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Preface

This LNEE volume consists of papers presented at the Symposium-A entitled
“Computational Signal Processing and Analysis” in the International Conference on
“NextGen Electronic Technologies–Silicon to Software”—ICNETS2-2017, which
was held in VIT Chennai, India, during 23–25 March 2017.

The focus of this symposium was to bring together researchers and technologists
working in different aspects of signal processing such as biomedical signal pro-
cessing, image processing and video processing. One of the major objectives of this
symposium is to highlight the current research developments in the areas of signal,
image and video processing.

This symposium received over 64 paper submissions from various countries
across the globe. After a rigorous peer review process, 37 full-length papers were
accepted for presentation at the conference. This was intended to maintain the high
standards of the conference proceedings. The presented papers were oriented
towards addressing challenges involved in different application areas of signal
processing. In addition to the contributed papers, renowned domain experts across
the globe were invited to deliver keynote speeches at ICNETS2-2017.
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dedication of the reviewers. We would like to express our gratitude to the keynote
speakers who shared their expertise to the budding signal processing researchers.
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Symposium-A as one volume. We would also like to thank the ICNETS2-2017
Secretariat for dexterity. We would like to place on record the tireless work con-
tributed by Symposium-A manager Dr. Jagannath. We acknowledge our publica-
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Detecting Happiness in Human Face
Using Minimal Feature Vectors

Manoj Prabhakaran Kumar and Manoj Kumar Rajagopal

Abstract Human emotions estimated from face become more effective compared
to various modes of extracting emotion owing to its robustness, high accuracy and
better efficiency. This paper proposes detecting happiness of human face using
minimal facial features from geometric deformable model and supervised classifier.
First, the face detection and tracking is observed by constrained local model
(CLM). Using CLM grid node, the entire and minimal feature vectors displacement
is obtained by facial feature extraction. Compared to entire features, minimal fea-
ture vectors is considered for detecting happiness to improve accuracy. Facial
animation parameters (FAPs) helps in identifying the facial feature movements to
forms the feature vectors displacement. The feature vectors displacement is com-
puted in supervised bilinear support vector machines (SVMs) classifier to detect the
happiness in human frontal face image sequences. This paper focuses on minimal
feature vectors of happiness (frontal face) in both training and testing phases. MMI
facial expression database is used in training, and real-time data are used for testing
phases. As a result, the overall accuracy of happiness is achieved 91.66% using
minimal feature vectors.

Keywords Constrained local model (CLM) � Facial animation parameters (FAPs)
Minimal feature vectors displacement � Support vector machines (SVMs)
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1 Introduction

Since 1990s, several researches are carried out on human emotion recognition for
human–computer interaction (HCI), affective computing, etc. Emotion recognition
in human has been established by the various modes of extraction [1]: physiological
signal and non-physiological signal. From [1], the facial expression recognition is
best out of the various modes of extracting emotion methods. From 1990 to till
now, researchers are mostly concentrating on the robust automatic facial expression
from image sequence compared to other modes of extracting emotions. In [2] has
given the study of automatic facial expression system, through the photographic
stimuli. In [3, 4] has established the automatic facial expression system from facial
image sequence, which analyze the facial emotion through feature detection and
tracking points.

From the literature survey [5–10], it is observed that the facial emotions are
defined by the maximum number of facial feature points with action units
(AUs) [11]. Therefore, usage of more feature points for facial emotion attains the
complex data computation with less accuracy. To overcome this problem, the
minimal feature points are selected for human facial expression. Facial action
coding system (FACS) defines the combination of action units for facial emotion,
using the entire feature points. Facial animation parameters (FAPs) [12] define
facial emotion of action units within 10 groups, which use the entire feature points.
Therefore, FAPs are considered for emotions’ extraction using minimal feature
vectors, which result in less data computational with high accuracy.

From [13] explain the importance of face modeling: the state of art with respect
to different face models of face detection, tracking of automatic facial expression
recognition.

In this paper, the detecting happiness is based on constrained local model
(CLM) and bilinear support vector machines (SVMs). CLM [14] is developed for
the face detection, tracking, and extracting the feature points. The extracted feature
points form the minimal feature vectors displacements. The bilinear SVMs [15, 16]
are formulated for classification of detecting happiness with help of FAPs [12]. The
rest of the paper is as follows: The descriptions of detecting happiness are shown in
Sect. 2. Section 3 describes the experimental results and discussion of proposed
system. Section 4 summarizes the future work and conclusion.

