2ND EDITION

STRATEGIES FOR ORGANIC SYNTHESIS

LAURIE S. STARKEY

WILEY

INTRODUCTION TO STRATEGIES FOR ORGANIC SYNTHESIS

INTRODUCTION TO STRATEGIES FOR ORGANIC SYNTHESIS

SECOND EDITION

Laurie S. Starkey

California State Polytechnic University, Pomona CA, USA

This second edition first published 2018 © 2018 John Wiley & Sons. Inc.

Edition History

Introduction to Strategies for Organic Synthesis, Wiley, 2012

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Laurie S. Starkey to be identified as the author of this work has been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices. the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Starkey, Laurie Shaffer, 1969- author.

Title: Introduction to strategies for organic synthesis / Laurie S. Starkey.

Description: Second edition. | Hoboken, NJ : John Wiley & Sons, 2018. |

Identifiers: LCCN 2017046041 (print) | LCCN 2017052512 (ebook) |

ISBN 9781119347231 (pdf) | ISBN 9781119347217 (epub) |

ISBN 9781119347248 (pbk.)

Subjects: LCSH: Organic compounds-Synthesis.

Classification: LCC QD262 (ebook) | LCC QD262 .S812 2018 (print) | DDC 547/.2–dc23

LC record available at https://lccn.loc.gov/2017046041

Cover design by Wiley

Cover image: © pixhook/Getty Images

Set in 10/12pt Times Ten by SPi Global, Pondicherry, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

CONTENTS

Preface			xix
Acknowlegmen	its		xxi
CHAPTER 1	•	tic Toolbox 1: Retrosynthesis and tive Groups	1
1.1	Retro	osynthetic Analysis	3
	1.1.1	Retrosynthesis by Functional Group Interconversion (FGI) Choice of Reagents	4 6
	1.1.2	Retrosynthesis by Making a Disconnection What Makes a Good Synthesis?	6 8
1.2	Prote	ective Groups	11
	1.2.1	Protection of Ketones and Aldehydes	12
	1.2.2	Protection of Alcohols	13
		Ether Protective Groups for Alcohols	13
		Ester Protective Groups for Alcohols	15
		Acetal Protective Groups for Alcohols	15
	1.2.3	Protection of Carboxylic Acids	16
	1.2.4	Protection of Amines	17
		Amide Protective Groups for Amines	17
		Carbamate Protective Groups for Amines	17
CHAPTER 1 P	roblem	s Protective Groups	19
CHAPTER 2		tic Toolbox 2: Overview of Organic	21
	Transfo	ormations	21
2.1	Nucl	eophiles and Electrophiles	23
	2.1.1	Common Nucleophiles	23

		Ionic and Other Commercially Available	
		Nucleophiles	24
		Metal-Stabilized Nucleophiles	24
		Resonance-Stabilized Nucleophiles	25
	2.1.2	Common Electrophiles	26
2.2	Oxida	ation and Reduction Reactions	27
	2.2.1	Overview of Oxidations and Reductions	27
		General Chemistry Examples of Redox Reactions	27
		Organic Chemistry Examples of Redox Reactions	27
		Effect of Heteroatoms on the Oxidation State of Carbon	28
	2.2.2	Common Oxidation Reactions and Oxidizing Agents	29
		Oxidation of Alcohols	30
		Oxidation of Diols	31
		Oxidation of Aldehydes	31
		Oxidation of Ketones	32
		Oxidation of Alkenes	33
		Oxidation of Alkynes	34
		Oxidation of Allylic and Benzylic Carbons	34
		Oxidation of Ketone \alpha-Carbons	35
	2.2.3	Common Reduction Reactions and Reducing Agents	35
		Catalytic Hydrogenation	36
		Hydride Reagents	37
		Metals as Reducing Agents	38
CHAPTER 2 Pi	roblems	s Nucleophiles, Electrophiles, and Redox	41
		sis of Monofunctional Target des (1-FG TMs)	45
3.1	Synth	esis of Alcohols (ROH) and Phenols (ArOH)	47
	3.1.1	Synthesis of Alcohols by Functional Group Interconversion (FGI)	48
		Acetate as a Synthetic Equivalent of Hydroxide	49
		Retrosynthesis of Alcohols (FGI)	50

