Beginning DAX
with Power BI

The SQL Pro’s Guide to
Better Business Intelligence

Philip Seamark

Apress’

Beginning DAX with
Power Bl

The SQL Pro’s Guide to Better
Business Intelligence

Philip Seamark

Apress’

Beginning DAX with Power BI

Philip Seamark
UPPER HUTT, New Zealand

ISBN-13 (pbk): 978-1-4842-3476-1 ISBN-13 (electronic): 978-1-4842-3477-8
https://doi.org/10.1007/978-1-4842-3477-8

Library of Congress Control Number: 2018937896

Copyright © 2018 by Philip Seamark

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484234761. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3477-8

To Grace, Hazel, Emily
... and of course Rebecca.

Table of Contents

About the AUROFcccoccemmisemmmmssmnmssnsmsssssnssssssssssassssansssssnssssansssssnnssssnnsnssnnssssnnnnsns xi
About the Technical REVIEWETcuscesssssnnssssanssssansssssnsssssnsssssnsssssnsssssnsssssanssssnnssss xiii
FOreWOrdcccmssemmmssannmsssnnmsssnnmsssnsssssnsssssnnssssnnssssannsssansssssnssssansssssnnssssnnnnssnnnnssnnnnns XV
AcknowIledgmENtS.......ccuremssssssnmssnsmmmssssssssssssnnsssssssssssssssnnnssessssssssssnnnnnnssssssssssnnnnns XVii
Chapter 1: Introduction t0 DAX......ccccsmmsmmmmmmmmmmmsssssssmmmmmmmsssnsssssnssmssssssssnnns 1
WRAL IS DAX?....ceeeeeeeeeses st se e bbb bbb e e e e e 2
What IS @ Data MOUEI? ... 3
Components of @ DAX Data MOdElccocerininninnnsn s ss e s 4

D - 4

L= (- 4

0] 17T 4
RelatioNShiPS ... ———————————— 4
MIBASUIEScveecereceeeee e s s e s e s e s e e e e e e s Re e e e e s e e e e nRe e ae e e e e e nns 4
HIBIAICHIES ... e s e e e s e 5

Your First DAX CalCUIALION.ccovrerereererenesesese s e se s s nsenis 5
Your First CalCUIALION.........ccoveereeceeeceree e 6
1105 [T T 8
FOrMALEING ..o nr e nn s 9
0] 0] 012 SRS 9

Your Second DAX CalCUIAtioN.........ccoveeerenernsesinesess s s s sr s s senses 11
Your Third DAX CalCUIALON..........cccireririrsisise s s 12
The CALENDARAUTO FUNCHON........ccoureeeeessssssss s se e ss s sssnssnas 13
DALY PES .o ——————————————————— 14
The Whole Number Datatype ... s saeas 15

The Decimal and Fixed Decimal Number Datatypec.ccocevrirvninnncnsnn e 16

TABLE OF CONTENTS

Date and DAETIMEccovcrrrieree e s 17
L1 18
L0010 SRS 18
Arithmetic OPErators ... 19
ComPArisSON OPEIALOrS......covcvirerirererr e e e e e e e e s 19
Concatenation OPEIALOr.........ccveeveveererrerererersere s res e s e se s e s saese e e ssesaesaesessesaesaesessensesaens 20

LI T TToz= I 0] 0 T=T = (0] - 20
OPEratOr PrECEUENCE.evverererserrererserersersesessessessessssessessessessssessessessssensessessesssessessessssensessens 20
RelatioNSNIPS ... ———————————— 22
Types of RelationShips........cov i 22

g To] 2L 11T 24
Chapter 2: Variablesccceeeermmmmmmmsssssssssnnmmmssssssssssssssssssssssssssssnnsssssssssssssnnnnnnsssssssssns 27
Variahle STIUCIUIE ...t s 28
Using Variables With TEXL.......c.cucccvienrinnrnesineserse s s ses s 29
Using Variables in Calculated COIUMNS ..o s sens 31
Using Variables in Calculated MEASUIES........c.cccrererrnsesesesesssesessesssssssssse s sesssssssssssessssessnns 32
Using Variables in Calculated TabIESc.ccoverrinnnsesenesess s s sesse e 33
Debugging Using VariabIes...........cccvveerrennnnrnssrse s s sessssessnnes 36
NEStING VANADIEScovieriiririesirrire s s s se e a s e s s p e e 37
Nested Variables (COMPIEX)......ccvivvrrrieriernsirsere s ssssessesaesss e s sne s 38

