

AUTOTUNE
DISP 3
ANT 1 MAIN
32*13.424 M
84*27.299 M
31*29.053 M
71*12.059 M

Handbook of Defence Electronics and Optronics

Fundamentals, Technologies and Systems

Anil K. Maini

WILEY

**Handbook of Defence
Electronics and Optronics**

Handbook of Defence Electronics and Optronics

Fundamentals, Technologies
and Systems

Anil K. Maini

*Consultant, Defence Technologies
Formerly, Director, Laser Science and Technology Centre,
New Delhi, India*

WILEY

This edition first published 2018
© 2018 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

The right of Anil K. Maini to be identified as the author of this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication data applied for

ISBN: 9781119184706

Cover design by Wiley

Cover image: © enot-poloskun/GettyImages

Set in 10/12pt Warnock by SPi Global, Pondicherry, India

Printed in Great Britain by TJ International Ltd, Padstow, Cornwall

10 9 8 7 6 5 4 3 2 1

*"A wee bit of heaven drifted down from above.... a handful of happiness,
a heart full of love for sure
Precious, priceless and lovable...the gift of life,
So sacred and pure"
Dedicated with love and blessings
To my new born bundle of joy, my grandson Kianan*

Anil K. Maini

Contents

Preface *xxi*

1	Military Communications	1
1.1	Introduction to Military Communications	1
1.2	Communication Techniques	5
1.2.1	Types of Information Signals	5
1.2.2	Amplitude Modulation	6
1.2.3	Frequency Modulation	13
1.2.4	Pulse Communication Systems	21
1.2.5	Analogue Pulse Communication Systems	21
1.2.6	Digital Pulse Communication Systems	24
1.2.7	Sampling Theorem	27
1.2.8	Shannon–Hartley Theorem	28
1.2.9	Digital Modulation Techniques	28
1.2.10	Multiplexing Techniques	33
1.3	Communication Transmitters and Receivers	35
1.3.1	Elements of the Communication System	35
1.3.2	Classification of Transmitters	36
1.3.3	Continuous-Wave (CW) Transmitter	38
1.3.4	CW Receiver	39
1.3.5	Amplitude Modulated (AM) Transmitter	40
1.3.6	AM Receiver	41
1.3.7	Single Side Band (SSB) Transmitter	42
1.3.8	SSB Receiver	43
1.3.9	Frequency Modulated (FM) Transmitter	44
1.3.10	FM Receiver	45
1.3.11	Phase Modulated (PM) Transmitter and Receiver	46
1.3.12	Amplitude Shift Keying (ASK) Transmitter	46
1.3.13	ASK Receiver	47
1.3.14	Frequency Shift Keying (FSK) Transmitter and Receiver	47
1.3.15	Phase Shift Keying (PSK) Transmitters and Receivers	49
1.4	Antennas, Transmission Media and Propagation Modes	52
1.4.1	Transmission Line Fundamentals	52
1.4.2	Types of Transmission Lines	54
1.4.3	Impedance Matching using Transmission Lines	55
1.4.4	Waveguide Fundamentals	57
1.4.5	Antenna Fundamentals	60
1.4.6	Types of Antennas	65

1.4.7	Propagation Modes	73
1.5	Optical Communication	77
1.5.1	Advantages and Limitations	77
1.5.2	Free-Space Communication	78
1.5.3	Fibreoptic Communication	80
1.6	Software-Defined Radio	82
1.6.1	Different Tiers of SDR	83
1.6.2	Advantages of SDR	84
1.6.3	SDR Hardware Architecture	84
1.6.4	SDR Security	86
1.7	Network-Centric Warfare	87
1.7.1	OODA Loop	87
1.7.2	Advantages and Shortcomings	88
1.8	C4ISR	89
1.8.1	Command and Control	90
1.8.2	Communications	90
1.8.3	Intelligence, Surveillance and Reconnaissance	90
1.8.4	Cyber Security and EW Systems	90
1.9	Representative Military Communications Equipment	91
1.9.1	Smart Phones	91
1.9.2	Tactical Radios	93
1.9.3	C4ISR Systems	97
	Illustrated Glossary	101
	Bibliography	111

2	Radar Fundamentals	113
2.1	Introduction to Radar	113
2.1.1	Basic Radar System	114
2.1.2	Radar Classification	117
2.2	Basic Radar Functions	118
2.2.1	Target Detection	118
2.2.2	Target Location	120
2.2.3	Target Velocity	122
2.3	Accuracy and Resolution	123
2.3.1	Accuracy	124
2.3.2	Range Accuracy	124
2.3.3	Angular Position Accuracy	124
2.3.4	Resolution	126
2.3.5	Range Resolution	126
2.3.6	Cross-Range Resolution	127
2.3.7	Doppler Resolution	128
2.4	Radar Cross-Section	129
2.4.1	RCS Concept	129
2.4.2	Factors Determining RCS	131
2.4.3	Radar Cross-Sections of Typical Targets	133
2.4.4	RCS Measurement	133
2.4.5	RCS Reduction and Enhancement	136
2.5	Radar Clutter	137
2.5.1	Surface Clutter	137
2.5.2	Volume Clutter	142

