-libmp3lame
–-enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libtheora
--enable-libvorbis –-enable-libx264 --enable-libxvid --enable-nonfree
--enable-postproc --enable-version3 –-enable-x11grab
make
sudo make install

ftp://ftp.videolan.org/pub/videolan/x264/snapshots/
ftp://ftp.videolan.org/pub/videolan/x264/snapshots/
http://ffmpeg.org/download.html

Chapter 2 ■ Setting up OpenCV On YOur COmputer

9

 7. Get a recent stable snapshot of v4l from http://www.linuxtv.org/downloads/v4l-utils/,
extract it to a folder on your computer and navigate into it. Then build and install by

make
sudo make install

 8. Install cmake-curses-gui, a semi-graphical interface to CMake that will allow you to see

and edit installation flags easily

sudo apt-get install cmake-curses-gui

 9. Make a build directory in OPENCV_DIR by

mkdir build
cd build

 10. Configure the OpenCV installation by

ccmake ..

 11. Press ‘c’ to start configuring. CMake-GUI should do its thing, discovering all the libraries you

installed above, and present you with a screen showing the installation flags (Figure 2-1).

Figure 2-1. Configuration flags when you start installing OpenCV

 12. You can navigate among the flags by the up and down arrows, and change the value of a
flag by pressing the Return key. Change the following flags to the values shown in Table 2-1.

http://www.linuxtv.org/downloads/v4l-utils/

Chapter 2 ■ Setting up OpenCV On YOur COmputer

10

Table 2-1. Configuration flags for installing OpenCV with support for other common libraries

FLAG VALUE

BUILD_DOCS ON

BUILD_EXAMPLES ON

INSTALL_C_EXAMPLES ON

WITH_GSTREAMER ON

WITH_JPEG ON

WITH_PNG ON

WITH_QT ON

WITH_FFMPEG ON

WITH_V4L ON

 13. Press ‘c’ to configure and ‘g’ to generate, and then build and install by

make
sudo make install

 14. Tell Ubuntu where to find the OpenCV shared libraries by editing the file opencv.conf

(first time users might not have that file—in that case, create it)

sudo gedit /etc/ld.so.conf.d/opencv.conf

 15. Add the line ‘/usr/local/lib’ (without quotes) to this file, save and close. Bring these

changes into effect by

sudo ldconfig /etc/ld.so.conf

 16. Similarly, edit /etc/bash.bashrc and add the following lines to the bottom of the file, save,

and close:

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH

Reboot your computer.

Customized Install (64-bit)
If you have the 64-bit version of Ubuntu, the process remains largely the same, except for the following changes.

 1. During the step 5 to configure x264, use this command instead:

./configure --enable-shared –-enable-pic

 2. During the step 6 to configure ffmpeg, use this command instead:

./configure --enable-gpl --enable-libfaac --enable-libmp3lame
–-enable-libopencore-amrnb –-enable-libopencore-amrwb --enable-libtheora
--enable-libvorbis --enable-libx264 --enable-libxvid --enable-nonfree
--enable-postproc --enable-version3 --enable-x11grab –-enable-shared –-enable-pic

Chapter 2 ■ Setting up OpenCV On YOur COmputer

11

Checking the Installation
You can check the installation by putting the following code in a file called hello_opencv.cpp. It displays an image, and
closes the window when you press “q”:

#include <iostream>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;

int main(int argc, char **argv)
{
Mat im = imread("image.jpg", CV_LOAD_IMAGE_COLOR);
namedWindow("Hello");
imshow("Hello", im);

 cout << "Press 'q' to quit..." << endl;
 while(1)
 {
 if(char(waitKey(1)) == 'q') break;
 }
 destroyAllWindows();
 return 0;
}

 1. Open up that directory in a Terminal and give the following command to compile the code:

g++ 'pkg-config opencv --cflags' hello_opencv.cpp -o hello_opencv 'pkg-config opencv --libs'

 2. Run the compiled code by

./hello_opencv

Note that you need to have an image called “image.jpg” in the same directory for this program to run.

Installing Without Superuser Privileges
Many times you do not have superuser access privileges to the computer you are working on. You can still install and use
OpenCV, if you tell Ubuntu where to look for the library and header files. In fact, this method of using OpenCV is
recommended over the previous method, as it does not “pollute” the system directories with conflicting versions of
OpenCV files according to the official OpenCV installation Wiki page. Note that installing extra libraries such as Qt, Ffmpeg,
and so on will still require superuser privileges. But OpenCV will still work without these add-ons. The steps involved are:

 1. Download the OpenCV tarball and extract it to a directory where you have read/write rights.
We shall call this directory OPENCV_DIR. Make the following directories in OPENCV_DIR

mkdir build
cd build
mkdir install-files

 2. Configure your install as mentioned previously. Change the values of flags depending

on which extra libraries you have installed in the system. Also, set the value of
CMAKE_INSTALL_PREFIX to OPENCV_DIR/build/install-files.