Chapter 3: Context......cumemmmmmmmmmmmmmsssssssnmmmmmmmssssssssssesssssssssssssssssssssssssssssssesssnsnss 41

LT C=] 0] 1 (=4 P 41
IMPIICIt FItEr CONTEXTcoveierierere st sere s rse e e s e se s ssesre e s sa e sa e e s e saesaesa s e nsesnens 43
EXPIICIt FIHEr CONTEXL.....cceireierierere st serere st s e se s s e ss e e sae e ss s sae e s s e saesaess s e snesne s 50
Calculated COIUMN..........cceccre e p s 53
Calculated MEASUTE..........cccceeerererrreesese e 54
Hardcoded EXAMPIE........cce i s e s s s a e s s 56

ROW CONEEXL.......cieeererrsieeise e nesn s 57
102] 22 (0] £ 60

TABLE OF CONTENTS

How Data IS STOred in DAX........cocivrinnrcsi s e sesssss s 62
COIUMN INUEXESueeerrsrsseise s p s 63
CONEEXE TrANSILIONcucveireeccre e 65
Chapter 4: Summarizing and Aggregatingccccussssesssessssnnsssssssnnsssssssnsnssssssnnnsenss 67
The SUMMARIZE FUNCHION........corireceerereresereesesesese s ses e ssese s e se e sesss e sessssessssessssesenaes 69
RelatioNShiPS ..o ———————————— 72
SUMMARIZE With @ FIEE......ccccveiiennininnssenese s ssssssssssesesesesesssessssanas 74
The SUMMARIZECOLUMNS FUNCHONcovvvvireririreresesesese s ssssssssssssesese s sssens 76
SUMMARIZECOLUMNS With @ FIREE......c.ceveererirerirere e sesese e sesssens 77
The GROUP BY FUNCHION........ccouierrnerinesere s ssssese s s s ssess s se e sessesnssssessssessssssssssssssssessnss 78
The CURRENTGROUP() FUNCLIONcceeccceccss s ss e se s sssssnns 79
GROUPBY IEIAtOrS......ccvveerreeressesersesersssessssessssesessssssessesssssssssssssssssssssssssssnsssssssssssssssenssssssssnns 80
The GROUPBY Double AQQregation..........c.cucerenernsesrnsesesesssssesssssssssssessssssssssssssssssssssssssenens 81
GROUPBY With @ FIIErc.cciuieiririiriiicisisi sttt ans 84
Subtotal and TOtal LINES........ccvvererinernsesinesssssesss s sessssssssssssssssssssssssssssssssssssnsanens 85
The ISSUBTOTAL FUNCHIONcovierieeierieseressesessese s s e se s e s ssess s e ssssessssesssssssssssssssssnens 88
Chapter 5: JOINS ..uuiiiiiiisssessssmnimssnssssssssssssssnnnnnssnsssssssns 93
JOINS TN DAX ..t s e 93
Standard RelationShipccveverererneriereresesserereses s s s sss s s ssesaessssessessessessssessesaes 93
How to Join Tables Without a Relationship........c.cccocvirininninininsn e 96
The CROSSJOIN and GENERATE FUNCHIONSccoveeerererneesse e se e s sssesesessns 96
CROSSUOIN ... ss s s e e e e e bbb b e e e e e e s 97
GENERATE....... ..ottt sssssssss e e e e st ntsenesenenene s anas 97
NATURALINNERJOIN and NATURALLEFTOUTERUJOINccccvereeereessssssssssssssssssssssssssssssenenenes 118
T2 Vo OSSPSR 119
UNION.....eotitcecereresesesese e bbb se e e e b bbb e np e e 121
LOOKUPVALUEcooieeeeeessssss sttt sttt sttt 123

vii

TABLE OF CONTENTS

Chapter 6: Filtering......cccccsrrmssnmnmsssssnnnmsssssnssesssssnssssssssnssssssssnnsssssssnnssssssnnnnsssssnnnnss 125
IMPICIE FIRBIING ...ciueiieiccirccer s p e nne 125
EXPICIE FIREIING ...t s 133

The FILTER FUNCHIONccuceeeereec e s smeesnenens 133
Filters and Calculated TabIES..........cceerrerrnereree e 162