2.5.3	Clutter from Point Objects	144
2.6	Radar Range Equation	144
2.6.1	Evaluation of Range Parameters	147
2.7	Radar Waveforms	148
2.7.1	Continuous Wave (CW)	148
2.7.2	Gated CW Pulsed Waveform	149
2.7.3	Linear Frequency Modulated (LFM) Gated Pulse	151
2.7.4	Nonlinear FM Gated Pulse	152
2.7.5	V-FM Gated Pulse	153
2.7.6	Phase Coded Waveforms	154
2.8	Radar Transmitters	155
2.8.1	Coherent Transmitters	155
2.8.2	Quasi-Coherent (Coherent-on-Receive) Transmitter	156
2.8.3	Non-Coherent Transmitters	157
2.8.4	Transmitter Parameters	157
2.9	Radar Receivers	159
2.9.1	Receiver Parameters	162
2.9.2	Signal Processor	165
2.10	Radar Displays	167
2.10.1	A-Scope	167
2.10.2	B-Scope	167
2.10.3	F-Scope	168
2.10.4	Plan Position Indicator (PPI)	168
2.11	Radar Antennas	168
2.12	Types of Radar	169
2.12.1	Continuous-Wave (CW) Radar	169
2.12.2	FM-CW Radar	170
2.12.3	Moving Target Indicator (MTI)	173
2.12.4	Pulse Doppler Radar	177
2.12.5	Tracking Radar	179
2.12.6	Pulse-Compression Radar	187
2.12.7	Synthetic Aperture Radar	190
2.12.8	Inverse Synthetic Aperture Radar (ISAR)	192
2.12.9	Over-the-Horizon Radar (OTHR)	192
2.12.10	Monostatic and Bistatic Radars	195
2.12.11	Primary and Secondary Surveillance Radar	195
2.12.12	Laser Radar	197
2.12.13	Millimetre-Wave Radar	198
	Illustrated Glossary	199
	Bibliography	201

3	Military Radars	203
3.1	Military Applications of Radar Systems	203
3.1.1	Surveillance-Based Applications	203
3.1.2	Tracking Radar-Based Applications	208
3.1.3	Multifunction Radar	211
3.2	Ground (or Area) Surveillance Radar Systems	212
3.2.1	Design Considerations	213
3.2.2	Representative Ground Surveillance Radar Systems	213

3.3	Air Surveillance Radar Systems	224
3.3.1	Airport Surveillance Radar	225
3.3.2	Multilateration System	226
3.3.3	Automatic Dependent Surveillance	228
3.3.4	Representative Air Surveillance Radar Systems	228
3.4	Ground Penetrating Radar Systems	240
3.4.1	Operational Principle	240
3.4.2	Design Considerations	242
3.4.3	Representative GPR Systems	244
3.5	Weapon Locating Radar Systems	253
3.5.1	Operational Principle	254
3.5.2	Representative Weapon Locating Radar Systems	256
3.6	Fire-Control Radar Systems	265
3.6.1	Representative Fire-Control Radar Systems	266
3.7	Space-Based Radar Systems	272
3.7.1	Representative Space-Based Radar Systems	275
3.8	Police Radar	278
3.8.1	Representative Police Radar Systems	280
	Illustrated Glossary	285
	Bibliography	294
4	Satellite Technology	295
4.1	Basic Principles of Orbiting Satellites	295
4.1.1	Newton's Laws	296
4.1.2	Kepler's Laws	298
4.1.3	Orbital Parameters	301
4.1.4	Injection Velocity and Satellite Trajectory	308
4.1.5	Types of Satellite Orbits	310
4.2	Satellite Launch and In-Orbit Operations	317
4.2.1	Acquiring the Desired Orbit	317
4.2.2	Satellite Launch Sequence	328
4.2.3	Orbit Perturbations	331
4.2.4	Satellite Stabilization	333
4.2.5	Satellite Eclipses	335
4.2.6	Look Angles of a Satellite	337
4.2.7	Earth Coverage	340
4.3	Satellite Hardware	341
4.3.1	Satellite Subsystems	341
4.3.2	Mechanical Structure	342
4.3.3	Propulsion Subsystem	343
4.3.4	Thermal Control Subsystem	348
4.3.5	Power Supply Subsystem	349
4.3.6	Attitude and Orbit Control Subsystem	353
4.3.7	Tracking, Telemetry and Command (TT&C) Subsystem	354
4.3.8	Payload	355
4.3.9	Antenna Subsystem	357
4.4	Multiple Access Techniques	358
4.4.1	Transponder Assignment Modes	358
4.4.2	Frequency Division Multiple Access (FDMA)	359

4.4.3	Time Division Multiple Access (TDMA)	361
4.4.4	Code Division Multiple Access (CDMA)	364
4.4.5	Space Division Multiple Access (SDMA)	364
4.5	Satellite Link Design	367
4.5.1	Transmission Equation	367
4.5.2	Satellite Link Parameters	368
4.5.3	Frequency Considerations	370
4.5.4	Propagation Considerations	372
4.5.5	Noise Considerations	377
4.5.6	Interference-Related Issues	381
4.5.7	Antenna Gain-to-Noise Temperature (<i>G/T</i>) Ratio	384
4.5.8	Link Budget	385
4.6	Networking Concepts	387
4.6.1	Network Characteristics	387
4.6.2	Network Topologies	389
4.6.3	Network Technologies	394
4.6.4	Network Protocols	396
4.6.5	Satellite Constellations	401
4.6.6	Internetworking with Terrestrial Networks	406
	Illustrated Glossary	408
	Bibliography	417

5 Military Satellites 419

5.1	Military Applications of Satellites	419
5.1.1	Application Areas of Military Satellites	420
5.2	Military Communication Satellites	420
5.3	Military Satellite Communication Systems	421
5.3.1	American Systems	422
5.3.2	Russian Systems	426
5.3.3	Satellites Launched by Other Countries	427
5.3.4	Frequency Spectrum Utilized by Space Systems	427
5.3.5	Dual-Use Military Satellite Communication Systems	428
5.4	Major International Military Communication Satellites	429
5.4.1	Defence Satellite Communication Systems (DSCS) Series	429
5.4.2	Geizer (Potok Series)	430
5.4.3	Globus Series	430
5.4.4	Leasat Series (Syncrom-4)	431
5.4.5	MILSTAR Series	432
5.5	Reconnaissance Satellites	433
5.5.1	Image Intelligence (IMINT) Satellites	433
5.5.2	SIGINT Satellites	437
5.5.3	Early Warning Satellites	440
5.5.4	Nuclear Explosion Detection Satellites	443
5.6	Major International Reconnaissance Satellites	443
5.6.1	Defence Support Programme (DSP) Series	443
5.6.2	Oko Series	444
5.6.3	Geosat Follow-On Series	445
5.6.4	Okean-O 1	445

