


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 



v

Contents at a Glance

About the Author �������������������������������������������������������������������������������������������������������������� xvii

About the Technical Reviewer ������������������������������������������������������������������������������������������� xix

Chapter 1: Introduction ■  �����������������������������������������������������������������������������������������������������1

Chapter 2: Getting Started ■  �������������������������������������������������������������������������������������������������7

Chapter 3: Building the UI with XAML ■  �����������������������������������������������������������������������������35

Chapter 4: Phone Controls ■  �����������������������������������������������������������������������������������������������95

Chapter 5: Navigation ■  ����������������������������������������������������������������������������������������������������179

Chapter 6: Application Lifecycle ■  ������������������������������������������������������������������������������������217

Chapter 7: Gestures ■  �������������������������������������������������������������������������������������������������������233

Chapter 8: Device Capabilities ■  ���������������������������������������������������������������������������������������263

Chapter 9: Mapping ■  �������������������������������������������������������������������������������������������������������311

Chapter 10: Live Tiles and Notifications ■  ������������������������������������������������������������������������343

Chapter 11: Data Sources ■  ����������������������������������������������������������������������������������������������385

Chapter 12: Using Data in the Cloud ■  ������������������������������������������������������������������������������421

Chapter 13: Designing In Blend ■  �������������������������������������������������������������������������������������449

Chapter 14: Taking Your App to Market ■  �������������������������������������������������������������������������517

Index ���������������������������������������������������������������������������������������������������������������������������������529



1

Chapter 1

Introduction

This chapter describes the groundwork you need to perform before writing Windows Phone 8 applications including:

The particular skill sets in Windows 8, Visual Studio, and Windows Phone 8 that you need to •	
have to get the most from this book.

PC and phone hardware requirements to support the development environment.•	

Software requirements for the operating system and the Visual Studio development •	
environment.

Why Upgrade to Windows Phone 8?
Microsoft’s intent is to lead and not follow in the race to create a superior phone operating system. Windows  
Phone 8 takes advantages of all the latest hardware features, such as Near Field Communications (NFC), while 
Windows Phone 7.x applications will still run “out of the box.” The clean user interface favors content over “chrome” 
and is easy to learn. From the developer’s perspective, Windows Phone 8 is simply a lot of fun to develop on and is 
quite productive. Having worked with the Android platform and having a nodding aquintanceship with iOS,  
Windows Phone 8 is clearly my platform of choice.

What You Need to Know
You should be able to navigate the Windows 8 environment, at least to the point where you can get to the Start screen, 
search for applications on the PC, and run applications.

You should be familiar with the Visual Studio environment, be able to create projects, add project items, and 
assembly references. You should know how to code in either Visual Basic .NET or C#. The code for this book is 
presented in C#. If you already use XAML, you will have a good head start learning Windows Phone 8 development.

In particular, this book will not specifically include using statements in code listings except for unusual 
circumstances. When Visual Studio encounters a member that it cannot resolve, the editor underlines the member 
with a wavy red line. You should right-click the member and choose the Resolve context menu option to add the 
using statement automatically. In cases where the namespace includes extensions, such as System.Linq,  
Visual Studio will not offer the Resolve context menu. In these cases, the instructions or code listings will include  
the specific using statements.

Spend some time learning the features and operation of Windows Phone 8 devices, including unlocking the 
screen, navigating from the Start screen, and “pinning” tiles. The link below should get you started:
 
www.windowsphone.com/en-us/how-to/wp8/start/get-started-with-windows-phone-8
 

http://www.windowsphone.com/en-us/how-to/wp8/start/get-started-with-windows-phone-8


Chapter 1 ■ IntroduCtIon

2

What You Need to Have
To get started with Windows Phone 8 development, you will need some specific hardware and software. In this 
section, we’ll cover the requirements for:

PC Hardware requirements•	

Phone Hardware Requirements•	

Operating system requirements•	

The Windows Phone 8 SDK•	

Visual Studio•	

PC Hardware Requirements
Your PC must have Hyper V and SLAT support. Hyper V is required to run virtual machines, namely the Windows 
Phone 8 emulator. SLAT (Second Level Address Translation) is used by Hyper V to translate virtualized guest 
addresses to real physical addresses. The bottom line is that you need to enable virtualization in your PC BIOS settings 
for Hyper V and SLAT. The specific settings will vary according to your PC’s BIOS setup. Older machines may not have 
these settings available.