2 System Description

The system description of detecting happiness is followed in three steps: face
detection, tracking and feature extraction. From the facial feature vectors dis-
placement, facial expressions are classified. Face detection and tracking, are carried
out using deformable geometric grid node (CLM) [14]. Then feature vectors dis-
placement is composed in supervised classifier (SVMs) [15] for defining the
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happiness in human face. The proposed system architecture of detecting happiness
is shown in Fig. 1.

2.1 Facial Detection and Tracking

In the proposed system, the face detection and tracking is carried out by constrained
local model (CLM) (deformable geometric model fitting) [14], which represented
two processes such as CLM model building and CLM search. The conceptual
diagram of CLM model and search is as shown in Fig. 1.

2.1.1 Building a CLM Model

In CLM model building, there are two processes: shape model and patch model. In
the shape model, first mark manually the landmark of feature points of face using

Fig. 1 Architecture of detecting happiness
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point distribution model (PDM) [17]. PDM employed the non-rigid face shape of
2D+3D vector mesh. In PDM (Eq. (1)), building with principal component analysis
(PCA) and Procrustes preprocessing. Principal component analysis (PCA) is
applied for alignment of shape from the large database to get the mean value and
eigen vectors shape of face. Before PCA, applying the Procrustes analysis for
removing the scale, rotation, translations and gives the result of aligned shape.
Similarly, the patch model applying logistic regression gives the result of mean
value and eigen vectors of patch model.

xi ¼ sR ~xið Þþ Ttx;ty ( Ts;R;tx;ty ~xið Þ ð1Þ

where xi mentioned as ith landmark of 2D+3D PDM’s location,~xi identify as mean
shape of 2D+3D PDM and pose parameters of PDM represent as p ¼ ðs;R; t; qÞ. s,
R, t are denoted as shape, rotation, and translation.

2.2 Searching with CLM

In searching face with CLM, applying the linear logistic regressor algorithm for
extracting the feature points of each face feature variation gives the response maps
of ith image frames in Eq. (2).

pðli ¼ alignedjI; xÞ ¼ 1
1þ exp aCi I; xð Þþ bf g ð2Þ

From the each feature point, crop a patch image of individual part (i.e., nose, left
eye, right eye) and apply the linear logistic regressor [14], which is trained model to
finding the local region of image and gives the result of response image. The
quadratic function is fit on the response image of feature point position by opti-
mization function is subspace constrained mean shift (SCMA) [14]. The mean shift
algorithm [18] is applied for landmark location with aligned shape and patches in
Eq. (3).

x sþ 1ð Þ
i  

X
li2wxc

i

aili N xðsÞi ; li; r
2I

� �
P

y2wxc
i

ai
y
N xðsÞi ; y; r2I
� �li ð3Þ

Finally, combining a shape constraint model and local region of optimization
function obtains the feature point of face, and fixed number of iteration gives the
result of facial feature points tracking.
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2.3 Classification

In classification, formulate the support vector machine (SVMs) with facial ani-
mation parameters (FAPs) of extracted feature points. Support vector machines
(SVMs) [15, 16] are linear separating a maximum margin of hyperplane in a higher
dimensionality space. Let gj ¼ fð~xi;~yiÞg; i ¼ 1. . .k;~x 2 <n; yi 2 f�1; þ 1g is the
training dataset of facial extraction of feature vectors displacement. Then maximum
margin of separating hyperplane of linear data of the form is Eq. (4).