5.6.5	Advanced Orion Series	445
5.6.6	Arkon-1 Series	446
5.6.7	Helios Series	446
5.6.8	KH Series	447
5.6.9	Lacrosse Series	448
5.6.10	Neman Series (Yantar-4KS1M)	448
5.6.11	Tselina Series	449
5.6.12	US-PM Series	449
5.7	Military Weather Forecasting Satellites	449
5.8	Military Navigation Satellites	450
5.8.1	Military Applications of Navigation Satellites	451
5.8.2	Principle of Satellite Navigation	451
5.9	Major International Navigation Satellites	454
5.9.1	GLONASS Satellite System	454
5.9.2	Global Positioning System (GPS)	456
5.10	The Future of Satellite Navigation Systems	458
5.11	Space-Based Weapons	458
5.11.1	Classification of Space Weapons	459
5.11.2	Strategic Defence Initiative	464
5.11.3	Directed-Energy Laser Weapons	470
	Illustrated Glossary	470
	Bibliography	473
6	Electronic Warfare	475
6.1	Introduction to Electronic Warfare	475
6.2	Types of Electronic Warfare Systems	476
6.2.1	Electronic Support Measures (ESM) or Electronic Warfare Support (ES)	476
6.2.2	Electronic Countermeasures (ECM) or Electronic Attack (EA)	476
6.2.3	Electronic Counter-Countermeasures (ECCM) or Electronic Protection (EP)	477
6.3	Electronic Support Measures	477
6.3.1	Electronic Reconnaissance	478
6.3.2	Signal Intelligence (SIGINT)	478
6.3.3	Representative SIGINT Equipment	481
6.3.4	ESM/Radar Warning Receivers (RWR)	484
6.3.5	Representative ESM/Radar Warning Receivers	487
6.3.6	Laser-Warning Receivers	490
6.3.7	Representative Laser-Warning Sensors	492
6.3.8	Missile Approach Warning Receivers	496
6.3.9	Representative Missile Approach Warning Receivers	498
6.4	Electronic Countermeasures (ECM)	503
6.4.1	Jamming Techniques	503
6.4.2	Chaff	507
6.4.3	Flares	508
6.4.4	Decoys	509
6.4.5	Representative ECM Systems	510
6.5	Electro-Optic Countermeasures	519
6.5.1	Need and Relevance	520
6.5.2	Passive and Active Countermeasures	520
6.5.3	Types of EOCM Equipment	521

6.5.4	Representative EOCM Equipment	522
6.5.5	Active Protection Systems	526
6.6	Infrared Countermeasures	526
6.6.1	Active IRCM Systems	527
6.6.2	Some Representative IRCM Systems	528
6.7	Electronic Counter-Countermeasures	533
6.7.1	Antenna Related ECCM Features	533
6.7.2	Transmitter Related ECCM Features	534
6.7.3	Radar Receiver and Signal Processing Related ECCM Features	535
6.8	Stealth Technology	535
6.8.1	Reduction of Radar Cross-Section	536
6.8.2	Radar Absorbent Materials	536
6.8.3	Examples of Stealthier Platforms	537
6.9	Current and Future Trends in Electronic Warfare	542
	Illustrated Glossary	544
	Bibliography	554
7	Laser Fundamentals	555
7.1	Operational Basics	555
7.1.1	Principles of Laser Operation	555
7.1.2	Two-, Three- and Four-Level Lasers	560
7.1.3	Constituent Parts of a Typical Laser	564
7.1.4	Longitudinal and Transverse Modes	573
7.2	Laser Characteristics	576
7.2.1	Monochromaticity	576
7.2.2	Coherence	577
7.2.3	Directionality	579
7.3	Laser Parameters	579
7.3.1	Wavelength	579
7.3.2	Pulse Energy	580
7.3.3	Continuous-Wave, Peak and Average Power	580
7.3.4	Pulse Width	581
7.3.5	Pulse Repetition Frequency (PRF)	582
7.3.6	Duty Cycle	582
7.3.7	Rise and Fall Times	582
7.3.8	Irradiance	582
7.3.9	Radiance	583
7.3.10	Beam Divergence	583
7.3.11	Spot Size	584
7.3.12	M^2 -Value	584
7.3.13	Wall Plug Efficiency	585
7.4	Measurement of Laser Parameters	585
7.4.1	Measurement of Power, Energy and Repetition Rate	585
7.4.2	Measurement of Spot Size	587
7.4.3	Measurement of Divergence	587
7.4.4	Measurement of M^2 Value	588
7.5	Laser Beam Diagnostic Equipment	589
7.5.1	Wavelength Meter	590
7.5.2	Laser Spectrum Analyser	590