How do you know if you’re good to go? There are a number of software utilities that assess hardware and 
firmware. Microsoft offers a command line tool, Coreinfo, that lists virtualization capabilities. Find Coreinfo for 
download at Technet:
 
http://technet.microsoft.com/en-us/sysinternals/cc835722.aspx
 

Run CoreInfo from the developer command line as an administrator:

 1. Navigate to the Windows 8 Start screen.

 2. Type “Command” to search on and select the available command line applications.

 3. Locate the “Developer Command Prompt for VS2012” application in the results list,  
right-click, and select Run as administrator from the app bar.

 4. Change your directory (cd) to the folder that contains Coreinfo.exe.

 5. Run the command coreinfo –v.

The command will list information relating to virtualization capabilities. The output below shows a sample run of 
Coreinfo on a laptop that is ready for Windows Phone 8 development. The hyphen in the HYPERVISOR line indicates 
that the Hypervisor is present but not enabled. Asterisks in the VMX and EPT lines indicate that hardware-assisted 
virtualization and SLAT support are supported.
 
C:\WINDOWS\system32>cd C:\Download\Coreinfo
 
C:\Download\Coreinfo>coreinfo -v
 
Coreinfo v3.2 - Dump information on system CPU and memory topology
Copyright (C) 2008-2012 Mark Russinovich
Sysinternals - www.sysinternals.com
 

http://technet.microsoft.com/en-us/sysinternals/cc835722.aspx
http://www.sysinternals.com/


Chapter 1 ■ IntroduCtIon

3

Intel(R) Core(TM) i7 CPU       Q 720  @ 1.60GHz
Intel64 Family 6 Model 30 Stepping 5, GenuineIntel
HYPERVISOR      -       Hypervisor is present
VMX             *       Supports Intel hardware-assisted virtualization
EPT             *       Supports Intel extended page tables (SLAT)
 

The Microsoft Assessment and Planning Toolkit (http://technet.microsoft.com/en-us/library/bb977556.aspx) 
verifies that your machine supports Hyper V. The Microsoft Assessment and Planning Toolkit may be overkill 
compared with CoreInfo. This toolkit is a complete planning utility that checks for capabilities over cloud, desktop, 
server, and more. In Figure 1-1, the Microsoft Assessment and Planning tool indicates support for Hyper V support 
and Windows 8 readiness. 

Figure 1-1. Microsoft Assessment and Planning Toolkit Output

Phone Hardware Requirements
Windows Phone 8 development does not actually require a phone. You can get by using the Emulator application until 
you require specific device capabilities operating in a physical environment (e.g., the Accelerometer or geographic 
location). While the Emulator is convenient for initial testing, you should run your application against one or more 
phone devices for final testing. When choosing a phone, be sure that it runs the Windows Phone 8 operating system, 
such as the Nokia 92x, HTC Windows Phone 8x, or Samsung ATIV S. Legacy phones intended for Windows Phone 7.x 
are not upgradable to Windows Phone 8. For more information on using a Windows Phone 8 device, see the section 
“Creating, Configuring, and Testing an Application” in Chapter 2. 

Operating System Requirements
Windows Phone 8 development requires the 64-bit version of Windows 8 Pro or greater. You can still install and run 
using only Windows 8, but the emulator will not work.

http://technet.microsoft.com/en-us/library/bb977556.aspx


Chapter 1 ■ IntroduCtIon

4

The Windows Phone 8 SDK
The Windows Phone 8 SDK allows you to create Windows Phone 8 applications in Visual Studio and to test your 
applications on your PC using an emulator. The most important download is located at the Windows Phone Dev 
Center (https://dev.windowsphone.com). Here you’ll find a link to the SDK 8 download, as shown in Figure 1-2,  
and a full list of requirements for install (www.microsoft.com/download/details.aspx?id=35471).