Chapter 2 ■ Setting up OpenCV On YOur COmputer

12

 3. Continue the same making process as the normal install, up to step 12. Then, run make
install instead of sudo make install. This will put all the necessary OpenCV files in
OPENCV_DIR/build/install-files.

 4. Now, edit the file ~/.bashrc (your local bashrc file over which you should have read/write
access) and add the following lines to the end of the file, then save and close

export INCLUDE_PATH=<path-to-OPENCV_DIR>/build/install-files/include:$INCLUDE_PATH
export LD_LIBRARY_PATH=<path-to-OPENCV_DIR>/build/install-files/lib:$LD_LIBRARY_PATH
export PKG_CONFIG_PATH=<path-to-OPENCV_DIR>/build/install-files/lib/pkgconfig:$PKG_CONFIG_PATH

where <path-to-OPENCV_DIR> can for example be /home/user/libraries/opencv/.

 1. Reboot your computer.

 2. You can now compile and use OpenCV code as mentioned previously, like a normal install.

Using an Integrated Development Environment
If you prefer to work in an IDE rather than a terminal, you will have to configure the IDE project to find your
OpenCV library files and header files. For the widely used Code::Blocks IDE, very good instructions are available at
http://opencv.willowgarage.com/wiki/CodeBlocks, and the steps should be pretty much the same for any other IDE.

Windows
Installation instructions for Windows users are available at http://opencv.willowgarage.com/wiki/InstallGuide
and they work quite well. Instructions for integration with MS Visual C++ are available at
http://opencv.willowgarage.com/wiki/VisualC++.

Mac OSX
Mac OSX users can install OpenCV on their computers by following instructions at
http://opencv.willowgarage.com/wiki/Mac_OS_X_OpenCV_Port.

Summary
So you see how much more fun installing software in Linux than it is in Windows and Mac OS X! Jokes apart, going
through this whole process will give valuable insight to beginners about the internal workings of Linux and the use of
Terminal. If, even after following the instructions to the dot, you have problems installing OpenCV, Google your error.
Chances are very high that someone else has had that problem, too, and they have asked a forum about it. There are
also a number of websites and detailed videos on YouTube explaining the installation process for Linux, Windows,
and Mac OS X.

http://opencv.willowgarage.com/wiki/CodeBlocks
http://opencv.willowgarage.com/wiki/InstallGuide
http://opencv.willowgarage.com/wiki/VisualC%2b%2b
http://opencv.willowgarage.com/wiki/VisualC%2b%2b
http://opencv.willowgarage.com/wiki/Mac_OS_X_OpenCV_Port
http://opencv.willowgarage.com/wiki/Mac_OS_X_OpenCV_Port

13

Chapter 3

CV Bling—OpenCV Inbuilt Demos

Now that you (hopefully) have OpenCV installed on your computer, it is time to check out some cool demos of what
OpenCV can do for you. Running these demos will also serve to confirm a proper install of OpenCV.

OpenCV ships with a bunch of demos. These are in the form of C, C++, and Python code files in the samples
folder inside OPENCV_DIR (the directory in which you extracted the OpenCV archive while installing; see Chapter
2 for specifics). If you specified the flag BUILD_EXAMPLES to be ON while configuring your installation, the compiled
executable files should be present ready for use in OPENCV_DIR/build/bin. If you did not do that, you can run your
configuration and installation as described in Chapter 2 again with the flag turned on.

Let us take a look at some of the demos OpenCV has to offer. Note that you can run these demos by

./<demo_name> [options]

where options is a set of command line arguments that the program expects, which is usually the file name. The demos
shown below have been run on images that ship with OpenCV, which can be found in OPENCV_DIR/samples/cpp.

Note that all the commands mentioned below are executed after navigating to OPENCV_DIR/build/bin.

Camshift
Camshift is a simple object tracking algorithm. It uses the intensity and color histogram of a specified object to find an
instance of the object in another image. The OpenCV demo first requires you to draw a box around the desired object
in the camera feed. It makes the required histogram from the contents of this box and then proceeds to use the camshift
algorithm to track the object in the camera feed. Run the demo by navigating to OPENCV_DIR/build/bin and doing

./cpp-example-camshiftdemo

However, camshift always tries to find an instance of the object. If the object is not present, it shows the nearest
match as a detection (see Figure 3-4).