7.5.3	Laser Beam Profiler	591
7.5.4	Beam Propagation Analyser	592
7.6	Types of Lasers	592
7.7	Solid-State Lasers	593
7.7.1	Active Medium	593
7.7.2	Operational Modes	594
7.7.3	Ruby Lasers	601
7.7.4	Neodymium-Doped Lasers	601
7.7.5	Erbium-Doped Lasers	608
7.7.6	Vibronic Lasers	610
7.8	Fibre Lasers	613
7.8.1	Basic Fibre Laser	613
7.8.2	Operational Regimes	616
7.8.3	Photonic Crystal Fibre Lasers	617
7.8.4	Applications	619
7.9	Gas Lasers	621
7.9.1	The Active Media	621
7.9.2	Pumping Mechanism	622
7.9.3	Helium-Neon Lasers	623
7.9.4	Carbon Dioxide Lasers	626
7.9.5	Metal Vapour Lasers	630
7.9.6	Rare Gas Ion Lasers	632
7.9.7	Excimer Lasers	634
7.9.8	Chemical Lasers	635
7.9.9	Carbon Dioxide Gas Dynamic Lasers	635
7.9.10	Dye Lasers	636
7.9.11	Free Electron Lasers	638
7.9.12	X-Ray Lasers	638
7.10	Semiconductor Lasers	639
7.10.1	Operational Basics	639
7.10.2	Types of Semiconductor Lasers	642
7.10.3	Characteristic Parameters	655
7.10.4	Gain-Guided and Index-Guided Diode Lasers	658
7.10.5	Handling Semiconductor Diode Lasers	659
	Illustrated Glossary	659
	Bibliography	667
8	Laser Electronics	669
8.1	Basic Building Blocks of Laser Electronics	669
8.1.1	Linear Power Supplies	669
8.1.2	Switched Mode Power Supplies	682
8.1.3	Constant Current Sources	693
8.1.4	Transimpedance Amplifier	697
8.1.5	Peak Detector Circuits	699
8.1.6	Timer Circuits	700
8.1.7	High Voltage Trigger Circuits	706
8.1.8	Analogue-to-Digital Converter Circuits	706
8.1.9	Microcontrollers	717
8.1.10	Field Programmable Gate Arrays	720

8.2	Laser Electronics and Related Technologies	723
8.2.1	Solid-State Laser Electronics	723
8.2.2	Gas Laser Electronics	725
8.2.3	Semiconductor Diode Laser Electronics	726
8.2.4	Laser Sensors	727
8.2.5	Test and Evaluation of Lasers	729
8.3	Solid-State Laser Electronics	730
8.3.1	Electronics for Flash-Pumped Solid-State Lasers	731
8.3.2	Capacitor Charging Power Supply	733
8.3.3	Simmer Power Supply	735
8.3.4	Pulse Forming Networks	737
8.3.5	Flash Lamp Trigger Circuits	738
8.3.6	Receiver Electronics for a Laser Range Finder	739
8.4	Gas Laser Electronics	740
8.4.1	Gas Laser Electrical Discharge	741
8.4.2	Helium-Neon Power Supplies	742
8.4.3	Helium-Neon Power Supplies for a Ring Laser Gyro	747
8.4.4	Ballast Resistance	748
8.4.5	Carbon Dioxide Laser Power Supplies	749
8.4.6	Metal Vapour Power Supplies	751
8.4.7	Ion Laser Power Supplies	753
8.4.8	Excimer Laser Power Supplies	754
8.4.9	Frequency Stabilization of Carbon Dioxide and Helium-Neon Lasers	756
8.5	Semiconductor Diode Laser Electronics	758
8.5.1	Constant Current Mode	758
8.5.2	Constant Power Mode	759
8.5.3	Laser Diode Drive Circuit – Constant Current Mode	760
8.5.4	Laser Diode Drive Circuit – Constant Output Power Mode	764
8.5.5	Pulsed Mode Operation of Laser Diodes	764
8.5.6	Laser Diode Temperature Control Circuits	767
8.5.7	Laser Diode Protection	770
	Illustrated Glossary	775
	Bibliography	781
9	Photo Sensors and Related Devices	783
9.1	Classification of Photo Sensors	783
9.2	Radiometry and Photometry	785
9.2.1	Radiometric and Photometric Flux	785
9.2.2	Radiometric and Photometric Intensity	785
9.2.3	Irradiance and Illuminance	786
9.2.4	Radiance and Luminance	786
9.3	Characteristic Parameters	786
9.3.1	Responsivity	787
9.3.2	Noise Equivalent Power (NEP)	789
9.3.3	Detectivity and D-Star	790
9.3.4	Quantum Efficiency	790
9.3.5	Response Time	791
9.3.6	Noise	792
9.4	Photoconductors	793

9.4.1	Application Circuits	794
9.5	Photo Diodes	797
9.5.1	Types of Photo Diodes	797
9.5.2	Equivalent Circuit	800
9.5.3	V-I Characteristics	802
9.5.4	Application Circuits	802
9.6	Solar Cells	806
9.7	Photo Transistors	808
9.7.1	Application Circuits	809
9.8	Photo FET, Photo SCR and Photo TRIAC	810
9.8.1	Photo FETs	810
9.8.2	Photo SCR	810
9.8.3	Photo TRIAC	811
9.9	Image Sensors	812
9.9.1	Charge Coupled Device (CCD)	812
9.9.2	CMOS Sensors	817
9.9.3	CCD Sensors versus CMOS Sensors	817
9.10	Photo Emissive Sensors	818
9.10.1	Vacuum Photo Diodes	818
9.10.2	Photo Multiplier Tubes (PMTs)	818
9.10.3	Image Intensifiers	819
9.11	Thermal Sensors	820
9.11.1	Thermocouple and Thermopile	821
9.11.2	Bolometer	822
9.11.3	Pyroelectric Sensor	823
9.12	Light-Emitting Diodes (LEDs)	824
9.12.1	Characteristics	825
9.12.2	Parameters	827
9.12.3	Drive Circuits	827
9.13	Displays	829
9.13.1	Characteristics	829
9.13.2	Types of Displays	830
9.13.3	Liquid Crystal Displays	831
9.13.4	Cathode Ray Tube Displays	836
9.13.5	Emerging Display Technologies	837
9.14	Night Vision Technologies	838
9.14.1	Basic Approaches to Night Vision	838
9.14.2	Image Intensifier Tubes	839
9.14.3	Different Generations of Image Intensifiers	843
9.14.4	Intensified CCD	847
9.14.5	Thermal Imaging	849
9.14.6	Image Enhancement versus Thermal Imaging	851
9.14.7	Applications of Night Vision Equipment	851
	Illustrated Glossary	856
	Bibliography	862
10	Military Laser Systems	865
10.1	Military Applications of Lasers	865
10.2	Laser Aiming Devices	868

