Edited by Srabanti Ghosh

Visible-Light-Active Photocatalysis

Nanostructured Catalyst Design, Mechanisms, and Applications

Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications

Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications

Edited by Srabanti Ghosh

WILEY-VCH

Editor

Dr. Srabanti Ghosh

CSIR - Central Glass and Ceramic Research Institute Fuel Cell & Battery Division 196, Raja S. C. Mullick Road 700 032 Kolkata India

Cover

Background image Fotolia: Dudarev Mikhail All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-34293-8 ePDF ISBN: 978-3-527-80814-4 ePub ISBN: 978-3-527-80815-1 Mobi ISBN: 978-3-527-80816-8 oBook ISBN: 978-3-527-80817-5

Cover Design Schulz Grafik-Design, Fußgönheim, Germany Typesetting SPi Global, Chennai, India Printing and Binding

Printed on acid-free paper

 $10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$

I dedicate this book to my HUSBAND and PARENTS.

Contents

Preface xvii

Part I Visible-Light Active Photocatalysis – Research and Technological Advancements 1

1 Research Frontiers in Solar Light Harvesting 3

Srabanti Ghosh

- 1.1 Introduction 3
- 1.2 Visible-Light-Driven Photocatalysis for Environmental Protection 4
- 1.3 Photocatalysis for Water Splitting 8
- 1.4 Photocatalysis for Organic Transformations 11
- 1.5 Mechanistic Studies of Visible-Light-Active Photocatalysis 13
- 1.6 Summary 14 References 15
- 2 Recent Advances on Photocatalysis for Water Detoxification and CO₂ Reduction 27
 - Carlotta Raviola and Stefano Protti
- 2.1 Introduction 27
- 2.2 Photocatalysts for Environmental Remediation and CO_2 Reduction 30
- 2.2.1 Undoped TiO₂ 30
- 2.2.2 Undoped Metal Oxides Different from TiO₂ 32
- 2.2.3 Carbon Modified Metal Oxides as Photocatalysts 33
- 2.2.4 Doped Metal Oxides 34
- 2.2.5 Perovskites 35
- 2.2.6 Metal Chalcogenides 36
- 2.2.7 Other Catalysts 37
- 2.3 Photoreactors for Solar Degradation of Organic Pollutants and CO_2 Reduction 38
- 2.3.1 Non Concentrating (Low Concentration or Low Temperature) Systems 39
- 2.3.2 Medium Concentrating or Medium Temperature Systems 40

- 2.3.3 High Concentrating or High-Temperature Systems 42
- 2.3.4 Parameters of a Solar Reactor 43
- 2.4 Conclusion 44 Acknowledgment 44 References 45

3 Fundamentals of Photocatalytic Water Splitting (Hydrogen and Oxygen Evolution) 53

Sanjib Shyamal, Paramita Hajra, Harahari Mandal, Aparajita Bera, Debasis Sariket, and Chinmoy Bhattacharya

- 3.1 Introduction 53
- 3.2 Strategy for Development of Photocatalyst Systems for Water Splitting 54
- 3.3 Electrochemistry of Semiconductors at the Electrolyte Interface 56
- 3.4 Effect of Light at the Semiconductor–Electrolyte Interface 58
- 3.5 Conversion and Storage of Sunlight 62
- 3.6 Electrolysis and Photoelectrolysis 63
- 3.7 Development of Photocatalysts for Solar-Driven Water Splitting 65
- 3.8 Approaches to Develop Visible-Light-Absorbing Metal Oxides 66
- 3.9 Conclusions 68 References 68
- 4 Photoredox Catalytic Activation of Carbon—Halogen Bonds: C—H Functionalization Reactions under Visible Light 75 Javier I. Bardagi and Indrajit Ghosh
- 4.1 Introduction 75
- 4.2 Activation of Alkyl Halides 77
- 4.3 Activation of Aryl Halides *91*
- 4.4 Factors That Determine the Carbon–Halogen Bond Activation of Aryl Halides *108*
- 4.5 Factors That Determine the Yields of the C—H Arylated Products *109*
- 4.6 Achievements and Challenges Ahead 109
- 4.7 Conclusion 110 References 110

Part II Design and Developments of Visible Light Active Photocatalysis 115

5 Black TiO₂: The New-Generation Photocatalyst 117

Sanjay Gopal Ullattil, Soumya B. Narendranath, and Pradeepan Periyat

- 5.1 Introduction 117
- 5.2 Designing Black TiO₂ Nanostructures *118*
- 5.3 Black TiO_2 as Photocatalyst 122
- 5.4 Conclusions 123 References 123

6	Effect of Modification of TiO ₂ with Metal Nanoparticles on Its
	Photocatalytic Properties Studied by Time-Resolved
	Microwave Conductivity 129
	Hynd Remita, María Guadalupe Méndez Medrano, and Christophe
	Colbeau-Justin
6.1	Introduction 129
6.2	Deposition of Metal Nanoparticles by Radiolysis and by
	Photodeposition Method 130
6.3	Electronic Properties Studied Time-Resolved Microwave
	Conductivity 132
6.3.1	Surface Modification of Titania with Monometallic
	Nanoparticles 133
6.3.1.1	Surface Modification of Titania with Pt Clusters 133
6.3.1.2	Surface Modification of TiO_2 with Pd Nanoparticles 135
6.3.1.3	Modification of TiO ₂ with Ag Nanoparticles 136
6.4	Modification of TiO ₂ with Au Nanoparticles 138
6.5	Modification of TiO_2 with Bi Clusters 144
6.6	Surface Modification of TiO_2 with Bimetallic Nanoparticles 146
6.6.1	Surface Modification with Au–Cu Nanoparticles 146
6.6.2	Surface Modification with Ag and CuO Nanoparticles 148
6.6.3	Comodification of TiO ₂ with Ni and Au Nanoparticles for Hydrogen
	Production 150
6.6.4	TiO ₂ Modified with NiPd Nanoalloys for Hydrogen Evolution 153
6.7	The Effect of Metal Cluster Deposition Route on Structure and
	Photocatalytic Activity of Mono- and Bimetallic Nanoparticles
	Supported on TiO_2 155
6.8	Summary 156
	References 157
-	
/	Glassy Photocatalysts: New Trend In Solar Photocatalysis 165
71	Bharat B. Kale, Manjiri A. Manaaaaaaikar, ana Ashwini P. Bhirua
7.1 7.0	Introduction 165
7.2 7.2.1	Fundamentals of $\Pi_2 S$ splitting 100
7.2.1	Thermodynamics of H.S. Splitting 166
7.2.2	$\frac{1}{2}$
7.2.3	Designing the Assembly for H S Splitting 169
7.5	Standardization of H S Splitting Setup 168
732	Interaction of Photocatalyst and Reagent System 169
7.3.2	Chalcogenide Photocatalyst and Reagent System 709
75	Limitations of Powder Photocatalysts 170
7.6	Glassy Photocatalyst: Innovative Approach 171
7.6.1	Semiconductor-Glass Nanocomposites and Their Advantages 171
7.7	General Methods for Glasses Preparation 172
7.7.1	Glass by Melt-Quench Technique 172
	Charles of the charles in the charles of the charle