Chapter 7: DatesScccuseemmmmssssnnnmsssssnnnmsssssnsnmsssssnnnsssssnnnnssssssnnnsssssnnnnsssssnnnnsssssnnnnss 165
D7 OSSR 166
I 11 OSSPSR 166
Date/Calendar TADIES ... 167

Automatic Date TabIES.........c.coviiirn s ———— 171
QUICK MBASUIESeveiererereseseeseseess s s st sa s e e s sssssssssnsnssenenes 172
SOMNG DY COUMNSceererereererrere s e s ses e see e s sae e s e sresa s e s e saesa e e s e saesaesa e e eaesaesae e s e naenaes 172
Including the Year When Using MONth ... ssssessesnens 174
TIME INTEIIGENCE. ... e nnn e 174
YEAr 10 DALE.....cc.cceerecircse et ne e 175

Period COMPANISONSccceiiiiriirererin et st e s e e et 178
The ROIING AVEFAGEcvccerreeriresessesesreesrsse s e s sr s e s se s e ssssesss e e ssa e ssssessssessssanssessessnsenees 181
Rolling YOUr OWN TaDIE........coeiiirceriere et se s ss e s sre e s saesae e s e saesnens 184

CALENDARotiuiuiusnsnsssssssssssssssssssese e e e e bbbttt 185

CALENDARAUTO.......ceuiuesensssssnsssssssssssesesesesesesessesssssssssssssasasas 185

Expanding the Date TADIEcccceveverierierenirrirere s s s e s sae e sseenes 186

L (0 qTo R (T (T O 188

Lo LN (7 189

D L0 (1 [0 O 190

WEEKIY BUCKETSeeveeeererer e s s 190

IS WOTKING DAYcucoerrierirerinisenese s ss s s s se e s ss e s se s e s s sessesssnsensnnes 192

WEEKAAY NAME........coveeecererer e e r e 194

Rolling YOUr OWN—SUMMAIYccccvirmrrnrerrnesesenessssesrsessssese s ssssesssssssssssessssessssesssssssssanes 194
(0L T T D TR 194

viil

TABLE OF CONTENTS

Chapter 8: Debugging and Optimizing.......ccccusseemrrmsssnnnmnssssnnnmssssssnssssssssssesssssnnns 197
Debugging in DAX ... e 197
Debugging USiNG COIUMNScccueviiirinierine ettt as 199
Debugging Using VariabIes..........ccovvrirnnsninssr s 201
Debugging Calculated MEASUIES........cvverererrerrersersesersersersesessessessessssessessesssssssessesssssssessesses 202
EXIEINAI TOOIS ... s 206

(0] 0 (11141 T SRS 217
Optimizing Data MOUEIScccceriiririrerr e e s 217
Chapter 9: Practical DAXccccummmmsssssmmmmmmmmmsssssssssnnsmssssssssssssssnsssesssssssnsnnnnnnsness 231
Creating @ NUMDErs TaDIE ... s 231
Adding @ Date TaDIE ..o s 233
Creating the SAlES TADIEcccvcrererircre e e nnen 234
OPHIMIZING SAIBS ...cveveererererrerre et r e s sa e s e s ae s ae e s e e aesae e e e e e s ae e e e e e naenaen 242
Calculated Columns vs. Calculated MEASUIESccccererererrsessnmsesessssssese e sesssseneas 243
Calculated COIUMNS..........cccveeererereecsese e 243
CalCulated MEASUIEScccceererrrreeerere e se s 243
Show All Sales for the Top Ten ProducCtscccevrrnenenermennssssesesssssesese s sssesesesnns 248
DOUDIE GFOUPING ...veveerersersererersessesessersessessssessessesssssssessesasssssessessessssessessessessssessesasssssensesaes 252
1T - 259

ix

About the Author

Philip Seamark is an experienced Data Warehouse and
Business Intelligence consultant with a deep understanding
of the Microsoft stack and extensive knowledge of Data
Warehouse methodologies and enterprise data modeling.
He is recognized for his analytical, conceptual, and problem-
solving abilities and has more than 25 years of commercial
experience delivering business applications across a broad

range of technologies. His expertise runs the gamut from
\ . project management, dimensional modeling, performance
tuning, ETL design, development and optimization, and report
and dashboard design to installation and administration.