Figure 1-2. The Windows Phone 8 SDK Download Link

The download consists of Wpexpress_full.exe that installs to the \Program Files (x86)\Windows Phone Kits\8.0 
directory by default. Here are some of the goodies that are installed:

SDK Windows Phone 8 Assemblies•	

Windows Phone 8 Emulator•	

Visual Studio Express 2012 for Windows Phone•	

Adds project and item templates to Visual Studio 2012•	

Development Kit Tools for Windows Store Apps•	

MS C++ 2012 Compilers and Core Libraries for Windows Phone 8•	

Direct X Libraries•	

XNA Game Studio 40•	

Windows Phone 7.1 Support•	

Blend SDK for Windows Phone 8 and 7.1•	

Microsoft Advertising SDK•	

https://dev.windowsphone.com/
http://www.microsoft.com/download/details.aspx?id=35471


Chapter 1 ■ IntroduCtIon

5

Note ■  “If you install the Windows phone SdK 8.0 on a computer with a Gigabyte motherboard and the uSB 3.0 host 
controller enabled in the BIoS, the computer might stop responding when it boots (for details on impacted Gigabyte 
motherboard models, see Installing hyper-V on Gigabyte systems). to resolve this, disable uSB 3.0 support in computer’s 
BIoS.” Source: Windows phone SdK 8 Install notes (www.microsoft.com/en-us/download/details.aspx?id=35471).

Visual Studio
A stand-alone version of Visual Studio Express 2012 for Windows Phone is included as part of the Windows Phone 8 
SDK install. If you already have Visual Studio Professional, Premium, or Ultimate installed, the SDK will install as an 
add-in to your existing version. Be aware that the Express version of Visual Studio 2012 will be missing some features 
you may be expecting—that do appear in the non-express versions—such as the ability to switch between Windows 
Phone and Web development within the same IDE, the ability to use Add-ins (such as JetBrains’ ReSharper), and 
some architectural tools.

The screenshots in this book are taken from Visual Studio 2012 Professional.

Summary
The list of prerequisites may look daunting. In fact, if your hardware is too old, you may need to go shopping for new 
hardware to satisfy the requirements. Try scanning this chapter to get an idea of the overall process, and then work 
through each item in order. Once you are able to open Visual Studio 2012, open a new project and see Windows 
Phone 8 templates, you’re good to go!

http://www.microsoft.com/en-us/download/details.aspx?id=35471


7

Chapter 2

Getting Started

This chapter focuses on learning your way around a Windows Phone 8 application project, including:

How to create a basic “hello world” Windows Phone 8 project.•	

How to navigate the Visual Studio solution, particularly the location and purpose of key files.•	

How to run the application in Visual Studio.•	

Running your application in the emulator.•	

Running your application on your phone device.•	

Creating a Windows Phone 8 Project
To create Windows Phone 8 projects, select File ➤ New ➤ Project from the Visual Studio menu and choose  
one of the Windows Phone templates (see Figure 2-1). Windows Phone templates can be found under both the  
Visual Basic and Visual C# nodes; this book will be using C# as the default language. The Windows Phone App 
template creates a “Hello World” type application by default. Click OK to have Visual Studio begin creating the new 
Windows Phone App.



Chapter 2 ■ GettinG Started

8

Next, choose the Windows Phone OS version (see Figure 2-2). For the purposes of this book we will choose the 
Windows Phone OS 8.0 default exclusively.

Figure 2-1. Using the Windows Phone App Project Template

Figure 2-2. Choosing the OS Version

You can run the application by pressing F5 or clicking the green Run arrow to display the application and page 
titles in the emulator, as shown in Figure 2-3.