7.8 Color of the Glass – Bandgap Engineering by Growth of Semiconductors in Glass *174*

x Contents

7.9	CdS–Glass Nanocomposite 174
7.10	Bi_2S_3 -Glass Nanocomposite 178
7.11	Ag_3PO_4 -Glass Nanocomposite 179
7.12	Summary 183
	Acknowledgments 184
	References 184
8	Recent Developments in Heterostructure-Based Catalysts for
	Water Splitting 191
	Savio J. A. Moniz
8.1	Introduction 191
8.1.1	Band Alignment 193
8.2	Visible-Light-Responsive Junctions 195
8.2.1	BiVO ₄ -Based Junctions 195
8.2.1.1	$BiVO_4^{-}/WO_3^{-}$ 197
8.2.1.2	$BiVO_{4}/ZnO$ 197
8.2.1.3	$BiVO_4^{-}/TiO_2$ 199
8.2.1.4	BiVO ₄ /Carbon-Based Materials 199
8.2.2	Fe_2O_3 -Based Junctions 199
8.2.3	\tilde{WO}_3 -Based Junctions 201
8.2.4	C_3N_4 -Based Junctions 202
8.2.5	Cu ₂ O-Based Junctions 204
8.3	Visible-Light-Driven Photocatalyst/OEC Junctions 207
8.3.1	BiVO ₄ /OEC 207
8.3.2	Fe ₂ O ₃ /OEC 207
8.3.3	WO ₃ /OEC 208
8.4	Observation of Charge Carrier Kinetics in Heterojunction
	Structure 209
8.4.1	Transient Absorption Spectroscopy 209
8.4.2	Electrochemical Impedance Spectroscopy 211
8.4.3	Surface Photovoltage Spectroscopy 213
8.5	Conclusions 215
	References 216
9	Conducting Polymers Nanostructures for Solar-Light
	Harvesting 227
	Srabanti Ghosh, Hynd Remita, and Rajendra N. Basu
9.1	Introduction 227
9.2	Conducting Polymers as Organic Semiconductor 228
9.3	Conducting Polymer-Based Nanostructured Materials 231
9.4	Synthesis of Conducting Polymer Nanostructures 231
9.4.1	Hard Templates 232
9.4.2	Soft Templates 232
9.4.3	Template Free 233
9.5	Applications of Conducting Polymer 233
9.5.1	Conducting Polymer Nanostructures for Organic Pollutant Degradation 233

Contents xi

9.5.2	Conductio	ng Polymer Nanostructures for Photocatalytic Water
	Splitting	237

- 9.5.3 Conducting Polymer-Based Heterostructures 242
- 9.6 Conclusion 245 References 246

Part III Visible Light Active Photocatalysis for Solar Energy Conversion and Environmental Protection 253

- Sensitization of TiO₂ by Dyes: A Way to Extend the Range of Photocatalytic Activity of TiO₂ to the Visible Region 255 Marta I. Litter, Enrique San Román, the late María A. Grela, Jorge M. Meichtry, and Hernán B. Rodríguez
- 10.1 Introduction 255
- 10.2 Mechanisms Involved in the Use of Dye-Modified TiO_2 Materials for Transformation of Pollutants and Hydrogen Production under Visible Irradiation 256
- 10.3 Use of Dye-Modified TiO_2 Materials for Energy Conversion in Dye-Sensitized Solar Cells 260
- 10.4 Self-Sensitized Degradation of Dye Pollutants 262
- 10.6 Water Splitting and Hydrogen Production using Dye-Modified TiO₂ Photocatalysts under Visible Light 269
- 10.7 Conclusions 270 Acknowledgement 271 References 271
- 11 Advances in the Development of Novel Photocatalysts for Detoxification 283 Ciara Byrne, Michael Nolan, Swagata Banerjee, Honey John, Sheethu Jose, Pradeepan Periyat, and Suresh C. Pillai
- 11.1 Introduction 283
- 11.2 Theoretical Studies of Photocatalysis 285
- 11.2.1 Doping and Surface Modification of TiO_2 for Bandgap Engineering 285
- 11.2.2 Alignment of Valence and Conduction Band Edges with Water Oxidation and Reduction Potentials 291
- 11.2.3 Electron and Hole Localization 293
- 11.3 Metal-Doped Photocatalysts for Detoxification 296
- 11.3.1 High-Temperature Stable Anatase TiO₂ Photocatalyst 296
- 11.3.2 Main Group Metal Ions on Anatase Stability and Photocatalytic Activity 296
- 11.3.3 Effect of Transition Metals on Anatase Stability and Photocatalytic Activity 296

xii Contents

- 11.3.4 Effect of Rare Earth Metal Ions on Anatase Stability and Photocatalytic Activity 297
- 11.4 Graphene-TiO₂ Composites for Detoxification 299
- 11.5 Commercial Applications of Photocatalysis in Environmental Detoxification *303*
- 11.5.1 Self-Cleaning Materials 303
- 11.5.2 Bactericidal 307
- 11.5.3 Wastewater Detoxification 308
- 11.6 Conclusions 313 References 313