~wT �~xþ b� þ 1 for yi ¼ þ 1ð Þ
~wT �~xþ b� � 1 for yi ¼ �1ð Þ ð4Þ

~wT is weight vectors, where normal to the separating hyperplane and ~wT is a
bias. A decision function of separating hyperplane is as follows in Eq. (5).

f ð~xÞ ¼ ~wT �~xþ b ð5Þ

Subject to constraint inequalities is Eq. (6) the separating linear optimal
hyperplane in form out Eq. (7) :

yi ~w
T �~xiþ b

� �� 1� 0 i ¼ 1; . . .N ð6Þ

~w ¼
X
i¼1

ai � ~Si ð7Þ

The two class of linear SVMs of decision surface is as follows in Eq. (8):

f ðxÞ ¼ r
X
i¼1

ai Uð~SiÞ � UðxÞ
 !

or y ¼ ~w � xþ b ð8Þ

From Eq. (8) gives the discriminating hyperplane of separating cluster in deci-
sion surface. For nonlinear case of SVMs, the training data are changed into linear
separable data by using kernel function (polynomial, rbf), normalization and
transformation of U mapping function [15, 16]. From Eq. (8), decision surface is
classify the detecting happiness are seen detailed in Sect. 3.

3 Experimental Results and Discussion

3.1 Feature Vectors Displacement

The information of face detection, tracking and extraction are carried out for
emotion in real-time human face using geometric deformable model (CLM) [14].

Detecting Happiness in Human Face Using Minimal Feature Vectors 5



The extracted information of happiness is in frame-by-frame facial features
movement to form the facial feature vectors displacement. The geometric infor-
mation of feature vectors displacement is one node displacement di;j defined as the
consecutive frame-by-frame difference between the grid node displacements of first
to ith node coordinates. The feature vectors displacement is in Eq. (9):

di;j ¼ Dxi:j
Dyi;j

� �
=

a11 � a12 a13 � a14 � � � a1;jþ 1 � a1;jþ 2

a21 � a22 a23 � a24 � � � a2;jþ 1 � a2;jþ 2

..

. . .
. ..

.

ai;j � ai;jþ 1 � � � an;mþ 1 � an;mþ 2

0
BBB@

1
CCCA ð9Þ

i ¼ 1; . . .F; j ¼ 1; . . .N, where Dxi;j; Dyi;j are x-axis, y-axis coordinates of grid
node displacement of the ith node in jth frame image, respectively. F is the number
of grid node (F = 66 nodes of CLM), and N is the number of the extracted facial
images from the facial image sequence.

gj ¼ d1;j d2;j . . . dE;j
� 	T

j ¼ 1; . . .N ð10Þ

From Eq. (10), for every sequence of the happy face in dataset, an extracted
feature vectors grid deformation vector gj is created to form the displacements of
the every geometric grid node di;j. In happy face, major muscle variation is hap-
pening in mouth region (Groups 8 and 2 of FAPs). From the extracted features
from CLM, feature vectors displacement is computed. The entire and minimal
feature vectors displacement of happy in CLM is shown in Fig. 2a, b; the blue color
indicates as happy. The happy variations are more in outer lip and corner lip region
with along x-axis direction defined from the FAPs [12].

In this system, the entire feature vectors displacement has high data computation
and less accuracy of variation in happy. In order to achieve less data computation
and high accuracy, minimal feature displacement is used and desired result is
obtained. In Fig. 2a, the entire feature vectors displacement has feature variation in
Group 8 (outer mouth lip region) and Group 2 (corner lip region) from the FAPs
description. In our proposed, the minimal feature vectors displacements have the
feature variation only in Group 2 (corner lip region) as shown in Fig. 2b. In
this system, the geometric deformable grid node (CLM) has L = 66 * 2 = 132
dimensions. In the feature vectors displacement of image sequence, where computed
the di;j displacements of CLM grid node in order to form in start at neutral face to
expressed face (i.e. Initial frame to peak response of frame) and the expressed face to
neutral state. The CLM feature vectors displacement gj is employing for the clas-
sification of happy face using two classes of SVMs in our proposed system. In our
proposed system, the detecting happiness of CLM is developed in C++ with open
framework tool and SVMs which was implemented in Intel i5 processor. In training
and testing processes, MMI facial expression standard database [19] and real-time
emotions of video rate is 30 frames/s are respectively and only frontal face image
sequence are captured are shown in Fig. 3.
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3.2 Training Process

In Happy, the major facial muscle movement in Group 8 and Group 2 of temporal
segments in x-axis direction of the entire and minimal feature vectors displacement
defined by FAPs [12]. From Fig. 4a, b are shown as expression value (i.e.,
offset-apex-onset region) of entire and minimal feature vectors displacements are
respectively. In Happy, the major facial movement is horizontally expanded of both
feature vectors. In that, the entire feature has taken all feature point for classification
of happy. But it attained the high data computations with less accuracy. In order to
achieve, the minimal feature vectors has only two feature points (49th and 55th of
CLM grid node) for happy classification which attained the less data computations
with high accuracy are shown in Fig. 4b. The reason for selecting minimal feature
vectors, the two feature points have high variance compared to the outer lip mouth
region (12 feature points) by FAPs.