Chapter 2 ■ GettinG Started

9

Windows Phone 8 Solution Anatomy
When you create a new Windows Phone 8 application in Visual Studio, a single project is created. The key elements are:

•	 AppManifest.xml lists resources to include when deploying the application. Visual Studio 
takes care of maintaining this file for you. The AppManifest.xml file is located in the Properties 
folder of the project.

•	 WMAppManifest.xml describes the application in more detail including the Display Name, 
starting Navigation Page, App Icon, a list of Capabilities and hardware Requirements. 
The WMAppManifest.xml file is located in the Properties folder of the project. The values from 
the manifest are used by the device and by the Windows Phone Store application submission 
process. Double-click WMAppManifest.xml to see the Visual Studio designer. Figure 2-4 shows 
the visual tabbed interface where you can tweak settings without having to edit XML directly.

Figure 2-3. Default Application Running in the Emulator



Chapter 2 ■ GettinG Started

10

Tip ■  if you prefer to work with the XML directly, right-click WMAppManifest.xml (located in the properties folder  
of the project) and select View Code from the context menu.

The •	 Assets folder contains the images for the application icon and the tile images that display 
in the Windows Phone 8 Start screen.

The •	 Resources folder allows your application to be localized for particular languages and 
cultures.

The •	 LocalizedStrings class provides access to language resources and can be referenced in 
your application’s user interface.

The •	 App class is defined in files App.xaml and App.xaml.cs located in the root directory of the 
project. It is the entry point for the application and handles application startup/shutdown, 
phone life-cycle events (launching, moving the application to the foreground or background), 
exceptions and navigation failure. The snippet below shows a small sample of the App class. 

 
public App()
{
    // Global handler for uncaught exceptions.
    UnhandledException += Application_UnhandledException;
 
    // Standard XAML initialization
    InitializeComponent();
 

Figure 2-4. The WMAppManifest Designer



Chapter 2 ■ GettinG Started

11

    // Phone-specific initialization
    InitializePhoneApplication();
 
    // Language display initialization
    InitializeLanguage();
 ...

 

The initial main page is created automatically and contains a •	 .XAML (Extensible Application 
Markup Language) file to describe the user interface and a .XAML.CS code-behind file to 
define client logic. Your application will typically have multiple page classes. The Figure 2-5 
shows the editors for code behind, the XAML, and the design view of the XAML. 

Figure 2-5. The MainPage XAML, Designer, and Code Behind

The •	 XAP file is simply a compressed file, like a ZIP file, that contains all the files needed to 
execute the application. This file is created automatically by Visual Studio and placed under  
the \bin directory. To see this file, you need to depress the “Show All Files” button in the 
Solution Explorer. It is the XAP file that is deployed to the device or to the Windows Phone 
Store (see Chapter 11 for more information). Figure 2-6 shows the unzipped contents of the 
XAP file. 



Chapter 2 ■ GettinG Started

12

Running Applications from Visual Studio
By default, you run your Windows Phone 8 application in Visual Studio using the emulator. The emulator lets you 
run an application directly from your PC desktop without a physical device. If you have a Windows Phone 8 device 
plugged in to your computer via USB cable, you can run the application directly on the device. Use the Visual Studio 
Device drop-down on the Standard toolbar to select where the application should run (see Figure 2-7).

Figure 2-7. Selecting from the Device Menu

Figure 2-6. XAP File Contents

Using the Emulator
The emulator simulates Windows 8 Phone applications running in three screen sizes: 

•	 WVGA - 800 × 480 pixels. An additional 512MB RAM version of WVGA allows you to emulate 
memory-constrained devices.

•	 WXGA - 1280 × 768 pixels.

•	 720p - 1280 × 720 pixels.

The Emulator user interface allows you to try your application in various orientations (e.g., portrait, landscape, 
portrait up, etc.), and use additional tools that mimic phone interaction with the external world like Accelerometer 
and Location. The Emulator also has tools to take screenshots of the current phone screen image and a Network  
tab that describes the Emulator’s connectivity.