12 Metal-Free Organic Semiconductors for Visible-Light-Active Photocatalytic Water Splitting 329

S. T. Nishanthi, Battula Venugopala Rao, and Kamalakannan Kailasam

- 12.1 Introduction 329
- 12.2 Organic Semiconductors for Photocatalytic Water Splitting and Emergence of Graphitic Carbon Nitrides 331
- 12.3 Graphitic Carbon Nitrides for Photocatalytic Water Splitting 332
- 12.3.1 Precursor-Derived g-CN 334
- 12.3.2 Nanoporous g-CN by Templating Methods 336
- 12.3.2.1 Hard Templating 337
- 12.3.2.2 Soft Templating 339
- 12.3.2.3 Template-Free 340
- 12.3.3 Heteroatom Doping 341
- 12.3.3.1 Metal Doping 341
- 12.3.3.2 Nonmetal Doping 342
- 12.3.4 Metal Oxides/g-CN Nanocomposites 344
- 12.3.5 Graphene and CNT-Based g-CN Nanocomposites 345
- 12.3.6 Structural Modification with Organic Groups 345
- 12.3.7 Crystalline Carbon Nitrides 347
- 12.3.8 Overall Water Splitting and Large-Scale Hydrogen Production Using Carbon Nitrides 348
- 12.4 Novel Materials 349
- 12.4.1 Triazine and Heptazine-Based Organic Polymers 349
- 12.4.2 Covalent Organic Frameworks (COFs) and Beyond 350
- 12.5 Conclusions and Perspectives 351 References 352

13 Solar Photochemical Splitting of Water 365

Srinivasa Rao Lingampalli and C. N. R. Rao

- 13.1 Introduction 365
- 13.2 Photocatalytic Water Splitting 366
- 13.2.1 Fundamentals of Water Splitting 366
- 13.2.2 Light-Harvesting Units 367
- 13.2.3 Photocatalytic Activity 369
- 13.2.4 Effect of Size of Nanostructures 369

- 13.3 Overall Water Splitting 371
- 13.3.1 One-Step Photocatalytic Process 371
- 13.3.2 Two-Step (Z-Scheme) Photocatalytic Process 374
- 13.4 Oxidation of Water 376
- 13.5 Reduction of Water 380
- 13.5.1 C₃N₄ and Related Materials 380
- 13.5.2 Semiconductors 382
- 13.5.3 Multicomponent Heterostructures 383
- 13.6 Coupled Reactions 386
- 13.7 Summary and Outlook 387 Acknowledgments 387 References 387
- 14Recent Developments on Visible-Light Photoredox Catalysis by
Organic Dyes for Organic Synthesis393

Shounak Ray, Partha Kumar Samanta, and Papu Biswas

- 14.1 Introduction 393
- 14.2 General Mechanism 393
- 14.3 Recent Application of Organic Dyes as Visible-Light Photoredox Catalysts *396*
- 14.3.1 Photocatalysis by Eosin Y 396
- 14.3.1.1 Perfluoroarylation of Arenes 396
- 14.3.1.2 Synthesis of Benzo[b]phosphole Oxides 397
- 14.3.1.3 Direct C—H Arylation of Heteroarenes 398
- 14.3.1.4 Synthesis of 1,2-Diketones from Alkynes 399
- 14.3.1.5 Thiocyanation of Imidazoheterocycles 401
- 14.3.2 Photocatalysis by Rose Bengal 402
- 14.3.2.1 Aerobic Indole C-3 Formylation Reaction 402
- 14.3.2.2 Decarboxylative/Decarbonylative C3-Acylation of Indoles 404
- 14.3.2.3 Oxidative Annulation of Arylamidines 405
- 14.3.2.4 Cross-Dehydrogenative Coupling of Tertiary Amines with Diazo Compounds 406
- 14.3.2.5 C—H Functionalization and Cross-Dehydrogenative Coupling Reactions 407
- 14.3.2.6 Oxidative Cross-Coupling of Thiols with P(O)H Compounds 408
- 14.3.3 Photocatalysis by Methylene Blue 409
- 14.3.3.1 Oxidative Hydroxylation of Arylboronic Acids 409
- 14.3.3.2 Radical Trifluoromethylation 410
- 14.3.4 Photocatalysis by 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine 411
- 14.3.4.1 Synthesis of 2-Substituted Benzimidazole and Benzothiazole 411
- 14.3.4.2 Oxidation of Alcohols to Carbonyl Derivatives 413
- 14.3.5 Photocatalysis by Phenothiazine Dyes: Oxidative Coupling of Primary Amines *414*
- 14.4 Conclusion 415 Abbreviations 415 References 415

xiv Contents

15	Visible-Light Heterogeneous Catalysts for Photocatalytic CO ₂
	Reduction 421
	Sanyasinaidu Boddu, S.T. Nishanthi, and Kamalakannan Kailasam
15.1	Introduction 421

- 15.2 Basic Principles of Photocatalytic CO₂ Reduction 422
- 15.2.1 Thermodynamic Favorability of the Reactions 423
- 15.3 Inorganic Semiconductors 424
- 15.3.1 Metal Oxides 424
- 15.3.2 Sulfides 428
- 15.3.3 Oxynitrides 429
- 15.4 Organic Semiconductors 430
- 15.4.1 Carbon Nitride and their Composites 430
- 15.4.2 Metal Organic Frameworks (MOFs) 434
- 15.4.3 Covalent Organic Frameworks 435
- 15.5 Semiconductor Heterojunctions 436
- 15.6 Conclusion and Perspectives 437 References 438

Part IV Mechanistic Studies of Visible Light Active Photocatalysis 447

- 16 Band-gap Engineering of Photocatalysts: Surface Modification versus Doping 449 Ewa Kowalska, Zhishun Wei, and Marcin Janczarek
- 16.1 Introduction 449
- 16.2 Doping 451
- 16.2.1 Metal Ion Doping 451
- 16.2.2 Nonmetal Ion Doping 453
- 16.2.3 Codoping 455
- 16.2.4 Self-Doping 457
- 16.3 Surface Modification 458
- 16.3.1 Metals 458
- 16.3.2 Nonmetals 464
- 16.3.3 Organic Compounds (Colorless and Color) 464
- 16.4 Heterojunctions 468
- 16.4.1 Excitation of One Component 468
- 16.4.2 Excitation of Both Components 469
- 16.5 Z-Scheme 470
- 16.6 Hybrid Nanostructures 471
- 16.7 Summary 473
 - References 473