In 2017 he received a Microsoft Data Platform MVP award for his contributions to
the Microsoft Power Bl community site, as well as for speaking at many data, analytic,
and reporting events around the world. Philip is also the founder and organizer of the
Wellington Power BI User Group.

About the Technical Reviewer

Jeffrey Wang stumbled upon Power BI technologies by accident in 2002 in the suburbs
of Philadelphia, fell in love with the field, and has stayed in the BI industry ever since. In
2004, he moved his family across the continent to join the Microsoft Analysis Services
engine team as a software engineer just in time to catch the tail end of SQL Server 2005
Analysis Services RTM development. Jeffrey started off with performance improvements
in the storage engine. After he found that users desperately needed faster MDX
(Multidimensional) calculations, he switched to the formula engine and participated

in all the improvements to MDX afterward. He was one of the inventors of the DAX
programming language in 2009 and has been driving the progress of the DAX language
since then. Currently, Jeffrey is a principal engineering manager in charge of the DAX
development team and is leading the next phase of BI programming and its modeling
evolution.

xiii

Foreword

Power BI has changed the definition of business intelligence (BI) tools. Taking
tools that were historically reserved for data scientists and making them easy to use
and economically available to business analysts has enabled an entire culture of
self-service BI. This book is doing the same for data access programming. It breaks
complex concepts into simple, easy-to-understand steps and frames them in a business
context that makes it easy for you to start learning the DAX language and helps you solve
real-world business challenges on a daily basis.

—Charles “Chuck” Sterling (of Microsoft).

Acknowledgments

Thanks to Marco Russo, Alberto Ferrari, and Chris Webb for providing many years of
high-quality material in the world of business intelligence.

Xvii

CHAPTER 1

Introduction to DAX

The aim of this book is to help you learn how you can use the DAX language to improve
your data modelling capability using tools such as Microsoft Power BI, Excel Power
Pivot, and SSAS Tabular. This book will be particularly useful if you already have a good
knowledge of T-SQL, although this is not essential.

Throughout the book, I present and solve a variety of scenarios using DAX and
provide equivalent T-SQL statements primarily as a comparative reference to help
clarify each solution. My personal background is as someone who has spent many
years building solutions using T-SQL, and I would like to share the tips and tricks I have
acquired on my journey learning DAX with those who have a similar background. It’s
not crucial for you to be familiar with T-SQL to get the best out of this book because the
examples will still be useful to someone who isn’t. I find it can be helpful to sometimes
describe an answer multiple ways to help provide a better understanding of the solution.

In this book, I use Power BI Desktop as my primary DAX engine and most samples
use data from the WideWorldImportersDW database, which is freely available for
download from Microsoft’s website. This database can be restored to an instance of
Microsoft SQL Server 2016 or later. I am using the Developer edition of SQL Server 2016.

I recommend you download and install the latest version of Power BI Desktop to
your local Windows PC. The download is available from powerbi.microsoft.com/
desktop, or you can find it via a quick internet search. The software is free to install
and allows you to load data and start building DAX-based data models in a matter of
minutes.

The WideWorldImportersDW database is clean, well-organized, and an ideal starting
point from which to learn to data model using DAX.

The aim of this first chapter is to cover high-level fundamentals of DAX without
drilling into too much detail. Later chapters explore the same fundamentals in much
more depth.

© Philip Seamark 2018
P. Seamark, Beginning DAX with Power BI, https://doi.org/10.1007/978-1-4842-3477-8_1

CHAPTER 1 INTRODUCTION TO DAX

What Is DAX?

Data Analysis Expressions (DAX) is both a query and functional language. It made its
first appearance back in 2009 as part of an add-in to Microsoft Excel 2010. The primary
objective of DAX is to help organize, analyze, understand, and enhance data for analytics
and reporting.

DAXis not a full-blown programing language and does not provide some of
the flow-control or state-persistence mechanisms you might expect from other
programming languages. It has been designed to enhance data modeling, reporting,
and analytics. DAX is constantly evolving with new functions being added on a
regular basis.

DAX is described as a functional language, which means calculations primarily
use functions to generate results. A wide variety of functions are provided to help
with arithmetic, string manipulation, date and time handling, and more. Functions
can be nested but you cannot create your own. Functions are classified into the
following categories:

¢ DateTime

o Filter

o Info

o Logical

e Mathtrig

e ParentChild
o Statistical
o Text

There are over 200 functions in DAX. Every calculation you write will use one or
more of these. Each function produces an output with some returning a single value and
others returning a table. Functions use parameters as input. Functions can be nested so
the output of one function can be used as input to another function.