Fig. 2 CLM grid of entire and minimal feature vectors displacement of Happy

Fig. 3 Training and testing processes of MMI facial expression database (first row) and real-time
(second row) facial expression datasets are respectively. a Surprise (SUR), b Happy (HAP),
c Disgust (DIS), d Fear (FEA), e Anger (ANG), and f Sad (SAD).
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In training process of happy classification, the entire and minimal feature vectors
displacement of classification is shown in Fig. 4c, d. In that, trained 10 different
subjects of happy (+ve class) and surprise (−ve class) were taken as bilinear SVMs
are shown in Fig. 4c, d. In Fig. 4c, the entire feature vectors displacement of happy
classification has attained the nonlinear data classification. In order to achieve linear
classification of happy, applied the kernel function (polynomial, rbf), normalization
and transformation of mapping function. In Fig. 4d, the minimal feature vectors
displacement has conquered the linear separable datasets and also achieved less data
computation with high accuracy.

3.3 Testing Process

In the testing process, the real-time facial data comprising of all basic six emotions
were taken from 10 different subjects is shown in Fig. 3. Similarly, in the testing

Fig. 4 a Entire feature vectors of Happy in outer lip corners (12 fps). b Minimal feature vectors
of Happy in outer lip corner (48th and 54th fps). c Training process of happy (+ve) and surprise
(−ve) of entire feature vectors of outer lip corners (12 fps) are in nonlinear case in bilinear SVMs.
d Training process of happy (+ve) and surprise (−ve) of minimal feature vectors of outer lip
corners (48th and 54th fps) are in linearly separable in bilinear SVMs
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process, where evaluated with the CLM face tracking and extracted features points
to form the minimal features vectors displacement. The information of minimal
feature vectors displacements was applied on the decision surface of trained model
in the classification of happiness. The confusion matrix of Happy using bilinear
SVMs is shown in Table 1. From the confusion matrix of happy, the overall
accuracy is 91.66% achieved. The validation parameters are Precision is 3,
Recall is 0.666, and F-measure values is 3 which is calculated from the confusion
matrix of Happy.

4 Conclusion

In this paper, happiness is detected with minimal facial feature points using CLM
and SVMs. In this system the minimal feature vectors are determined which con-
tributes highly to detect happiness in human face. This leads to less computation
and more accuracy. In this paper, the experiments are carried out with real time
frontal facial expression and MMI Face expression database. Using minimal feature
vector the accuracy of detecting happiness is 91.66% this work can be extends for
the reminaing basic sets of emotion with multi-classification, different attributes
(posed, spontaneous and wild), which helpful for developing HCI application.
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Analysis of Myocardial Ischemia
from Cardiac Magnetic Resonance Images
Using Adaptive Fuzzy-Based Multiphase
Level Set

M. Muthulakshmi and G. Kavitha

Abstract In this research work, cardiac magnetic resonance (CMR) images are
analyzed to study the pathophysiology of myocardial ischemia (MI). It is a cardiac
disorder that causes irreversible damage to heart muscles. The images considered
for this study are obtained from medical image computing and computer-assisted
intervention (MICCAI) database. Adaptive fuzzy-based multiphase level set
method is utilized to extract endocardium and epicardium of left ventricle from
short-axis view of CMR images. The segmentation results are validated with
similarity measures such as Dice coefficient and Jaccard index. Further, five indices
are derived from the segmentation results. The obtained results provide average
Dice coefficient for endocardium and epicardium as 0.867 and 0.918, respectively.
The mean Jaccard index for epicardium and endocardium is 0.855 and 0.766,
respectively. It is observed that the proposed method segments the left ventricle
more precisely from CMR images. The ischemic subjects show a reduced mean
ejection fraction (32.52) compared to the normal subjects (59.04). The average
stroke volume is found to be 70.16 and 64.05 ml for healthy subjects and ischemic
subjects, respectively. Reduction in stroke volume and ejection fraction for
ischemic subjects indicates lower quantity of blood drained by heart. It is also
observed that there is an increase in myocardial mass for ischemic subjects
(182.11 g) compared to healthy subjects (127.47 g). The thickened heart muscle
contributes to the increased myocardial mass in abnormal subjects. Further,
ischemic subjects show an increase in endocardium volume at end-diastolic and
end-systolic phase when compared to normal subjects. Thus, the clinical indices
evaluated from adaptive fuzzy-based multiphase level set method could differentiate
the normal and ischemic subjects. Hence, this study can be a useful supplement in
diagnosis of myocardial ischemic disorder.
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1 Introduction