- 17 Roles of the Active Species Generated during Photocatalysis 485 Mats Jonsson
- 17.1 Introduction 485
- 17.2 Mechanism of Photocatalysis in TiO₂/Water Systems 486
- 17.3 Active Species Generated at the Catalyst/Water Interface 486
- 17.4 Oxidative Degradation of Solutes Present in the Aqueous Phase 490
- 17.5 Impact of H_2O_2 on Oxidative Degradation of Solutes Present in the Aqueous Phase 492
- 17.6 The Role of Common Anions Present in the Aqueous Phase 493
- 17.7 Summary of Active Species Present in Heterogeneous Photocatalysis in Water 494

References 495

18 Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications 499 Ramachandran Vasant Kumar and Michael Coto

- Ramachanaran yasant Kumar ana Wicha
- 18.1 Introduction 499
- 18.2 Historical Background 499
- 18.3 Basic Concepts 501
- 18.4 Structure of TiO_2 504
- 18.5 Photocatalytic Reactions 506
- 18.6 Physical Architectures of TiO_2 507
- 18.7 Visible-Light Photocatalysis 509
- 18.8 Ion Doping and Ion Implantation 510
- 18.9 Dye Sensitization 513
- 18.10 Noble Metal Loading 514
- 18.11 Coupled Semiconductors 518
- 18.12 Carbon–TiO₂ Composites 518
- 18.13 Alternatives to TiO₂ 520
- 18.14 Conclusions 521 References 522

Part V Challenges and Perspectives of Visible Light Active Photocatalysis for Large Scale Applications 527

- **19 Quantum Dynamics Effects in Photocatalysis** 529
 - Abdulrahiman Nijamudheen and Alexey V. Akimov
- 19.1 Introduction 529
- 19.2 Computational Approaches to Model Adiabatic Processes in Photocatalysis *531*

xvi Contents

19.3	Computational Approaches to Model Nonadiabatic Effects in
	Photocatalysis 532
19.4	Quantum Tunneling in Adiabatic and Nonadiabatic Dynamics 535
19.5	The Mechanisms of Organic Reactions Catalyzed by Semiconductor
	Photocatalysts 541
19.5.1	Methanol Photooxidation on Semiconductor Surfaces 541
19.5.2	Water-Splitting Reactions on Semiconductor Surfaces 544
19.5.3	Carbon Oxide Redox Reactions on Semiconductor Surfaces 546
19.6	Conclusions and Outlook 547
	References 549
20	An Overview of Solar Photocatalytic Reactor Designs and Their
	Broader Impact on the Environment 567
	Justin D. Glover, Adam C. Hartley, Reid A. Windmiller, Naoma S. Nelsen,
	and Joel E. Boyd
20.1	Introduction 567
20.2	Materials 568
20.3	Slurry-Style Photocatalysis 569
20.4	Deposited Photocatalysts 569
20.5	Applications 570
20.5.1	Gas Phase and Self-Cleaning Applications 570
20.5.2	Water Purification Applications 571
20.5.3	Inclined Plate Collectors 571
20.5.4	Parabolic Trough Concentrator 572
20.5.5	Compound Parabolic Concentrator Reactor 573
20.5.6	The Environmental Impact of Nanoscale Titania 574
20.5.7	Detecting and Quantifying Nanoparticles 574
20.5.8	Transformation of Nanoparticles in the Environment 575
20.5.9	Toxicity of Nanoparticles 576
20.6	Conclusion 577
	References 577
21	Conclusions and Future Work 585
	Srabanti Ghosh

Index 589

Preface

In the last decades, photocatalysis has been demonstrated to be one of the most promising approaches to environmental protection, solar energy conversion, as well as in the sustainable production of fuels from water and carbon dioxide. Visible-light-induced photocatalysis is relatively a new area of material science, but the major problem remains as poor solar energy conversion efficiency. The development of novel nanoscale structures as visible-light-responsive photocatalysts causes a dramatic improvement in energy conversion and generation. This book includes the visible-light-active photocatalysis to cover the entire field, focusing on fundamentals, size and shape tunable nanostructures, and the evaluation of their effectiveness as well as perspectives, technologies, applications, and the latest developments, including pollutants degradation by oxidative or reductive processes, organic transformations, CO_2 reduction to produce low-carbon fuels, water electrolysis for hydrogen generation, and photoelectrochemistry for water splitting to produce hydrogen and oxygen and put forward future directions in solar light harvesting.

The book begins with a brief introduction of visible-light-induced photocatalysis by various nanomaterials in chapter 1, followed by chapters 2-15 dealing with the organic pollutants degradation, water detoxification, organic transformations, water splitting, and CO_2 reduction. There are chapters 2, 5–9, 12 devoted to metal-oxide-based photocatalysts, plasmonic catalysts, heterogeneous inorganic semiconducting materials such as metal oxides, nitrides, sulfides, oxynitrides, etc., heterostructures-based catalysts, conducting polymers nanostructures, organic polymeric semiconductors, and metal-organic complex. Effects of bandgap engineering of photocatalysts, mechanistic studies, particularly, roles of the active species on photocatalysis are covered in a separate chapter 16, 17, 18. Chapter 19 is dedicated to the computational modeling of photocatalysis, with an emphasis on reactive dynamics and quantum effects. This book also promotes the idea about solar photocatalytic reactor designs and their broader impact on the environment for large-scale applications in chapter 20. Finally, the last chapter 21 outlines a brief summary of the work and puts forward future directions in perspective of the solar light harvesting.

In order to make each contribution complete in itself, there is some unavoidable overlap among the chapters.

We believe this book endows with essential reads for university students, researchers, and engineers and allows them to find the latest information on visible-light-active photocatalysis, fundamentals, and applications.