10.3	Laser Range Finders (LRF)	869
10.3.1	Time-of-Flight LRF	869
10.3.2	Triangulation Technique	870
10.3.3	Phase Shift Technique	871
10.3.4	FM-CW Range Finding Technique	872
10.3.5	Choice of Laser	874
10.3.6	Applications	876
10.3.7	Some Representative LRF Systems	876
10.4	Laser Target Designators	884
10.4.1	Deployment	884
10.4.2	Laser Designation and Munitions Delivery Considerations	886
10.4.3	Laser Designation Procedures	892
10.4.4	Representative Laser Designation Systems	895
10.5	Laser Proximity Sensors	901
10.6	Laser-Based Detection of Electro-Optic Targets	904
10.7	Laser Bathymetry Sensors	907
10.8	LADAR Sensors	909
10.9	Laser-Based Gyroscopic Sensors	912
10.9.1	Ring Laser Gyroscope	912
10.9.2	Fibreoptic Gyroscope	917
10.10	LIDAR For Detection of Chemical and Biological Warfare Agents	920
10.10.1	Detection of Chemical Warfare Agents – Differential Absorption LIDAR	920
10.10.2	Detection of Biological Warfare Agents – UV-LIF LIDAR	922
10.11	Laser-Based Detection of Explosive Agents	924
10.11.1	Laser-Induced Breakdown Spectroscopy	924
10.11.2	Raman Spectroscopy	925
	Illustrated Glossary	926
	Bibliography	931
11	Precision-Guided Munitions	933
11.1	Introduction	933
11.2	Types of Guided Weapons	934
11.2.1	Anti-Radiation Weapons	934
11.2.2	Radar-Guided Weapons	935
11.2.3	Laser-Guided Weapons	935
11.2.4	Infrared-Guided Weapons	936
11.2.5	Wire-Guided Weapons	936
11.2.6	Beam Riding Weapons	937
11.2.7	GPS/INS-Guided Weapons	938
11.3	Guidance Techniques	939
11.3.1	Beam Rider Guidance	939
11.3.2	Command Guidance	940
11.3.3	Homing Guidance	943
11.3.4	Navigation Guidance	945
11.4	Laser-Guided Munitions	947
11.4.1	Operational Basics	947
11.4.2	Important Parameters	951
11.4.3	Deployment Configurations	951
11.4.4	Laser-Guided Munitions Delivery Parameters	951

11.4.5	Capabilities and Limitations	958
11.5	Major Laser-Guided Weapon Systems	959
11.5.1	Laser-Guided Projectiles	959
11.5.2	Laser-Guided Bombs	960
11.5.3	Laser-Guided Missiles	962
11.5.4	New Developments	963
11.6	Testing Laser-Guided Munitions	964
11.6.1	International Test Systems	966
11.7	Infrared-Guided Weapons	968
11.7.1	Introduction	968
11.7.2	Infrared Homing Guidance	969
11.7.3	Capabilities and Limitations	971
11.7.4	Infrared-Guided Weapon Delivery Parameters	972
11.7.5	Infrared-Guided Missile Seekers	980
11.8	Major Infrared-Guided Weapon Systems	983
11.8.1	Anti-Tank-Guided Missiles	984
11.8.2	Surface-to-Air Missiles (SAM)	986
11.8.3	Air-to-Air Missiles	989
11.9	Testing Infrared-Guided Weapons	991
11.9.1	International Test Systems	993
11.10	Radar-Guided Weapons	994
11.10.1	Introduction	994
11.10.2	Semi-Active Radar Guidance	995
11.10.3	Active Radar Guidance	996
11.10.4	Track-via-Missile Radar Guidance	997
11.10.5	Missile Guidance and Control	998
11.11	Major Radar-Guided Weapon Systems	999
11.11.1	Surface-to-Air Radar-Guided Missiles	999
11.11.2	Air-to-Air Radar-Guided Missiles	1002
11.11.3	Anti-Ship Radar-Guided Missiles	1003
11.11.4	Future Trends	1004
11.12	GPS/INS-Guided Weapons	1004
	Illustrated Glossary	1006
	Bibliography	1011
12	Directed Energy Weapons	1013
12.1	Directed-Energy Weapons (DEWs)	1013
12.2	Types of DEWs	1015
12.3	Particle Beam Weapons	1016
12.3.1	Operational Principle	1016
12.3.2	Types of Particle Beam Weapons	1017
12.3.3	Involved Technology Areas	1018
12.3.4	Capabilities and Limitations	1023
12.3.5	Effects of Particle Beam Weapons	1024
12.4	High-Power Microwave (HPM) Weapons	1025
12.4.1	Types of HPM Weapons	1026
12.4.2	Components of HPM Weapon Systems	1026
12.4.3	HPM Sources	1030