Unlike T-SQL, there is no concept of INSERT, UPDATE, or DELETE for manipulating
data in a data model. Once a physical table exists in a Power BI, SSAS Tabular, or Excel
PowerPivot data model, DAX cannot add, change, or remove data from that table. Data
can only be filtered or queried using DAX functions.

CHAPTER 1 INTRODUCTION TO DAX

What Is a Data Model?

A data model is a collection of data, calculations, and formatting rules that combine to
create an object that can be used to explore, query, and better understand an existing
dataset. This can include data from many sources.

Power BI Desktop, SSAS Tabular, and PowerPivot for Excel can import data from
a wide variety of data sources including databases and flat files or directly from many
source systems. Once imported, calculations can be added to the model to help explore
and make sense of the data.

Data is organized and stored into tables. Tables are two dimensional and share many
characteristics with databases tables. Tables have columns and rows, and relationships
can be defined between tables to assist calculations that use data from multiple tables.
Calculations can be as simple as providing a row count over a table or providing a sum of
values in a column. Well-considered calculations should enhance your data model and
support the process of building reports and performing analytical tasks known as measures.

It’s the combination of data and measures that become your data model.

The Power BI Desktop user interface consists of three core components. First, the
Report View provides a canvas that lets you create a visual layer of your data model
using charts and other visuals. Report View also lets you control the layout by dragging,
dropping, and resizing elements on the report canvas. It’s the canvas that is presented to
the end user when they access the report.

The second component is the Data View, which provides the ability to see raw
data for each table in the model. Data View can show data for one table at a time and is
controlled by clicking the name of a table from the list of tables in the right-hand panel.
Columns can be sorted in this view, but sorting here has no impact on any sorting by
visuals on the report canvas. Columns can be renamed, formatted, deleted, hidden, or
have their datatype defined using the Report View. A hidden column will always appear
in the Report View but not in any field list in the report.

It’s possible to add or change calculations from both Report and Data View.

The last component of the Power BI Desktop user interface is the Relationship View.
This section shows every table in the data model and allows you to add, change, or
remove relationships between tables.

CHAPTER 1 INTRODUCTION TO DAX

Components of a DAX Data Model

The DAX data modeling engine is made up of six key components.

Data

The first step of building a data model is importing data. A wide variety of data sources
are available, and once they are imported, they will be stored in two-dimensional tables.
Sources that are not two dimensional can be used, but these will need to be converted
to a two-dimensional format before or during import. The query editor provides a rich
array of functions that help with this type of transformation.

Tables

Tables are objects used to store and organize data. Tables consist of columns that are
made up of source data or results of DAX calculations.

Columns

Each table can have one or more columns. The underlying data engine stores data from
the same column in its own separate index. Unlike T-SQL, DAX stores data in columns
rather than in rows. Once data has been loaded to a column, it is considered static and
cannot be changed. Columns can also be known as fields.

Relationships

Two tables can be connected via a relationship defined in the model. A single column
from each table is used to define the relationship. Only one-to-many and one-to-one
relationships are supported. Many-to-many relationships cannot be created. In DAX,
the most common use of relationships is to provide filtering rather than to mimic
normalization of data optimized for OLTP operations.

Measures

A measure is a DAX calculation that returns a single value that can be used in visuals in
reports or as part of calculations in other measures. A measure can be as simple as a row
count of a table or sum over a column. Measures react and respond to user interaction

4

CHAPTER 1 INTRODUCTION TO DAX

and recalculate as a report is being used. Measures can return new values based on
updates to the selection of filters and slicers.

Hierarchies

Hierarchies are groupings of two or more columns into levels that can be drilled up/
down through by interactive visuals and charts. A common hierarchy might be over
date data that creates a three-level hierarchy over year, month, and day. Other common
hierarchies might use geographical data (country, city, suburb), or structures that reflect
organizational groupings in HR or Product data.

Your First DAX Calculation

It’s possible to import data and have no need to write in DAX. If data is clean and simple
and report requirements are basic, you can create a model that needs no user-created
calculations. Numeric fields dragged to the report canvas will produce a number.