Kolkata, 2018

Srabanti Ghosh

Part I

Visible-Light Active Photocatalysis – Research and Technological Advancements

|1

Research Frontiers in Solar Light Harvesting

Srabanti Ghosh

1

CSIR – Central Glass and Ceramic Research Institute, Fuel Cell and Battery Division, 196, Raja S.C. Mullick Road, Kolkata 700032, India

1.1 Introduction

In continuously growing technology-driven society, an urgent need for efficient solar light harvesting to achieve sustainable solutions in science and industry exists [1, 2]. The rapid growth of industries and some unavoidable human activities cause environment pollution to be a threat to the society. Solar-energy-mediated advanced oxidation process in water purification is a highly desirable approach [3]. To use the solar light, energy harvested from the sun needs to be efficiently converted into chemical fuel that can be stored, transported, and used upon demand. Over the last few decades, a significant effort has been made to develop active materials including inorganic, organic, ceramic, polymeric, and carbonaceous, their composites with tunable size and structures [4-6]. A broad range of materials including metal oxides, chalcogenides, carbides, nitrides, and phosphides of various compositions such as heterogeneous, plasmonic, conjugated polymers, porous carbon-based materials, and graphene-based materials has been explored to address/solve energy and environment-related research challenges [7-10]. In this context, oxide-based semiconductors, in particular, TiO₂, have been recognized as efficient and widely explored photocatalysts. Semiconductor-oxide-based catalysts is essentially limited by low quantum yield which results from the fast charge carrier (e^{-}/h^{+}) recombination, and the necessity to use UV irradiation (5% of total sun energy) having wide bandgap [11, 12]. To overcome these limitations, surface-tuning strategies and modification of oxides on the nanometer scale have been developed via doping or surface modifications to produce visible-light-responsive photocatalysts. Indeed, TiO_2 doped with N, C, or S or its modification with metal nanoparticles (Ag, Au, Pt, Cu, Bi) has extended its activity toward the visible region [13-16]. However, the photocatalytic activity of the modified materials in the visible light is still not sufficient for commercial applications. Research efforts are therefore increasingly being carried out to design and develop more efficient novel visible-light active catalysts for photocatalysis and solar energy conversion. A considerable number of novel synthetic strategies including

Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications, First Edition. Edited by Srabanti Ghosh.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.

4 1 Research Frontiers in Solar Light Harvesting

fabrication of plasmonic-based novel catalysts, heterojunctions, and cocatalyst have been proposed to offer new visible-light-active photocatalytic materials as potential substitutes of TiO₂ for the most relevant photocatalytic applications such as detoxification and disinfection, removal of inorganic pollutants, water splitting, and organic synthesis [17–19]. In this regard, the loading of cocatalysts or secondary semiconductors, which can act as either electron or hole acceptors for improved charge separation, is a promising strategy for enhanced catalytic activity. A more innovative implementation of this idea would be based on the use of polymer-based composites, which could allow enhanced charge separation with respect to the photocatalytic activity of the inorganic component alone. In this chapter, the state of the art on development of novel nanostructures and the concept of heterojunction for efficient visible-light-driven water splitting, organic or inorganic pollutant degradation, and organic transformation have been discussed. The structural features of various nanostructured catalysts and their correlation are explained in detail. An overview of recent research efforts in the applications of visible-light-active photocatalysts, which include semiconductor metal oxides (TiO₂, Fe₂O₃, Cu₂O, etc.), polymeric graphitic carbon nitride (C_3N_4) , plasmonic nanostructures (Au, Ag, etc.), conducting polymers nanostructure (PEDOT, PANI, PDPB, etc.), heterostructures, and other novel materials in degradation of photocatalytic pollutants, hydrogen generation, CO₂ reduction, and selective redox organic synthesis are summarized.

1.2 Visible-Light-Driven Photocatalysis for Environmental Protection

Environmental pollution issues prompted the finding of potential solutions to clean up water and environmental detoxification via exploring clean energy routes through solar-light-induced photocatalysis. Extensive research has been done in the area of photocatalytic removal of organic, inorganic, and microbial pollutants using semiconductor photocatalysts (e.g., TiO₂, ZnO, and CdS) for wastewater purification [20-23]. The key to the success of solar energy conversion is the development of high-performance materials of well-matched photo absorption with solar spectrum (visible-light-harvesting capability), efficient photoexcited charge separation to prevent electron-hole recombination, and adequate energy of charges that carry out the photodegradation of dye and other toxic molecules. Continuous efforts have been made to generate active photocatalysts under visible light, but their efficiency is low due to fast charge recombination [24]. Many excellent reviews have also come up regarding the development of oxide-based semiconductors, in particular, TiO_2 , via fine-tune of several electronic characteristics (e.g., atomic configuration, bandgap energy, band position, and lifetime of electrons and holes) [25-27]. In addition to dye sensitization, doping with metals and nonmetals, formation of heterojunctions have been extensively used to enhance the visible-light response of TiO₂ materials and discussed in detail in Chapters 2, 5, 6, 11, and 16. For example, TiO_2 doped with N, C, F, or S or its modification with metal nanoparticles has extended its activity toward the visible region [15, 28–30]. Visible-light activities arise from the changes of bandgap structure of semiconductor via adsorbed modifiers (surface modification) or bandgap narrowing (doping). Synthesis of different materials, such as M/TiO₂ (M=Cu, Ag, Au, Pt, Pd, Bi, Ag—Au, Ag—Cu, Au-Cu, Ag-Pt), and the effect of metal modification on the photocatalytic activity have been discussed in Chapter 6. Moreover, Chen et al. reported disordered TiO₂ nanophase derived from hydroxylation through hydrogenation treatment, which marked as black TiO₂ and a considerable enhancement in visible-light-induced photocatalytic activity [31]. It has been reported that hydrogenation treatment induced the oxygen vacancies and Ti³⁺ sites in black TiO_2 , resulting in the bandgap narrowing and the separation of photogenerated electrons and holes, which enhanced solar absorption and significantly improved the photocatalytic activity of TiO₂ [32, 33]. A variety of synthetic strategies of black TiO₂ are outlined, and the structural and chemical features, electronic properties, and catalytic activity of the black TiO₂ nanomaterials are described in Chapter 5. Furthermore, oxygen-rich layered titanium oxide is also useful for enhanced visible-light photoactivity [34, 35]. Kong et al. reported Ti-O-O coordination bond in layered titanium oxide (composed of TiO₆ layers, and interstitial hydrated H⁺ ions) initiated visible-light-driven photocatalytic activity [36]. Presence of Ti-O-O coordination bonds lowers the bandgap and promotes the charge separation of the photoinduced electron-hole pairs.