Chapter 2 ■ GettinG Started

13

The Emulator User Interface
The emulator lets you run your application directly from your PC without needing a physical device. You can use your 
mouse to “tap” items onscreen, or click the Back, Start, and Search buttons at the bottom of the emulator window 
(see Figure 2-8). The toolbar to the right of the emulator has commands that manipulate the window. To test your 
application in each basic orientation, use the Rotate Left and Rotate Right buttons. 

Figure 2-8. The Emulator User Interface

Additional Tools
Click the double angle (>>) button on the toolbar of the Emulator to open the Additional Tools dialog. This dialog 
lets you test several real-world scenarios without having an actual phone device, including moving the phone in  
space and geographically.

Emulator Accelerometer Tab
On the Accelerometer tab (see Figure 2-9), drag the red dot and observe the changes to the phone graphic  
and the X-Y-Z coordinates. Use the Orientation drop-down list to set the device to Portrait Standing,  
Landscape Standing, Portrait Flat, or Landscape Flat positions. 



Chapter 2 ■ GettinG Started

14

The coordinates express gravity values for a given axis. For example, Z will be negative when the device is faced 
up, positive when faced down. If Z = 1, then the device is lying flat, facing straight down (see Figure 2-10).

Figure 2-9. Using the Accelerometer



Chapter 2 ■ GettinG Started

15

Select from the Recorded Data drop-down and click the Play button to play back some set of Accelerometer 
X-Y-Z settings in a series. The Shake option moves the X, then Y coordinates between negative and positive,  
back and forth, to simulate the physical shaking of a device (see Figure 2-11).

Figure 2-10. Coordinate Orientation in the Accelerometer

Figure 2-11. Playing Accelerometer Data from a File



Chapter 2 ■ GettinG Started

16

Create CUStOM aCCeLerOMeter Data

You can actually create your own recorded data. Look for the Shake file located in <program files>\Microsoft 
XDE\8.0\sensordata\acc. the file is in XML format with a series of X-Y-Z coordinates that occur at progressive 
offsets in time. the snippet below is a subset of the Shake file data. 
 
<?xml version="1.0" encoding="utf-8"?>
<WindowsPhoneEmulator  
xmlns="http://schemas.microsoft.com/WindowsPhoneEmulator/2009/08/SensorData">
  <SensorData>
    <Header version="1"/>
    <AccData offset="21" x="-00.08400000" y="-01.02100003" z="-00.41700000" />
    <AccData offset="42" x="-00.14200000" y="-00.95099998" z="-00.39700001" />
    <AccData offset="63" x="-00.29400000" y="-00.80199999" z="-00.30399999" />
    ...
 
Copy this file to another name, leave it in the same directory for the emulator to find and it will show up in the 
drop-down list. the example below is renamed “Shimmy” and shows up in the list (see Figure 2-12). You will 
need to restart the emulator for the file to display.

Figure 2-12. Showing the Custom Recorded Accelerometer Data

Emulator Location Tab
The Location tab lets you mimic geographic position changes. Click anywhere on the map to set a point. Each point 
will show up in a list of Latitude/Longitude at the lower left of the screen. Click the Live button and then the Play 
button to “move” between each location (see Figure 2-13). The map will animate to show each point as the center of 
the world (which is Redmond, Washington, according to this map). 

http://schemas.microsoft.com/WindowsPhoneEmulator/2009/08/SensorData


Chapter 2 ■ GettinG Started

17

If you need to restore a set of location points later, click the Save Map Points button (disk icon) from the toolbar 
at the top of the dialog (see Figure 2-13). The points are saved in Locations.XML at \Users\<user name>\Documents\
WindowsPhoneEmulator\Location. The points are saved as XML and can be restored using the Recorded Data  
Load… button.