12.4.4	HPM Weaponization	1037
12.4.5	Capabilities and Limitations	1039
12.4.6	E-Bomb	1040
12.4.7	Representative HPM Weapons	1044
12.5	Directed-Energy Laser Systems	1051
12.6	Less-Lethal Laser Dazzlers	1052
12.6.1	Operational Parameters	1053
12.6.2	Potential Applications	1053
12.6.3	Representative Systems	1055
12.6.4	Emerging Trends	1059
12.7	High-Power Lasers for Ordnance Disposal	1061
12.7.1	Application Scenarios	1061
12.7.2	Representative Laser Ordnance Neutralization Systems	1061
12.8	High-Power Directed-Energy Laser Weapons	1065
12.8.1	Operational Advantages and Limitations	1065
12.8.2	Application Potential	1066
12.8.3	Components of a Laser-Based Directed-Energy Weapon System	1067
12.9	High-Power Laser Sources	1071
12.9.1	Critical Requirements	1071
12.9.2	Gas Dynamic Lasers	1072
12.9.3	Chemical Lasers	1073
12.9.4	Free Electron Lasers	1077
12.9.5	Solid-State Lasers	1078
12.9.6	Fibre Lasers	1082
12.9.7	Beam Combination of Multiple Lasers	1084
12.10	Beam-Control Technologies	1086
12.11	Laser Propagation Effects	1087
12.12	Lethality	1091
12.13	Representative Directed-Energy Laser Weapon Systems	1092
12.14	Laser-Induced Plasma Channel (LIPC) Weapons	1098
	Illustrated Glossary	1098
	Bibliography	1105
	Index	1107

Preface

Defence Electronics and Optronics, today, is a complete subject in itself. It includes, in its vast domain a wide range of subjects, radar systems, communication satellites, electronic warfare, directed-energy weapons, precision guided munitions, laser systems, optronic sensors, nuclear weapons, space warfare, and so on. Since the early 1940s, during the era of World War II, electronics and optronics have penetrated almost every conceivable area of application of both the tactical battlefield and the strategic domain. The applications have grown at a very fast rate, not only in already existing domains; newer application areas for defence electronics and optronics are finding favour with the Armed Forces. The enormity of the subject of *Defence Electronics and Optronics* and the interest it currently holds internationally in terms of ever increasing usage for a variety of scenarios, and also the kind of interest shown by the Armed Forces and investments being made towards their research and development, underlines the importance of a book that addresses all these topics.

This book comprehensively covers the subject of *Defence Electronics*; covering all topics related to *Defence Electronics* and *Defence Optronics*. The book begins with *Military Communications* in Chapter 1. The opening chapter focuses on communication techniques and systems; antennas and propagation modes; optical communications, including both free space communication, fibreoptic communication; emerging concepts such as software defined radio, net-centric warfare and C⁴ISR, and some representative military communications equipment for the whole range of applications. *Radar Fundamentals* in the second chapter and *Military Radars* in the third follow that. Chapter 2 presents a detailed description of fundamentals such as radar's operational parameters, radar range equation, radar transmitters and receivers, radar antennas and different types of radar based on principle of operation such as continuous wave (CW) radar, FM-CW radar, pulse Doppler radar, moving target indicator (MTI) radar, tracking radar, pulse compression radar, synthetic aperture radar, over-the-horizon radar (OTHR), monostatic and bistatic radar, surveillance radar and laser radar. Chapter 3 comprehensively covers common military radar systems including target detection, surveillance and tracking radars, fire control radars, ground penetration radars and weapon locating radars. The emphasis in this chapter is on the salient features and applications of major international radar systems in these categories with an overview of involved technologies.

The fourth and fifth chapters cover *Satellite Technology* and *Military Satellites*, respectively. Chapter 4 covers satellite orbits and trajectories, in-orbit operations, satellite hardware and components of a satellite network. Chapter 5 presents an overview of military communication satellites, reconnaissance satellites, SIGINT satellites, early warning satellites, weather forecasting satellites, navigation satellites, and related topics.

Electronic Warfare, covered in the sixth chapter, is the next major topic covered in the book. The chapter extensively covers both electronic warfare and electro-optic warfare systems. Electronic warfare systems' classification, involved technologies and systems are

comprehensively described first in this chapter. Major topics covered under electronic warfare systems include different categories of electronic warfare systems, electronic support measures (ESM) such as signal intelligence, radiation intelligence and telemetry intelligence; passive and active electronic countermeasures (ECM) such as chaff, decoys and various types of jammers and electronic counter countermeasures (ECCM). Stealth technologies are also discussed in the chapter. Salient features of major international electronic warfare systems and their deployment scenarios is another highlight of this chapter. The next major topic discussed in this chapter relates to electro-optic countermeasures (EOCM). EOCD systems play an important role in the present-day warfare due to widespread use of lasers and other electro-optic systems. Both passive as well as active electro-optic countermeasures are discussed in this chapter with particular emphasis on laser warning and countermeasures and missile approach warning sensor and infrared countermeasures. Active protection systems are briefly discussed towards the end of the chapter.

Laser technology, optoelectronics and their military applications are discussed next in Chapters 7–10. This section begins with Chapter 7 on *Laser Fundamentals* covering operational basics of lasers and related concepts, laser parameters and their measurement techniques and different types of lasers, mainly including solid state, gas and semiconductor lasers. This is followed up by a comprehensive description of electronics that goes along with a laser optics module to make it a laser source or laser system in *Laser Electronics*. Chapter 8 begins with a brief overview of basic building blocks of laser electronics before it moves on to comprehensive treatment of electronics for solid state, gas and semiconductor laser sources.

Opitronic sensors are used in a wide range of military applications both as a part of an overall system and also as individual devices. Chapter 9 on *Photo Sensors and Related Devices* begins with an overview of photo sensors covering important types, major performance specifications and application circuits. These photo sensors are generally used in laser range finders and related devices, laser seekers, laser warning sensors, LIDAR receivers, LADAR sensors, and so on. This is followed by discussion on sensor systems such as night vision devices (NVD), thermal imaging (TI) sensors, CCD and CMOS sensors, FLIR (forward looking infrared) sensors and navigation sensors, including ring laser and fiberoptic gyroscopes.