Another important example is combination of nanostructured plasmonic metals with a oxide-based semiconductor, which significantly enhanced the photocatalytic activity due to the local surface plasmon resonance (LSPR) effect with very large absorption and scattering cross sections [28, 29]. In fact, LSPR causes an optical antenna effect, which efficiently harvests light and localizes electromagnetic waves at the nanoscale, and the charge carrier formation with efficient separation is obtained at the semiconductor/liquid interface, which benefits the photocatalytic reactions [37-40]. A series of reactions have been tested on Ag, Au, and Cu surfaces, illustrating that low-intensity visible-photon illumination can significantly enhance the rates of chemical transformations as well as control reaction selectivity with different mechanisms as discussed in Chapter 6. Direct plasmonic photocatalysis is believed to occur through the transient transfer of energetic electrons to adsorbate orbitals and the nature of the adsorbate may have a significant impact to control selectivity in plasmon-driven reactions [17]. These heterogeneous oxide-based semiconductor photocatalysts have been also explored for the removal of inorganic wastewater pollutants including cyanide-containing waste and heavy metal pollutants, such as arsenic species and hexavalent chromium [41-43]. Notably, due to high toxicity and carcinogenicity of hexavalent chromium (Cr(VI)), the concentration of Cr(VI) in wastewater should be controlled in acceptable levels before its release in order to protect potable water supplies [44, 45]. Although, molecular CO_2 has a very low electron affinity and is chemically inert as well as very stable, photogenerated energetic electrons from photocatalysts can reduce CO₂ to methane (CH₄) and carbon monoxide (CO). The photocatalytic reduction of CO₂ using solar energy has drawn considerable attention, which mimics the biological photosynthesis in plants [46-48]. It combines the reductive half reaction of CO₂ fixation with

6 1 Research Frontiers in Solar Light Harvesting

a well- matched oxidative half reaction of water oxidation, in order to achieve a carbon neutral cycle, which accomplished with the environment protection. Over the last few decades, various semiconductor photocatalysts, including metal oxide, sulfide, and oxynitride, have been investigated [49, 50]. However, the overall efficiency of the CO_2 photocatalytic reduction has been limited by the purification and separation of products. Consequently, efficient and selective production of highly valuable fuel compounds is a vital issue for practical CO₂ photoreduction systems. Despite of huge attempts to enhance visible-light activity by narrowing the bandgap of TiO_2 through doping, large-scale application is limited due to defect-induced charge trapping and recombination sites of photoexcited charge carriers. In this regard, plasmon-based photocatalysts have demonstrated significantly higher photocatalytic performance in comparison to other known visible-light photocatalysts (e.g., N-doped TiO_2); however, the poor photostability of silver salts reduced the photoactivity of the doped TiO₂ material, which limits its extensive use as a visible-light photocatalyst [15, 51-53]. Hence, a dopant-free, pure catalyst with a bandgap that matches the visible-light energy would be ideal. Numerous efforts have been made for the development of new visible-light-induced photocatalysts, and some oxides have shown visible-light-driven catalytic activity, such as InVO₄, BiVO₄, Bi₂MoO₆, WO₃, and Bi₂WO₆. Recently, visible-light-responsive photocatalytic activity of conjugated polymer nanostructures (CPNs) such as poly(diphenylbutadiyne) (PDPB) nanofibers, poly(3,4-ethylene dioxythiophene) (PEDOT) nanospindle, and poly(3-hexyl thiophene) (P3HT) nanospheres have been reported for degradation of organic pollutants [54-56]. These CPNs demonstrated high photocatalytic activity under visible light without the aid of sacrificial reagents or precious metal cocatalysts. These novel photocatalytic materials have been proposed as potential substitutes of TiO₂ for the most relevant photocatalytic applications, such as detoxification and disinfection, water splitting, and organic synthesis.

Compared to individual semiconductor photocatalysts, composites of two or more semiconductor systems, that is, heterostructures, are advantageous in terms of more efficiently facilitating charge separation and charge carrier transfer, thereby substantially improving photocatalytic efficiency. A very large number of different semiconductor combinations have been investigated, such as metal/semiconductor, carbon group materials/semiconductor heterostructures, semiconductor/semiconductor heterostructures with different models including type I and type II heterojunctions, p-n heterojunctions, and Z-scheme [57–61]. Chapter 8 summarizes the recent strategies to develop such heterostructures and highlights the most recent developments in the field. For charge carrier separation, TiO_2 has been commonly used to form heterostructures with CdS [62, 63], CdSe [64], CuO [65], AgBr [66], PbS [67] for enhanced photocatalytic activities, such as degradation of organic molecules, H₂ generation, and CO₂ reduction. For example, the integration of a potential semiconductor nanocrystal, ZnO, with a narrow band-gap conducting polymer has also shown to be an effective means of promoting charge carrier separation and improving the utilization of solar light [68]. A deep understanding of the charge transfer process through fundamental studies toward the rational design of heterostructures exhibiting high visible-light-harvesting efficiency is addressed in Chapter 9. Similarly, the

use of multiple inorganic domains within these heterostructures enables a rapid dissociation of excitons into a spatially separated pair of charges that bears a minimal probability of the backward recombination, with a high extinction coefficient in the visible range and a low exciton binding energy, which is beneficial to photocatalytic applications [69]. In addition to metal oxides, metal sulfides or chalcogenides have been employed for photocatalytic applications [70]. Ganguli et al. reported a type II semiconductor, ZnO/CuS heterostructure, to increase the absorbance in the visible-light region and successful charge separation from CuS to ZnO through the hexagonal nanotubes (NTs) of ZnO, leading to enhanced visible-light-induced photocatalysis for the degradation of organic pollutants due to the efficient separation of photoinduced carriers [71]. Wang et al. synthesized mesoporous yolk–shell SnS₂–TiO₂ and applied them for the visible-light-driven photocatalytic reduction of Cr(VI) [72].