If you then drag a non-numeric field to the same visual, it automatically assumes you
would like to group your numeric field by the distinct values found in your nonnumeric
field. The default aggregation over your numeric field will be SUM. This can be changed
to another aggregation type using the properties of your visual. Other aggregation types
include AVERAGE, COUNT, MAX, MIN and so on.

In this approach, the report creates a DAX-calculated measure on your behalf. These
are known as implicit measures. Dragging the ‘Fact Sale’[Quantity] field to the canvas
automatically generates the following DAX statement for you:

CALCULATE(SUM('Fact Sale'[Quantity]))

This calculation recomputes every time a slicer or filter is changed and should show
values relevant for any filter settings in your report.

Most real-world scenarios require at least some basic enhancements to raw data, and
this is where adding DAX calculations can improve your model. When you specifically
create calculated measures, these are known as explicit measures.

Some of the most common enhancements are to provide the ability to show a count
of the number of records in a table or to sum values in a column.

Other enhancements might be to create a new column using values from other
columns in the same row, or from elsewhere in the model. A simple example is a
column that multiplies values from columns such as Price and Qty together to produce

CHAPTER 1 INTRODUCTION TO DAX

a total. A more complicated example might use data from other tables in a calculation to
provide a value that has meaning to that row and table.
Once basic count or sum calculations have been added, more sophisticated
calculations that provide cumulative totals, period comparisons, or ranking can be added.
These are the three types of calculations in DAX:

e Calculated columns
e Calculated measures
e Calculated tables

We explore each of these calculations in more detail later in this book and I include
hints on how and when you might choose one type over another.

Note Calculated tables (tables that are the result of a DAX calculation) can only
be created in the DAX engine used by Power Bl Desktop and SSAS Tabular,

Your First Calculation

The first example I cover creates a simple calculated measure using data from the
WideWorldImportersDW database (Figure 1-1). The dataset has a table called ‘Fact Sale’
that has a column called [Total Including Tax]. The calculation produces a value that
represents a sum using values stored in this column.

Quantity Unit Price Tax Rate Tota Excluding Tax Tax Amount Profit Tota Includ ing Tax 1
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 195 8.5 14.95
1 13 15 13 1.95 8.5| 14.95

Figure 1-1. A sample of data from the ‘Fact Sale’ table
6

CHAPTER 1 INTRODUCTION TO DAX

When viewing this table in Data View, we see the unsummarized value for each row
in the [Total Including Tax] column. A calculated measure is required to show a single
value that represents a sum of every row in this column.

In Power BI, you can create a calculated measure using the ribbon, or by right-
clicking the table name in the Report View or Data View. This presents an area below the
ribbon where you can type the DAX code for your calculation. The text for this calculated
measure should be

Sum of Total including Tax = SUM('Fact Sales'[Total Including Tax])

This should look as it does in Figure 1-2.

x v Sum of Total including Tax = SUM('Fact Sale'[Total Including Tax])

Figure 1-2. DAX for the first calculated measure. This calculation uses the SUM
function to return a single value anywhere the calculated measure is used in the
report. When dragged and dropped to the report canvas using a visual with no
other fields or filters, the value should show as $198,043,493.45.

The structure of the formula can be broken down as follows: starting from the left,
the first part of the text sets the name of the calculated measure. In this case, the name is
determined by all text to the left of the = operator. The name of this calculated measure is
[Sum of Total including Tax]. Names of calculated measures should be unique across the
model including column names.

This name is how you will see the measure appear in the field list as well as how it
may show in some visuals and charts.

Note Spaces between words are recommended when creating names for
calculated measures and columns. Avoid naming conventions that use the
underscore character or remove spaces altogether. Use natural language as much
as possible. Use names that are brief and descriptive. This will be especially helpful
for Power Bl features such as Q&A.

CHAPTER 1 INTRODUCTION TO DAX

The = sign separates the calculation name from the calculation itself. A calculated
measure can only return a single value and never a list or table of values. In more
advanced scenarios, steps involving groups of values can be used, but the result must be
a single value.

All text after the = sign is the DAX code for the calculated measure. This calculation
uses the SUM function and a single parameter, which is a reference to a column. The
single number value that is returned by the SUM function represents values from every
row from the [Total Including Tax] column added together. The datatype for the column
passed to the SUM function needs to be numeric and cannot be either the Text or
DateTime datatypes.