		CONTENTS	vii				
	Practice Problem 3.1A: Alcohol Synthesis by FGI						
	3.1.2	Synthesis of Alcohols by the Grignard Reaction	51				
		Preparation of a Grignard Reagent (RMgX)	51				
		Examples of Grignard Reagents	51				
		Synthesis of Alcohols (Grignard)	52				
		Mechanism of the Grignard Reaction	52				
		Retrosynthesis of an Alcohol (Grignard)	52				
		Reaction of a Grignard with an Ester	53				
		Mechanism of the Grignard Reaction with					
		an Ester	54				
		Retrosynthesis of an Alcohol Containing					
		Two Identical Groups	54				
		Reaction of a Grignard with an Epoxide	55				
		Mechanism of an Epoxide Ring-Opening					
		Reaction with a Grignard	<i>55</i>				
	_	Alternate Retrosynthesis of an Alcohol	<i>55</i>				
		aple: Alcohol TM	56				
	3.1.3	Synthesis of Propargylic Alcohols (RC≡CCH ₂ OH)	57				
		Preparation of Alkynyl Nucleophiles $(RC \equiv CNa)$	57				
	Practi	ice Problem 3.1B: Alcohol Retrosynthesis	58				
	3.1.4	Synthesis of Phenol Derivatives (ArOH)	59				
3.2	Synth	esis of Alkyl (RX) and Aryl Halides (ArX)	61				
	3.2.1	Preparation From Alkanes (RH \rightarrow RX)	61				
	3.2.2	Preparation From Alcohols (ROH \rightarrow RX)	62				
	3.2.3	Preparation From Alkenes ($C=C \rightarrow RX$)	63				
	3.2.4	- '	63				
	3.2.5	Synthesis of Aryl Halides (ArX)	64				
		ice Problem 3.2: Alkyl Halide Synthesis	65				
		ple: Alkyl Halide TM	65				
3.3	Synth	esis of Ethers (ROR')	67				
	•						
	3.3.1	Williamson Ether Synthesis (RX+R'O \rightarrow ROR')	67				
	3.3.2	Alternate Ether Preparations	68				
		2	69 70				
	3.3.4	Retrosynthesis of Ethers	70				
	Example: Ether TM 7						
	Practi	ice Problem 3.3: Ether Synthesis	72				

3.4	Synth	nesis of Thiols (RSH) and Thioethers (RSR')	73			
	Exam	pple: Thioether TM	75			
3.5	Synthesis of Amines (RNH ₂) and Anilines (ArNH ₂)					
	3.5.1	Synthetic Equivalents of NH_3 (RX \rightarrow RNH ₂)	78			
		The Gabriel Synthesis of Amines	78			
		Amine Synthesis via Azides				
		$(RX \rightarrow RN_3 \rightarrow RNH_2)$	79			
	3.5.2	Synthesis of Amines via Reduction Reactions	80			
		Amine Synthesis via Nitriles				
		$(RX \to RC \equiv N \to RCH_2NH_2)$	80			
		Amine Synthesis via Amides	00			
		$(RCO_2H \to RCONHR' \to RCH_2NHR')$	80			
		Reductive Amination of Ketones $(R_2C=O \rightarrow [R_2C=NR'] \rightarrow R_2CHNHR')$	81			
	Practi	ice Problem 3.5: Amine Synthesis	82			
	3.5.3	Retrosynthesis of Amines	82			
	3.5.4	Synthesis of Aniline Derivatives (ArNH ₂)	82			
		pple: Amine TM	83			
		•				
3.6	Synth	nesis of Alkenes (R ₂ C=CR ₂)	85			
	3.6.1	Synthesis of Alkenes via FGI	85			
		Alkenes via E2 Elimination				
		(RX Starting Material)	85			
		Alkenes via E1 Elimination (ROH Starting	0.6			
		Material)	86			
		Retrosynthesis of Alkenes (Elimination)	86			
		Alkenes via Reduction of Alkynes $(RC \equiv CR \rightarrow RCH = CHR)$	87			
	362	Synthesis of Alkenes via the Wittig Reaction	88			
	3.0.2	Preparation of a Wittig Reagent $(R_2C=PPh_3)$	88			
		Synthesis of Alkenes (Wittig)	88			
		Mechanism of the Wittig Reaction	89			
		Retrosynthesis of an Alkene (Wittig)	89			
	Practi	ice Problem 3.6A: Alkene Synthesis By	57			
	11400	FGI and Wittig	90			
	Practi	ice Problem 3.6B: Alkene Synthesis	90			
	Example: Alkene TM					

		CONTENTS	ix
3.7	Synth	nesis of Alkynes (RC≡CR′)	93
	3.7.1	Synthesis of Alkynes via FGI	93
		Alkynes via E2 Elimination	93
	3.7.2	Synthesis of Alkynes From Other Alkynes $(RC \equiv CH \rightarrow RC \equiv CR')$	94
		Retrosynthesis of Alkynes (Alkylation)	94
	Exan	nple 1: Alkyne TM	95
	Pract	ice Problem 3.7: Alkyne Synthesis	95
	Exam	nple 2: Alkyne TM	96
3.8	Synth	nesis of Alkanes (RH)	97
	3.8.1	Synthesis of Alkanes via FGI	97
		Alkane Synthesis via Substitution (RLG \rightarrow R)	H) 97
		Alkane Synthesis via Reduction	
		$(C=C, C\equiv C, C=O \rightarrow Alkane)$	98
		ice Problem 3.8A: Alkane Synthesis by FGI	99
	3.8.2	~J	1 99
		Alkanes via Metal Coupling Reactions $(RM+R'X \rightarrow R-R')$	99
		Synthesis of Aromatic Alkanes	
		(Friedel–Crafts Reaction)	100
		Retrosynthesis of Alkanes	101
	Pract	ice Problem 3.8B: Alkane Synthesis,	
		Transform Problems	102
	Exam	nple: Alkane TM	103
3.9	Synth	nesis of Aldehydes and Ketones	
	(RCI	$HO, R_2C=O)$	105
	3.9.1	Synthesis of Aldehydes/Ketones via FGI	105
		Aldehydes/Ketones via Oxidation or	
		Reduction Reactions	105
		Aldehydes/Ketones via Alkyne	100
	D4	$Hydration (RC \equiv CR \rightarrow [enol] \rightarrow ket/ald)$	106
	Practi	ice Problem 3.9A—Aldehyde/Ketone Synthesis by FGI	107
	3.9.2		107
	3.7.4	Substitutions	107
		Synthesis of Ketones via Organometallic	107
		Reagents	107