Emulator Screenshot Tab
The Screenshot tab makes it easy to capture the current emulator image in a size and format perfect for the Windows 
Phone Store.  The Capture button saves the current emulator image without the chrome. That is, the hardware buttons 
and trim are left out of the image in accordance with requirements for App submissions for Windows Phone Store. 
Click the Save button to persist the image to disk (see Figure 2-14). See “App submission requirements for Windows 
Phone” – 4.6 – App Screenshots for more information (http://msdn.microsoft.com/en-us/library/windowsphone/
develop/hh184844(v=vs.105).aspx). See Chapter 11 for directions on how to get your application published in the 
Windows Phone Store.

Figure 2-13. Simulating Location Changes

http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184844(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184844(v=vs.105).aspx


Chapter 2 ■ GettinG Started

18

Emulator Network Tab
The Network tab lists connections used by the emulator. The emulator comes with network support out-of-the-box.  
The emulator shows up on the network as a separate device with its own IP address. You don’t need to install 
additional software (other than Windows 8) to get the emulator network connection. The connection will not be 
joined to a Windows domain, so if your development computer must log in to a domain or requires special client 
networking software, the emulator won’t reach those network resources. Figure 2-15 shows the emulator’s connection 
and IP address (the network address can be “pinged” from the command line).

Figure 2-14. Emulator Screen Capture



Chapter 2 ■ GettinG Started

19

Figure 2-15. List of Network Connections

If your phone can access network resources over Wi-Fi, the emulator should be able to access those same 
resources. Figure 2-16 shows the emulator with a live internet connection to Google.

Figure 2-16. The Emulator with Live Internet Connection



Chapter 2 ■ GettinG Started

20

Creating, Configuring, and Testing an Application
The following series of walk-throughs demonstrate:

How to satisfy the prerequisites of deploying Windows Phone 8 applications to a phone, such •	
as registering as a developer and unlocking the phone for development.

How to build a simple Windows Phone 8 application and run the application in the Emulator.•	

How to customize the application title and icons.•	

How to customize elements on the page.•	

Prerequisites
There are a handful of prerequisites to deploying Windows Phone 8 applications to your phone device. The first  
is registering as a developer at dev.windowsphone.com. This step will require you to have a Microsoft (Windows  
Live ID) account.

 1. Click the Sign in link to enter your existing Microsoft account credentials or  
follow the links to create a new Microsoft account.

 2. Click the Dashboard link (see Figure 2-17) at the top of the page  
(https://dev.windowsphone.com/join).

Figure 2-17. Navigating to the Dashboard

 3. Click Join Now, as shown in Figure 2-18, and follow the prompts to complete. There is a 
subscription cost of $99 USD at the time of this writing.

https://dev.windowsphone.com
https://dev.windowsphone.com/join


Chapter 2 ■ GettinG Started

21

Figure 2-18. Creating a developer account

Next, register your phone device to “unlock” the phone for development. The phone must have a cell or  
Wi-Fi connection. The USB connection alone is not enough.

 1. Turn on the phone and unlock the screen.

 2. Verify the date and time on the phone. The Settings app lets you configure the date and 
time for the phone. Typically, this will be synced automatically with the correct date  
and time.

 3. Connect the phone device USB to the development PC.

 4. On the development PC, navigate to the Start screen, type “Windows Phone Developer 
Registration” to search for the registration application, and click the entry in the Apps list 
to run it (see Figure 2-19).

Figure 2-19. Running the Windows Phone Developer Registration Application



Chapter 2 ■ GettinG Started

22

 5. In the Windows Phone Developer Registration screen, verify the Status message.  
The Status will indicate if the phone is ready to be registered and will flag any problems, 
such as your device is unconnected, before continuing.

 6. Click the Register button (see Figure 2-20).

Figure 2-21. Success Status Message

Figure 2-20. Registering the Phone Device

 7. Sign in with your Windows Live ID connected to your registered developer’s account.

 8. Check the Status again to verify you have successfully unlocked your Windows Phone,  
as shown in Figure 2-21.

Well done, now you can deploy Windows Phone 8 applications directly onto the phone!