Myocardial ischemia (MI) is an irreversible cardiovascular disorder. Cardiovascular
disease (CVD) is the predominant cause of fatality globally. MI is characterized by
weakened heart muscles [1]. The interruption of blood supply damages the heart
muscles that inhibit its ability to pump blood. Eventually, this may be captured as
abnormal heart rhythms, diastolic and systolic dysfunctions [2]. MI causes chest
pain, discomfort in shoulder, arm, back, neck, and jaw. Mortality due to acute
myocardial ischemia can be reduced by diagnosis and treatment at an earlier stage.

Various modalities used to diagnose CVD include echocardiography, magnetic
resonance images (MRI), computed tomography (CT), single photon emission
computed tomography (SPECT), positron-emitted tomography (PET) and inte-
grated modalities. The effective noninvasive modality for CVD diagnosis is cardiac
magnetic resonance (CMR) images [3]. CMR provides high soft-tissue contrast,
multiplanar acquisition capability and lacks ionizing radiations. Left ventricle
(LV) segmentation from CMR is essential for quantitative cardiac study.
Segmentation of LV manually done by radiologists are complex, consumes more
time, and prone to human errors [4]. The papillary muscles make automatic seg-
mentation of LV difficult as their intensities are similar to myocardium. Intensity
inhomogeneity and reduced contrast between other organs and myocardium pose
additional challenges in segmentation. Clinical indices such as left ventricle vol-
ume, ejection fraction, and mass are evaluated with the outcomes obtained from
segmentation of LV echocardiographic images [5]. These indices aid the diagnosis
of myocardial ischemia, and they can be computed more precisely with the aid of
efficient segmentation algorithm.

Previous works on left ventricle segmentation are based on local or global
information [6], deformable models [7], atlas [8], and statistical models [9]. The
local information-based methods better segregate region of interest based on
intensity of pixels. However, they are less effective when tissues have overlapping
intensities [10]. The region growing algorithms though work better for less gradient
images; the drawback is that they leak into irrelevant adjacent regions. Atlas-based
methods require prior information that depends on spatial probability pattern of
different tissues. The training time of statistical models depends on the training
population. Furthermore, model-based methods preserve anatomical spatial infor-
mation. Past studies revealed that active contour models provide promising
approach for left ventricle segmentation [11]. Here, a contour deforms its shape in
accordance with internal and external forces. LV segmentation of CMR images is
carried out with active contour model coupled with nonlinear shape priors [12]. Li
et al. introduced multiphase level set method to segment X-ray, CT and MR images
with intensity inhomogeneity [13]. Recently, two-step DRLSE is applied for LV
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and RV segmentation using CMR images [14]. In detection of cardiac ischemia,
unsupervised support vector machine along with dictionary learning is carried out
on CMR images dependent on blood oxygen level [15].

The limitation with majority of the segmentation methods based on active
contour is that their precision depends on the appropriate placement of initial
contour which requires manual intervention. In order to overcome this, Huang et al.
initialized the contour for snake models utilizing fuzzy C-means clustering and
graph-cut segmentation method [16]. Region-based level set method including
fuzzy C-means clustering is applied to brain CT images for hemorrhage segmen-
tation [17]. A fuzzy C-means clustering methodology that is adaptively regularized
is implemented for brain tissue segmentation from MR brain images [18]. The
initial contour obtained from adaptive fuzzy and the level set energy based on
adaptive fuzzy membership function would provide more precise segmentation
results.