The two-dimensional (2-D) structure of graphene possessing the large surface area can accommodate semiconductor nanoparticles, and the injection of photo excited electrons from the semiconductor particle can readily be transported along the graphene surface due to its superior electronic conductivity and high mobility of charge carriers [73–76]. Hence, graphene is a promising component to create efficient composite photocatalysts for dye degradation, organic transformations, and reduction of carbon dioxide (CO_2) [77, 78]. For example, Liang et al. prepared less defective graphene-P25 nanocomposites for the photocatalytic CO₂ reduction under visible light [79]. Yu et al. synthesized CdS nanorod/r-GO heterostructures, which demonstrated high catalytic activity for the CO₂ reduction with 10 times higher CH₄ production rate compared to pure CdS and even better than Pt loaded CdS [80]. Moreover, Meng et al. established the concept of photogenerated electron transfer from α -Fe₂O₃ nanoparticles to the graphene surface through transient absorption spectroscopy and time-domain terahertz spectroscopy, which increases the lifetime of charge carriers and, consequently, improve the photocatalytic activity [81]. Li et al. showed bandgap engineering and enhanced interface coupling of graphene-BiFeO₃ nanocomposites by the formation of Fe-O-C bonds, which demonstrated enhanced photocatalytic activity under visible-light illumination [82]. Yang et al. synthesized functionalized graphene sheets/ZnO nanocomposites that exhibited an enhanced photocatalytic activity for the degradation of rhodamine [83]. Zhang et al. showed the excellent performance of CdS-graphene nanocomposite photocatalyst for selective oxidation of alcohol to corresponding aldehyde [84]. Moreover, Han et al. successfully prepared ternary CdS/ZnO/graphene composite, which showed enhanced visible-light-induced photocatalytic activity in comparison to binary composites and pure ZnO and CdS [85]. Hence, this study highlights the significance of charge transport on graphene surface of heterostructures during catalysis reaction. Recently, another graphene-like material, layered structures of MoS₂ have been used as a cocatalyst to modify different semiconductors for hydrogen production and pollutant removal [86-88]. Zhou et al. prepared few-layered MoS₂ nanosheet-coated TiO₂ nanobelt heterostructures to increase the visible-light absorption ability of TiO₂, and MoS₂/TiO₂ composites showed high photocatalytic activity in the degradation of organic dyes [89]. Another example, few-layered MoS₂/BiOBr hollow microspheres demonstrated superior

8 1 Research Frontiers in Solar Light Harvesting

visible-light-response photocatalytic activity for ciprofloxacin and rhodamine B removal in comparison to BiOBr alone [90]. The conduction band (CB) edge potential of MoS_2 (-0.09 eV) is more negative than that of BiOBr (0.29 eV), and the valence band (VB) of BiOBr (3.06 eV) is more positive than that of MoS₂ (1.81 eV). The energy difference between the CB edge potentials of MoS_2 and BiOBr leads to the transfer of the electrons from the CB of MoS₂ to that of BiOBr. Hence, the photogenerated electrons can be collected by BiOBr, and holes can be collected by MoS₂, which causes effective charge separation and can be reflected in enhanced photocatalytic activity. Graphitic carbon nitride $(g-C_3N_4)$ considered as a low-cost photocatalytic system having a graphene-like structure consisting of two-dimensional frameworks of tri-s-triazine connected via tertiary amines with a bandgap of \sim 2.7 eV, corresponding to an optical wavelength of 460 nm in the visible-light range [91, 92]. Hence, two-dimensional $g-C_3N_4$ nanosheets having a graphene-like structure consisting of two-dimensional frameworks of tri-s-triazine connected via tertiary amines also offers large surface area and active sites, which are beneficial for photocatalytic oxygen evolution and CO₂ photoreduction [93, 94]. Moreover, transition-metal-based inorganic compounds have also been coupled with g-C₃N₄ for the fabrication of noble-metal-free heterostructured photocatalysts. The composites of $g-C_3N_4$ and metal oxides (e.g., TiO₂, ZnO, In_2O_3 , and Bi_2WO_6) have been investigated by various research groups for CO₂ photoreduction [95–98]. Chapter 15 covers the current progress of visible-light-induced conversion of CO₂ to fuels by heterogeneous photocatalysts over the metal oxides, sulfides, phosphides, oxynitrides, and organic semiconductors as well as highlights the importance of graphitic carbon nitrides as emerging photocatalyst.

Another way to extend the range of TiO_2 activity to the visible region is modification with visible-light-absorbing dyes such as rose bengal, chlorophyllin, porphyrins, or phthalocyanines [99–101]. Dye-modified TiO_2 can be used for visible-light-assisted photocatalytic degradation of a great variety of organic pollutants from wastewater effluents either by oxidative or reductive processes. Sensitization of TiO_2 and other photocatalysts by modification with dyes has been reviewed in Chapter 10, with an emphasis on the physicochemical properties of the modified photocatalysts, the mechanisms involved in the transformation of pollutants, and the possible technological applications. However, the use of organic dyes as sensitizers of semiconductors has the disadvantage of gradual degradation of organic molecules, which in turn affects the stability of catalysts.

1.3 Photocatalysis for Water Splitting

Solar H_2 production by photocatalytic water splitting appears to be an attractive route to store solar energy in chemical bonds from renewable resources (water and sunlight) [102, 103]. However, the complexity of resolving the complete water splitting problem, structure–property relationships of photocatalysts for the two half reactions of water splitting, hydrogen and oxygen evolution reactions in the

presence of sacrificial reagents have been studied extensively [104, 105]. Hence, light-driven water splitting is recognized as one of the major scientific challenges for hydrogen production. Since the first pioneer report of photocatalytic water splitting using titanium dioxide by Fujishima and Honda , numerous research studies have been conducted on semiconductor materials with proposed mechanisms of photocatalytic water splitting [47]. A photocatalytic system for the photoreduction of protons to produce H_2 consists of a photosensitizer, a catalyst, and sources of protons and electrons [104]. The reaction is first initiated by photon absorption, which generates numerous electron–hole pairs with sufficient potentials. The relevant photoreduction processes involve

- i) absorption of light by the photosensitizer and subsequent internal charge separation
- ii) intermolecular charge transfer (i.e., reduction of the catalyst by the photosensitizer and reduction of the photosensitizer by direct hole donation from a sacrificial electron donor)
- iii) catalytic formation of H_2 by the reduced catalyst.