Chapter 3 ■ CV Bling—OpenCV inBuilt DemOs

14

Figure 3-1. Camshift object tracking—specifying the object to be tracked

Figure 3-2. Camshift object tracking

Chapter 3 ■ CV Bling—OpenCV inBuilt DemOs

15

Figure 3-4. Camshift giving a false positive

Figure 3-3. Camshift object tracking

Chapter 3 ■ CV Bling—OpenCV inBuilt DemOs

16

Stereo Matching
The stereo_matching demo showcases the stereo block matching and disparity calculation abilities of OpenCV. It
takes two images (taken with a left and right stereo camera) as input and produces an image in which the disparity is
grey color-coded. I will devote an entire chapter to stereo vision later on in the book, Meanwhile, a short explanation of
disparity: when you see an object using two cameras (left and right), it will appear to be at slightly different horizontal
positions in the two images, The difference of the position of the object in the right frame with respect to the left frame is
called disparity. Disparity can give an idea about the depth of the object, that is, its distance from the cameras, because
disparity is inversely proportional to distance. In the output image, pixels with higher disparity are lighter. (Recall that
higher disparity means lesser distance from the camera.) You can run the demo on the famous Tsukuba images by

./cpp-example-stereo_match OPENCV_DIR/samples/cpp/tsukuba_l.png OPENCV_DIR/samples/cpp/tsukuba_r.png

where OPENCV_DIR is the path to OPENCV_DIR

Homography Estimation in Video
The video_homography demo uses the FAST corner detector to detect interest points in the image and matches
BRIEF descriptors evaluated at the keypoints. It does so for a “reference” frame and any other frame to estimate the
homography transform between the two images. A homography is simply a matrix that transforms points from one
plane to another. In this demo, you can choose your reference frame from the camera feed. The demo draws lines in
the direction of the homography transform between the reference frame and the current frame. You can run it by

./cpp-example-video_homography 0

where 0 is the device ID of the camera. 0 usually means the laptop’s integrated webcam.

Figure 3-5. OpenCV stereo matching

Chapter 3 ■ CV Bling—OpenCV inBuilt DemOs

17

Figure 3-6. The reference frame for homography estimation, also showing FAST corners

Figure 3-7. Estimated homography shown by lines

Chapter 3 ■ CV Bling—OpenCV inBuilt DemOs

18

Circle and Line Detection
The houghcircles and houghlines demos in OpenCV detect circles and lines respectively in a given image using the
Hough transform. I shall have more to say on Hough transforms in Chapter 6. For now, just know that the Hough
transform is a very useful tool that allows you to detect regular shapes in images. You can run the demos by

./cpp-example-houghcircles OPENCV_DIR/samples/cpp/board.jpg

Figure 3-8. Circle detection using Hough transform

 and

./cpp-example-houghlines OPENCV_DIR/samples/cpp/pic1.png

Chapter 3 ■ CV Bling—OpenCV inBuilt DemOs

19

Figure 3-9. Line detection using Hough transform

Image Segmentation
The meanshift_segmentation demo implements the meanshift algorithm for image segmentation (distinguishing
different “parts” of the image). It also allows you to set various thresholds associated with the algorithm. Run it by

./cpp-example-meanshift_segmentation OPENCV_DIR/samples/cpp/tsukuba_l.png

Chapter 3 ■ CV Bling—OpenCV inBuilt DemOs

20

As you can see, various regions in the image are colored differently.

Figure 3-10. Image segmentation using the meanshift algorithm

Chapter 3 ■ CV Bling—OpenCV inBuilt DemOs

21

Bounding Box and Circle
The minarea demo finds the smallest rectangle and circle enclosing a set of points. In the demo, the points are
selected from within the image area randomly.

./cpp-example-minarea

Figure 3-11. Bounding box and circle

Image Inpainting
Image inpainting is replacing certain pixels in the image with surrounding pixels. It is mainly used to repair damages
to images such as accidental brush-strokes. The OpenCV inpaint demo allows you to vandalize an image by making
white marks on it and then runs the inpainting algorithm to repair the damages.

./cpp-example-inpaint OPENCV_DIR/samples/cpp/fruits.jpg

Chapter 3 ■ CV Bling—OpenCV inBuilt DemOs

22

Summary
The purpose of this chapter was to give you a glimpse of OpenCV’s varied abilities. There are lots of other demos;
feel free to try them out to get an even better idea. A particularly famous OpenCV demo is face detection using
Haar cascades. Proactive readers could also go though the source code for these samples, which can be found in
OPENCV_DIR/samples/cpp. Many of the future projects in this book will make use of code snippets and ideas from
these samples.

Figure 3-12. Image inpainting