In this work, a multiphase level set method based on adaptive fuzzy is employed
for segmentation of endocardium and epicardium from CMR images. Fuzzy-based
intensity descriptor is incorporated to define the energy of the multiphase level set
function. The efficacy of the segmentation method is validated with similarity
measures such as Jaccard index and Dice coefficient. From the segmented regions
indices such as left ventricle end-diastole and end-systole volume, stroke volume,
ejection fraction and myocardial mass are calculated. These indices could aid the
diagnosis of cardiovascular disorders such as myocardial ischemia.

2 Material and Methods

2.1 Database

The short-axis cardiac magnetic resonance images used for the analysis are acquired
from the medical image computing and computer-assisted intervention (MICCAI)
left ventricle segmentation database [19]. The database contains cine-MR images of
45 patients from a range of pathology. The subjects are divided as normal, ischemic
heart failure, non-ischemic heart failure and hypertrophy. Ground truths for eval-
uation purpose are provided by expert cardiologists. The description about age and
gender of each subject is provided in the database.

2.2 Adaptive Fuzzy-Based Multiphase Level Set

Adaptive fuzzy-based multiphase level set (AFMLS) method is applied for seg-
mentation of epicardium and endocardium of LV simultaneously. In multiphase
level set method, k-level set contours U1, U2,…,Uk are used and their membership
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function is defined by Mi(U1(y),…, Uk(y)) [13]. The energy of an AFMLS function
[13, 17] is given by

e U; c; bð Þ ¼
Z XN

i¼1

eiðxÞMi UðxÞð Þdx: ð1Þ

where ei is the energy-based intensity descriptor, the k-level set functions Uk(x) is
defined by adaptive fuzzy membership function output uij, cluster center [18], and
N is the number of segmented regions.

uij ¼
1� K xi; vj

� �� �þui 1� K �xi; vj
� �� �� ��1=ðm�1Þ

Pc
k¼1 1� K xi; vkð Þð Þþui 1� K �xi; vkð Þð Þð Þ�1=ðm�1Þ ð2Þ

where u is the adaptive regularization parameter, number of clusters denoted by c,
K represents Gaussian radial basis kernel function, and m indicates the weighting
exponent indicating the degree of fuzziness.

ei ¼ I � bcij j2: ð3Þ

where i = 1 to N, original image is given by I, b represents bias field, and c denotes
the cluster center. In this work, N = 3 is considered.

2.3 Similarity Measures

Segmentation outcomes are quantitatively evaluated using Dice coefficient and
Jaccard index [10]. The similarity between the ground truth and computed seg-
mentation results is evaluated by Dice coefficient and Jaccard index. The similarity
measure has values in the range of 0–1. Higher value indicates better segmentation
results. As is the segmented region using AFMLS method, and Am is the ground
truth.

3 Results and Discussion

The short-axis view CMR sequence of frames used in this work includes 9 normal
and 12 ischemic subjects. Adaptive fuzzy-based multiphase level set (AFMLS)
algorithm is applied for segmentation of epicardium and endocardium of left
ventricle from CMR images. In this method, the value for level set parameters r,
timestep, µ, and t are chosen as 7, 0.1, 1, and 0.01 * A2 where A = 255.

Figure 1a–h illustrates the endocardial and epicardial contours of left ventricle
(LV) from end-diastole (ED) to end-systole (ES) phase for a normal subject.

14 M. Muthulakshmi and G. Kavitha



Figure 1a corresponds to ED slice, and Fig. 1h corresponds to ES slice. The
sequence of frames from ED to ES phase is shown in Fig. 1b–g. There is reduction
in LV dimensions from ED phase to ES phase as the ventricle contracts. It is
evident that the proposed AFMLS method could capture the variations in epicardial
and endocardial geometry of LV from ED to ES phase.