Having discussed lasers in terms of their operational basics, different types and the electronics that goes with them to make usable laser systems, Chapter 10 discusses tactical military applications of lasers and related devices in *Military Laser Systems*. Major laser systems discussed in this chapter include laser aiming devices, laser range finders and target designators; laser based sensor systems, including laser proximity sensors, laser bathymetry sensors, laser based explosive detection sensors, LADAR sensors and LIDAR sensors.

Precision guided munitions including both radar guided munitions and electro-optically guided munitions are discussed in Chapter 11, titled *Precision Guided Munitions*. The chapter begins with an introduction to different guidance techniques followed by detailed discussion of radar guided munitions, laser guided munitions, infrared guided missiles and GPS/INS guided weapons. Advantages and limitations of different categories of precision guided munitions along with salient features of some common international weapon systems in these categories are in focus in this chapter.

A category of weapon systems that has rapidly evolved in the last decade, transforming itself from laboratory prototypes to field deployable systems, is the class of directed-energy weapon (DEW) systems. DEW systems have been projected to replace kinetic energy weapons for tactical applications in not-too-distant future and strategic applications by 2030. In the concluding chapter of the book on *Directed-Energy Weapons*, after a brief introduction to history of origin of the DEW concept, different categories of DEW systems are discussed. These include particle

beam weapons, high-power microwaves, laser-based DEWs and laser-induced plasma channel weapons. The focus is, however, on the two major categories of DEW systems, namely, high-power microwaves (HPM) and laser DEW systems. Merits and demerits of these systems, the involved hardware, major international systems and their application potential are covered in the chapter.

This book is the only one of its kind on the subject of defence electronics and defence optronics that amalgamates the whole gamut of topics in this area. Major topics exhaustively covered in the book include the operational fundamentals of radar, military radar systems, operational fundamentals of satellites, military satellites, electronic countermeasures and counter countermeasures, electro-optic countermeasures, laser fundamentals, laser electronics, tactical military laser systems, radar and electro-optically guided and GPS/INS guided precision strike weapons, fibreoptic and free space laser communication, optronic sensors including photo sensors, LIDAR and LADAR sensors, spectroscopic and interferometric sensors, proximity sensors, bathymetry sensors, particle beam weapons, laser induced plasma channel (LIPC) weapons, less-lethal laser systems including laser dazzlers, laser ordnance disposal systems and lethal directed-energy laser weapons, including chemical, solid state and fibre-based DEW systems, high-power microwaves and E-bombs. The book covers each of the topics in their entirety, from fundamentals to advanced concepts, military systems and related technologies, thereby, leading the reader logically from the operational basics of military systems to involved technologies and battlefield deployment and applications. Each of the topics is discussed keeping in view the military applications. The book also gives an overview of important military systems in different categories along with their application potential. Current status of various military technologies and systems and future trends are also discussed. An Illustrated Glossary at the end of each chapter summarizes important terms, definitions and concepts. A comprehensive bibliography at the end of each chapter will particularly interest researchers.

It is intended to be a reference book for engineers and scientists working in R&D centres, the defence industry and academic institutes engaged in research, development and use of defence electronics and optronics systems. The book also fulfils the requirements of a text book for graduate level students and a reference book for researchers and for industry and military professionals. It is also intended for a wide cross-section of professionals working in the Armed Forces. The book is also intended to be a useful reference for defence experts and strategic planners. I hope that the book will be well received by the readers. Suggestions from readers to make the book more useful in future editions would be highly appreciated.

Anil K. Maini

1

Military Communications

There is a host of technologies that are in use in the state-of-the-art communications equipment used by the Armed Forces world over. Be it the land-based systems or systems in use at sea, in air or space, military communications equipment embraces many technologies. No one technology dominates military communications systems; instead, a number of technologies are used to provide secure and reliable communications. Different generations of communications equipment have been in use by the Armed Forces for various applications over the last 100 years or so. Improvements seen in each new generation of communications equipment have been largely driven by the development of better hardware, including improved components, more sophisticated circuits and more precise manufacturing. The opening chapter begins with discussion on the fundamental topics of communication such as communication techniques and systems; antennas and propagation modes; optical communications including both free-space communication, fibreoptic communication and laser communication, particularly for underwater applications. This is followed by detailed description of emerging concepts employed in the current generation of communications equipment such as software-defined radio, net-centric warfare and C⁴ISR. Some representative military communications equipment for the whole range of applications are briefly discussed towards the end.

1.1 Introduction to Military Communications

Military communications technologies are complex and wide ranging. Development of new technologies and advances in existing technologies has led to different generations of communications equipment. Each generation of equipment has leveraged enhanced life and performance of components and emergence of a range of new components due to technological advances. Extended operating time of portable radios used by the Armed Forces in the battlefield due to availability of new battery technologies is one such example. Some of the major concerns faced by military planners relate to improving security and reliability of communications. Another concern relates to integration, which means achieving interoperability among a wide range of communications systems and technologies.

Features and capabilities of communications equipment both for commercial and military usage are undergoing revolutionary changes leading to availability of new generation of sophisticated communications devices and equipment enabling faster, more secure, less costly and more flexible communications. As outlined in the previous paragraph, security and interoperability are the two major concerns. While security-related issues have been resolved a large extent,

Figure 1.1 LG's V10 smart phone. (Source: LG Electronics, <https://creativecommons.org/licenses/by/2.0/deed.en>.CC BY 2.0.)

integration of contrasting communications technologies (or in other words interoperability of different technologies and equipment) is one of the most important challenges facing military technology developers.