Note ■  if you receive an error message “not registered with the marketplace 80043001,” this means that the  
Windows Live id you used is not associated with an active developer account. You need to go to the dashboard at  
dev.windowsphone.com and join to get a developer account.

https://dev.windowsphone.com


Chapter 2 ■ GettinG Started

23

Figure 2-22. Creating a new Windows Phone App

Building the Example Application
The steps that follow demonstrate building and running a simple “hello world” application. In the process,  
we will change some superficial things like the application icon, tile icon, and titling. 

 1. From the Visual Studio menu select File ➤ New ➤ Project. In the New Project dialog, 
shown in Figure 2-22, select Windows Phone from the Installed Templates list. Select the 
Windows Phone App template. Set the Name of the project to “Getting Started.” Click the OK 
button to continue.

 2. Next, the New Windows Phone Application dialog prompts for the Target Windows Phone 
OS Version. Leave the default Windows Phone OS 8.0 selected and click the OK button to 
continue (see Figure 2-23). 



Chapter 2 ■ GettinG Started

24

 3. Locate the deployment device drop-down list in the Visual Studio toolbar and verify that 
Emulator WVGA is selected (see Figure 2-24).

Figure 2-23. Selecting the Target Windows Phone OS Version

Figure 2-24. Selecting the Deployment Device

 4. Click the green play button to run the emulator. The emulator should display and then 
load your application. By default, the application title reads “MY APPLICATION” and the 
page title is “page name” as shown in Figure 2-25.



Chapter 2 ■ GettinG Started

25

 5. Click the back button shown in Figure 2-26 to return to the home page. The emulator will 
stay open.

Figure 2-25. The Default Page Running in the Emulator

Figure 2-26. Navigating with the Back Button

 6. The Start screen displays tiles that display important live information and allow direct 
navigation to run your favorite apps. Scroll to the bottom of the Start screen and click the 
forward button shown in Figure 2-27 to display the App List.

Figure 2-27. Navigating with the Forward Button



Chapter 2 ■ GettinG Started

26

 7. The App List shows “Getting_Started” is listed along with the other applications available on 
the emulator. Click and hold the “Getting_Started” item. This is equivalent to a right-click on a 
PC and displays a context menu. Click the pin to start item from the menu (see Figure 2-28).

Figure 2-28. Pinning the Application to the Start Screen

Figure 2-29. The Application Pinned in the Start Screen

 8. The “Getting_Started” application now has a tile on the Start screen (see Figure 2-29).



Chapter 2 ■ GettinG Started

27

Click and hold the tile and select the “unpin” icon to remove the app tile. You will need it unpinned for the  
next exercise.

Customizing Application Settings
This extends the previous set of steps by customizing the title and icons for the application and tile graphics.

The initial Windows Phone 8 project created by default in Visual Studio uses three icons: 

•	 IconicTileSmall.png and IconicTileMediumLarge.png, in the \Assets\Tiles directory,  
are displayed on the Start screen in two sizes the user can configure.

•	 ApplicationIcon.png, in the \Assets directory, shows up on the App List.

The following steps assign these icons and provide titling and captions:

 1. Open the project from the previous exercise in Visual Studio.

 2. In the Solution Explorer copy the three image files mentioned above and rename them. 
Figure 2-30 shows the three new files in the Solution Explorer.

Figure 2-30. Copied and Renamed Graphics in the Solution Explorer

 3. In the Solution Explorer, double-click each of the three images and edit each image using 
the Visual Studio 2012 icon editor. You can also use any other drawing tools you are 
familiar with. The point is to simply tweak the image enough that you will recognize the 
change when it’s displayed in the running application. Figure 2-31 shows the addition of 
text using the icon editor.



Chapter 2 ■ GettinG Started

28

 4. In the Solution Explorer, double-click the \Properties\WMAppManifest.xml file. This will 
open up the editor for the project settings. Click on the Application UI tab shown  
in Figure 2-32.

Figure 2-31. Editing Tile Graphic in the Icon Editor

Figure 2-32. Selecting the Application UI tab