The LV segmentation output at ED and ES phase using AFMLS method and
ground truth for both normal and ischemic subjects is demonstrated in Figs. 2
and 3, respectively. Figure 2a–c shows the segmented endocardium during ED,
epicardium during ED, and endocardium during ES for a healthy subject. The
corresponding ground truth images for healthy subject are shown in Fig. 2d–f. The
extracted endocardium at ED, epicardium at ED, and endocardium at ES for a
ischemic subject are illustrated in Fig. 3a–c, respectively. Further, Fig. 3d–f illus-
trates the ground truth images for the same. Hence, it is evident that the proposed
AFMLS algorithm is able to segment the endocardial and epicardial boundaries in
both ischemic and normal subjects.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 AFMLS segmentation of left ventricle from ED phase to ES phase for normal subject.
a ED image. b–g Progress from ED phase to ES phase. h ES image

(a) (b) (c)

(d) (e) (f)

Fig. 2 a Segmented endocardium in ED phase. b Segmented epicardium in ED phase.
c Segmented endocardium in ES phase. d Ground truth for endocardium in ED phase. e Ground
truth for epicardium in ED phase. f Ground truth for endocardium in ES phase in normal subjects
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The AFMLS algorithm is validated with the help of Dice coefficient and Jaccard
index. The Dice metric calculates the overlapped area between the automatic seg-
mentation result and the ground truth. The Dice coefficient obtained for different
normal and ischemic subjects is shown in Fig. 4. The Dice coefficient for endo-
cardium and epicardium segmentation of normal subjects is illustrated in Fig. 4a, b,
respectively. Further, Fig. 4c, d shows the Dice coefficient for endocardium and
epicardium segmentation of ischemic subjects. The mean Dice coefficient is
obtained as 0.866 and 0.918 for endocardium and epicardium segmentation,
respectively.

Figure 5 depicts the Jaccard index obtained for different normal and ischemic
subjects. Figure 5a, b shows the Jaccard index for endocardium and epicardium
segmentation of normal subjects, respectively. Further, the Jaccard index for
endocardium and epicardium segmentation of ischemic subjects is illustrated in
Fig. 5c, d, respectively. The average Jaccard index is 0.766 and 0.855 for endo-
cardium and epicardium segmentation, respectively. It is observed from the simi-
larity measures that the proposed AFMLS algorithm is able to segment the LV
better from both normal and ischemic CMR images. Though the segmentation
validation indices are high for both normal and ischemic subjects, the Dice coef-
ficient and Jaccard index are relatively low for endocardium segmentation in
ischemic subjects. This could be due to ill-defined edges in abnormal cardiac MR
images. Fuzzy better clusters the regions when the edges are well defined.

The indices such as myocardial mass, ejection fraction, end-systole volume,
end-diastole volume and stroke volume for normal and ischemic subjects are cal-
culated for the segmented left ventricle [10]. Figure 6 shows end-diastole volume
(EDV) for LV of normal and ischemic subjects, where the ventricle dilates. It is
observed that there is an increase in the end-diastole volume for ischemic subjects
compared to the normal subjects. This indicates an increase in quantity of blood
intake by the heart. Figure 7 illustrates the end-systole volume (ESV) for LV of

(a) (b) (c)

(d) (e) (f)

Fig. 3 a Segmented endocardium in ED phase. b Segmented epicardium in ED phase.
c Segmented endocardium in ES phase. d Ground truth for endocardium in ED phase. e Ground
truth for epicardium in ED phase. f Ground truth for endocardium in ES phase in ischemic subjects
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normal and ischemic subjects, where the ventricle contracts. It is observed that the
ESV shows a high range (90–180 ml) in ischemic subjects compared to normal
subjects (40–80 ml). This analysis shows that the LV contraction is less in ischemic
subjects and it is an indicator of systolic heart failure. In Fig. 8, the stroke volume
(SV) for normal and ischemic subjects is shown. It is studied that the stroke volume
reduces for ischemic subjects compared to normal subjects and it is more distributed
in nature. The stroke volume is the difference in the EDV and ESV, which is an
indicator of amount of blood drained by LV. Reduced SV indicates reduction in
blood drained by the heart compared to normal subjects. It is associated with
thickened myocardium and LV hypertrophy. Figure 9 shows the ejection fraction
(EF) of left ventricle for normal and ischemic subjects. It is shown that the EF is
low for ischemic subjects compared to normal subjects. The EF parameter well
separates the ischemic and normal images. EF is the ratio of SV to EDV. Low EF

Fig. 4 Dice coefficient for a endocardium and b epicardium segmentation of normal subjects;
c endocardium and d epicardium segmentation of ischemic subjects
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