Sacrificial electron acceptors (S2O82-, Ce(SO4)2, FeCl3, Ag+ from AgNO3, etc.) and donors (ethanol, methanol, triethanolamine, Na₂S, Na₂S₂O₃, and Na₂SO₃) control the production of either hydrogen (electron donor) or oxygen (electron acceptor) by combining with the respective charge carrier. The fundamental aspects of direct photoelectrochemical (PEC) water splitting at semiconductor electrodes are discussed along with recent experimental progresses in Chapter 3. The roles of different experimental parameters for successful water-splitting systems are also included. An overview of recent research progress in photochemically induced water splitting into hydrogen and oxygen with emphasis on new electrode materials, theoretical advances, and the development of experimental methods for light-driven water-splitting reactions has been discussed in Chapter 13 to identify stable, efficient, and cost-effective light-driven Photocatalytic systems. Now the challenge is to fabricate earth-abundant photoelectrodes and catalyst materials with high efficiency, good durability, and low cost. Recently, new visible-light-responsive photoelectrodes, including α -Fe₂O₃, BiVO₄, WO₃, CdS, C₃N₄, and photoanodes have been tested for water splitting [106–109]. However, severe recombination of photogenerated electron-hole pairs on the surface results in poor performance of photocatalysts. Various attempts have been made to improve the performance of photocatalysts via doping, loading of cocatalysts, and heterojunctions [19, 57, 110–113]. Alivisatos and co-worker reported the design of multicomponent nanoheterostructures composed of platinum- tipped cadmium sulfide rod with an embedded cadmium selenide tips as highly active catalysts for hydrogen production with an apparent quantum yield of 20% at 450 nm [114]. Zhang et al. fabricated two-dimensional titania/cadmium sulfide heterostructures through a controlled sol-gel method with an excellent hydrogen evolution activity under visible-light irradiation and an apparent quantum yield of 6.9% at 420 nm [115]. Cao et al. developed a highly efficient and robust heterogeneous

10 1 Research Frontiers in Solar Light Harvesting

photocatalytic material for hydrogen generation $(254\,000\,\mu\text{mol}\,h^{-1}\,g^{-1}$ for the initial 4.5 h) using the CoP/CdS hybrid catalyst in water under solar irradiation [116]. Kozlova *et al.* synthesized a multiphase photocatalyst $Cd_{1-x}Zn_xS/TiO_2$ with 3D ordered meso-/macroporous structure for H₂ evolution reaction from aqueous solutions of Na₂S/Na₂SO₃ under visible-light irradiation [117]. Zong et al. have employed MoS₂/CdS hybrid structure as a catalyst for photocatalytic H₂ evolution under visible-light irradiation [118].Wang and co-workers developed shish-kebab-like multiheterostructured metal chalcogenides (CdS-Te, NiS/CdS—Te, and MoS₂/CdS—Te) photocatalysts to exhibit enhanced efficiency and stability toward photocatalytic H_2 generation due to intimate interactions between CdS and multicomponent cocatalysts, together with improved separation of photogenerated carriers due to the presence of Te nanotubes and trace CdTe [119]. A series of MoS₂-based heterostructures, such as MoS₂/TiO₂ and MoS₂/graphene, have been tested for enhanced visible-light photocatalytic activities [87, 120]. Shen et al. showed one-dimensional MoS₂ nanosheet/porous TiO₂ nanowire hybrid nanostructures that facilitated charge separation and enhanced hydrogen generation rate of 16.7 mmol h^{-1} g⁻¹ in visible light. Chang et al. synthesized MoS₂/G-CdS composite with an unexpected hydrogen evolution reaction activity. MoS_2/G -CdS demonstrated as a promising photocatalyst with high efficiency and low cost for photocatalytic H_2 evolution reaction with a 1.8 mmol h^{-1} H₂ evolution rate in lactic acid solution corresponding to an apparent quantum efficiency (AQE) of 28.1% at 420 nm, which is much higher than that of Pt/CdS in lactic acid solution. Graphitic carbon nitride, another carbon-based π -conjugated semiconductor material with a planar phase analogous to graphite, is also suitable for photocatalytic hydrogen production from water splitting made catalytic applications [121, 122]. However, quantum yields under visible light for H_2 production from water using $g-C_3N_4$ is still limited (not exceed 4%) due to the high recombination rate of the photoinduced electron-hole pair [91, 93]. Synthesis of porous g-CN, heteroatom-doped g-CN, metal-doped g-CN, structural modification with organic groups, metal oxide-g-CN composites, g-CN-graphene/CNT composites, and g-CN-based Z-scheme with enhanced photocatalytic activity for either H₂ or O₂ generation has been discussed in Chapter 12. Different nanostructured g-CN materials, such as nanosheets, nanospheres, and quantum dots, covalent organic frameworks (COFs), such as hydrazone COFs, donor-acceptor heptazine systems, and conjugated microporous polymers (CMPs) based on pyrene prepared from various C-C coupling reactions for water-splitting applications have also been focused in detail. Excellent performance was realized by hybridization of $g-C_3N_4$ with other cocatalysts. For example, metal sulfides, such as NiS, MoS₂, WS₂, and hydroxides, such as Ni(OH)₂ and Co(OH)₂, have been successfully deposited on $g-C_3N_4$ as cocatalysts for improved photocatalytic hydrogen production [123-126]. Meng et al. incorporated $g-C_3N_4$ into Ag_3PO_4 , which exhibited an improved catalytic activity for the degradation of methylene blue under visible-light irradiation [127]. The synergic effect between between $g-C_3N_4$ and Ag_3PO_4 led to structural stability for silver phosphate and high separation efficiency owing to the well- positioned CB and VB and consequently improved photocatalytic activity. Besides the single-phase and heterostructure-based photocatalysts,