Modern radio and networking technologies such as smart phones, tablets, high-speed networks and other sophisticated technologies offer many new opportunities, though they too pose challenges vis-à-vis security and interoperability issues. Very few communication devices have seen such rapid growth and usage and consequential benefits as the smart phones and tablets. Smart phones with touch screen interfaces, internet access and an operating system capable of executing downloaded apps perform many of the functions of a computer. A tablet too is a portable PC with a form factor slightly larger than that of a smart phone. Both can fit into the cargo pocket of a soldier's uniform. Smart phone and tablet apps have given troops the ability to perform a range of tasks anytime anywhere and allowed commanders to instantly distribute essential documents directly to the troops. Network and device security concerns had earlier hindered widespread deployment of smart phones in the Armed Forces and with the availability of new generation smart phones, such as those using Google's Android 6.0 Marshmallow OS, these concerns have been addressed. This has even brought smart phones onto classified networks enabling soldiers access secret level mission command computer systems. Reportedly, the US Government has certified some smart phones, such as the LG G5 using Android OS version 6.0.1 and the V10 using Android OS version 5.1.1 (Figure 1.1), for use in environments where security is the top concern.

Keeping pace with smart phone and other commercial radio innovations, the next major military communications relevant technology evolving quite rapidly is that of *Ground Mobile Radio* (GMR). GMR of the future will focus on two main approaches, namely *Soldier Radio Waveform* (SRW) and *Wideband Networking Waveform*. SRW is an open-standard voice and data waveform used to extend wideband battlefield networks to the tactical edge. It is designed as a mobile ad-hoc waveform and it functions as a router within a wireless network. It is used to transmit vital information over long distances and elevated terrains including mountains and other natural or

Figure 1.2 AN/PRC-154 JTRS Rifleman Radio.

manmade obstructions, and allows communication without a fixed infrastructure such as cellular tower or satellite. The WNW is the next-generation high throughput military waveform, developed under the Joint Tactical Radio System (JTRS) Ground Mobile Radio (GMR) program. It uses the Orthogonal Frequency Division Multiplexing (OFDM) Physical Layer. With its mobile ad-hoc networking (MANET) capabilities, the waveform is designed to work well in both urban landscape as well as a terrain-constrained environment, since it can locate specific network nodes and determine the best path for transmitting information. Combination of these two technologies allows secure networked communications among platoon, squad and team level soldiers. It will also facilitate communication with combat commanders via satellite. The *JTRS-HMS* (Joint Tactical Radio System Handheld Manpack Small form fit) *Rifleman RadioType AN/PRC-154* (Figure 1.2) developed by Thales and General Dynamics, designed to deliver networking connectivity to front line troops and capable of transmitting voice and data simultaneously via SRW (Soldier Radio Waveform), is one example of a GMR accepted for military use. JTRS also interfaces with smart phones. A vehicle-mounted software-defined radio system for ground mobile communications is the one being developed under the Mid-Tier Networking Vehicular Radio (MNVR) programme of the U.S. Army based on the Falcon family of wide band tactical radios. The Harris Corporation has developed the AN/VRC-118 (V)1 under this programme (Figure 1.3).

Another significant technological development has been in the field of wireless networking such as the *Mesh Networks* including *Mobile Ad-hoc Networks* (MANETs). These networking technologies are potentially capable of supporting both JTRS as well as smart phones. Also, these networking technologies provide high-bandwidth networking capabilities for handheld radios, ground and airborne vehicle communications, and security and tactical wireless sensors such as those used to monitor wireless security cameras positioned around critical infrastructure. MANETs can be networked to interconnect multiple mobile phones within a specified coverage area offering greater bandwidth and better connectivity. One application of the MANET is its use by convoys and other team-oriented missions to remain in constant communication with their movement spread over a large terrain. Another application of mesh networks is their use for control and coordination of unmanned ground vehicles. These remotely controlled unmanned vehicles following predefined paths may be used as targets by fighter aircraft pilots during training exercises in the same manner as Pilotless Target Aircraft (PTA) used by Air-Defence ground forces for training purposes.

Figure 1.3 AN/VRC-118 (V)1 MNVR. (Source: Courtesy of Harris Corporation.)

Satellite communication too plays an important role in military communications. Though smart phones and other cutting edge communications technologies have impacted on the utility of satellites for military communications, satellite communication continues to remain relevant with its potential of providing ubiquitous satellite coverage to terrestrial communications systems including smart phones. It would be worthwhile mentioning here that, other than the communications services, military satellites are extensively used for intelligence gathering, weather forecasting, early warning and providing navigation and timing data. Software Reprogrammable Payload (SRP), a satellite-rooted technology with its down-to-earth communication potential, is an adaptation of a small radio receiver designed for space applications into a full-fledged radio frequency system initially targeted for UAS (Unmanned Airborne System) communications. SRP is nothing but an airborne SDR (Software-Defined Radio) that facilitates beyond line-of-sight communications. The SRP development program is a joint effort between the Office of Naval Research (ONR), Naval Research Lab (NRL) and Marine Corps Aviation. SRP is a flexible, reconfigurable while-in-operation software-defined radio designed to meet current and future requirements of Unmanned Aircraft System (UAS) communications by Marine Corps. It is currently targeted at the American unmanned aerial vehicle AAI Shadow. The ability to reconfigure SRP's function in operation ensures that marines are able to share data, access capabilities and effectively command while they engage the adversary. SRP, configured around a software-defined radio platform, is designed to perform multiple functions, which include UHF communications relay with interference mitigation, UHF IP router capability, an automated identification system, single channel ground and airborne radio systems and so on. SRP has an open architecture very similar to that of JTRS and is interoperable with it.

Another communication technology that can become a potential game changer in military communications is that of *Cognitive Radio* for reasons of being inherently interoperable, having higher compatibility, reduced interference and enhanced security. The concept of cognitive radio addresses the problem of spectrum congestion that causes acute scarcity of spectrum space. It uses computer intelligence to automatically adapt to band conditions and user requirements.