The notation for the column reference is fully qualified, meaning it contains both
the name of the table and name of the column. The table name is encapsulated inside
single quotations (‘’). This is optional when your table name doesn’t contain spaces. The
column name is encapsulated inside square brackets ([|).

Calculated measures belong to a single table but you can move them to a new home
table using the Home Table option on the Modeling tab. Calculated measures produce
the same result regardless of which home table they reside on.

Note When making references to other calculated measures in calculations,
never prefix them with the table name. However, you should always include the
name of a table when referencing a column.

IntelliSense

IntelliSense is a form of predictive text for programmers. Most modern programming
development environments offer some form of IntelliSense to help guide you as you
write your code. If you haven’t encountered this before, it is an incredibly useful way to
help avoid syntax errors and keep calculations well-formed.

DAX is no different, and as you start typing your calculation, you should notice
suggestions appearing as to what you might type next. Tooltips provide short
descriptions about functions along with details on what parameters might be required.

CHAPTER 1 INTRODUCTION TO DAX

IntelliSense also helps you ensure you have symmetry with your brackets, although
this can sometimes be confusing if you are not aware it is happening.

IntelliSense suggestions can take the form of relevant functions, or tables or columns
that can be used by the current function. IntelliSense is smart enough to only offer
suggestions valid for the current parameter. It does not offer tables to a parameter that
only accepts columns.

In the case of our formula, when we type in the first bracket of the SUM function,
IntelliSense offers suggestions of columns that can be used. It does not offer tables or
calculated measures as options because the SUM function is only designed to work with
columns.

Formatting

As with T-SQL and pretty much any programming language, making practical use of line
spacing, carriage returns, and tabs greatly improves readability and, more importantly,
understanding of the code used in the calculation. Although it’s possible to construct a
working calculation using complex code on just a single line, it is difficult to maintain.
Single-line calculations also lead to issues playing the bracket game.

Note The bracket game is where you try to correctly pair open/close brackets in
your formula to produce the correct result. Failure to pair properly means you lose
the game and your formula doesn’t work.

A good tip is to extend the viewable area where you edit your calculation before you
start by repeating the Shift-Enter key combination multiple times or by clicking the down
arrow on the right-hand side.

Comments

Comments can also be added to any DAX calculation using any of the techniques in
Table 1-1.

CHAPTER 1 INTRODUCTION TO DAX

Table 1-1. How to Add Comments

Comment Effect
Characters
I Text to the right is ignored by DAX until the next carriage return.

-- Text to the right is ignored by DAX until the next carriage return.

1% Text between the two stars is ignored by DAX and comments can span multiple lines.

Examples of ways you can add comments are shown in Figure 1-3 as is an example of
how spacing DAX over multiple lines helps increase readability.

Measure = DATEDIFF(

-- This is the first argument

TODAY() ,
// This is the second argument
DATE(2017,12,24),

'* This is the final argument */
DAY

)

Figure 1-3. Commented text styles and usage of line breaks

By formatting code and adding comments you help to make the logic and
intent of the function easier to understand and interpret for anyone looking at the
calculation later.

A nice alternative to the formula bar in Power BI Desktop and SSAS Tabular, is DAX
Studio, which is a free product full of features designed to help you develop and debug
your calculations. I provide a more detailed look at DAX Studio in Chapter 8.

10

CHAPTER 1 INTRODUCTION TO DAX

Your Second DAX Calculation

In this second example, I create a calculated column as opposed to a calculated measure.
A Chapter 9 provides more detailed advice on when you should consider using a
calculated column instead of a calculated measure, but in short, a calculated column adds
a column in an existing table in which the values are generated using a DAX formula.

A simple calculation might use values from other columns in the same row. This
example uses two columns from the ‘Fact Sale’ table to perform a simple division to
return a value that represents an average unit price.

To add this calculation to your data model, select the ‘Fact Sale’ table in the Fields
menu so it is highlighted. Then use the New Column button on the Modeling tab and
enter the text shown in Figure 1-4.

X /| Average Item Price = DIVIDE(

'Fact Sale'[Total Including Tax] ,
'Fact Sale'[Quantity]

)

Figure 1-4. A calculated column for [Average Item Price]

Note This formula works without the table name preceding each column name;
however, it is highly recommended that whenever you reference a column, you
always include the table name. This makes it much easier to differentiate between
columns and measures when you are debugging longer DAX queries.

The code in Figure 1-4 adds a new column to the ‘Fact Sale’ table called [Average
Item Price]. The value in each cell of the new column (see Figure 1-5) is the output of this
calculation when it is executed once for every row in the table.

11

CHAPTER 1 INTRODUCTION TO DAX

Qu antity Total Including Tax Average Item Price

90 1552.5 $17.25
90 3001.5 533.35
90 38295 $42.55
90 10246.5 5113.85
90 3881.25 543.13
90 3881.25 543.13
90 2277 5$25.30
90 3001.5 533.35
90 4347 548.30
90 34155 537.95
90 2277 525.30
90 15525 $17.25

s *AnSY AeAan

Figure 1-5. Sample of data for new calculated column

Your Third DAX Calculation

This last example creates a calculated table. This option is only available in Power BI
Desktop and SSAS Tabular, not in PowerPivot for Excel 2016 (or earlier).

You can create calculated tables using any DAX function that returns a table or by
simply referencing another table in the model. The simplest syntax allows you to create
a clone of another DAX table. The example shown in Figure 1-6 creates a new calculated
table called ‘Dates2; which is a full copy of the ‘Dates’ table. Modifications made to the
‘Dates’ table, such as adding or modifying columns, automatically flow through to the
‘Dates2’ table.

| | Dates2 = Dates

Figure 1-6. Creating a calculated table

12

CHAPTER 1 INTRODUCTION TO DAX

Filters, measures, columns, and relationships can be added to the ‘Dates2’ table
without effecting ‘Dates’ table. The beauty of this is that because the base table (‘Dates’)
is reading from a physical data source, any changes to data in the ‘Dates’ table are
reflected in the ‘Dates2’ table.

To extend the example so the new table only shows some rows from the original
table, you can use the FILTER function as shown in Figure 1-7.

X v Dates2 = FILTER(

Dates,

'Dates'[Calendar Year]=2016
)

Figure 1-7. Calculated table created using FILTER

The ‘Dates?2’ calculated table still has the same number of columns as ‘Dates, but it
only has rows that match the filter expression. This results in the ‘Dates2’calculated table
having 365 rows that represent a row per day for the calendar year of 2016.

It is common to use calculated tables to create summary tables that can be used
as faster alternatives for calculated measures. Using calculated tables to produce an
aggregated version of a sales table can provide considerable performance gains for any
calculation using the aggregated version.

The CALENDARAUTO Function

A handy DAX function that generates a calculated table without using an existing table is
the CALENDARAUTO function. This function returns a table with a single column called
[Date]. When called, the CALENDARAUTO function inspects every table in the model
looking for columns that use either the Date or DateTime datatype.

The oldest and newest date values that appear in any column using these datatypes
are used to generate a row for every day between the oldest and newest values. The dates
are rounded to the start and end of the calendar year.

Date tables are invaluable for data models, particularly when you add measures
designed to show period comparison and running totals accurately. There are several DAX
functions that allow you to add time-intelligence logic to your model. These often rely on
a date table that has contiguous dates to work properly. In the WideWorldImportersDW
dataset, no rows exist in the ‘Fact Sale’ table with an [Invoice Date Key] that falls on a

13

CHAPTER 1 INTRODUCTION TO DAX

Sunday. This might cause problems for some functions when they are processing period
comparison logic. Date/Calendar tables help make calculations behave more reliably
when there are gaps in dates in non-date table data.

Once you create a calculated table using the CALENDARAUTO function as shown in
Figure 1-8, you can start adding calculated columns and measures to it. You can also start
creating one-to-many relationships to other tables in your model.

Dates = CALENDARAUTO()

Date
1/01/2013 12:00:00 AM
2/01/2013 12:00:00 AM
3/01/2013 12:00:00 AM
4/01/2013 12:00:00 AM
5/01/2013 12:00:00 AM

Figure 1-8. A sample output of the CALENDARAUTO function

Datatypes

In DAY, it is possible to define datatypes for individual columns. The different datatypes
are listed momentarily in Table 1-2 and fall into three main categories, with the
exception of True/False (Boolean).

o Text
e Numeric
¢ DateTime

By select the best datatype, you help reduce the size of your model as well as improve
performance when refreshing data and using your report.

When importing new data, the data modeling engine guesses at what the datatype
for each column should be. This is something worth checking on as there may be
opportunities to adjust to make sure that appropriate data types are used for each column.

14