		Synthesis of Aromatic Ketones	
		(Friedel–Crafts Acylation)	107
		Synthesis of Aromatic Aldehydes	
		(Formylation Reactions)	108
		Retrosynthesis of Ketones	
		(Acyl Substitution)	109
	Practic	te Problem 3.9B: Aldehyde/Ketone Synthesis I	110
	3.9.3	Synthesis of Ketones via α-Alkylation	110
		Formation and Reactivity of Enolates	110
		Kinetic versus Thermodynamic Regiocontrol	Į.
		of Enolate Formation	111
		The Acetoacetic Ester Synthesis	112
		Retrosynthesis of a Ketone (α-Alkylation)	112
		Alkylation of Dienolates	113
	Practic	te Problem 3.9C: Aldehyde/Ketone Synthesis II	114
	Examp	ole: Ketone TM	114
3.10	Synthe	esis of Carboxylic Acids (RCO ₂ H)	117
	3.10.1	Synthesis of Carboxylic Acids via FGI	117
	3.10.2	Synthesis of Carboxylic Acids via Grignard (RMgBr+CO ₂ →RCO ₂ H)	119
	3.10.3	Retrosynthesis of Carboxylic Acids	
		(Disconnect at Carbonyl)	119
	3.10.4	Carboxylic Acids via α-Alkylation:	
		Malonic Ester Synthesis	120
	3.10.5	Retrosynthesis of Carboxylic Acids	
		(Disconnect at α-Carbon)	121
	Practic	te Problem 3.10: Carboxylic Acid Synthesis	121
	Examp	ble: Carboxylic Acid TM	122
3.11	Synthe	esis of Carboxylic Acid Derivatives	125
	3.11.1	Relative Reactivities of Carboxylic Acid	
		Derivatives (RCOLG)	125
	3.11.2	Synthesis of Acid Chlorides (RCOCl)	127
	3.11.3	Synthesis of Anhydrides (RCO ₂ COR)	128
	3.11.4	Synthesis of Esters (RCO ₂ R)	128
		Synthesis of Esters via FGI	129
		Retrosynthesis of Esters (FGI)	130
		Retrosynthesis of Lactones	131

		CONTENTS	ΧI
		Esters via α-Alkylation	131
		Retrosynthesis of Esters (α -Alkylation)	132
	Practi	ce Problem 3.11A: Ester Synthesis	133
	3.11.5	Synthesis of Amides (RCONH ₂)	133
		Retrosynthesis of Amides	134
		Retrosynthesis of Lactams	134
	3.11.6	Synthesis of Nitriles (RC≡N)	135
		Synthesis of Aromatic Nitriles $(ArC \equiv N)$	136
	Practi	ce Problem 3.11B: Carboxylic Acid	
		Derivative Synthesis	136
	Exam	ple: Carboxylic Acid Derivative	137
CHAPTER 3 Pro	blems	1-FG TMs	139
		s of Target Molecules with Two Functional (2-FG TMs)	143
4.1	•	esis of β-Hydroxy Carbonyls and nsaturated Carbonyls	145
	4.1.1	The Aldol Reaction	145
		Synthesis of β-Hydroxy Carbonyls (Aldol)	145
		Mechanism of the Aldol Reaction	146
		Retrosynthesis of β -Hydroxy	
		Ketones/Aldehydes (Aldol)	146
		Synthesis of α,β -Unsaturated	
		Ketones/Aldehydes (Aldol)	147
		Mechanism of the Dehydration of an Aldol Product	148
		Retrosynthesis of α,β-Unsaturated Ketones/	
		Aldehydes (Aldol)	148
	Practi	ce Problem 4.1A: Aldol Reaction	149
	4.1.2	Mixed Aldol and Mannich Reactions	149
		The Mixed Aldol Reaction and Regiocontrol Involving Enolates	149
		Synthesis of β-Dialkylamino Ketones	
		(Mannich Reaction)	151
		Retrosynthesis of β -Dialkylamino Ketones	151
		Synthesis of α,β -Unsaturated Ketones (via Mannich Bases)	152

	4.1.3	the Wittig Reaction	153
		Synthesis of α, β -Unsaturated Esters (Wittig)	153
		Retrosynthesis of α,β -Unsaturated Esters	100
		(Wittig)	153
	Pract	ice Problem 4.1B: Alternatives to Aldol	154
	Exam	nple: α,β-Unsaturated Carbonyl	154
4.2		Enolate Reactions: Synthesis of 1,3-Dicarbonyls, Dicarbonyls, and Cyclohexenones	157
	4.2.1	The Claisen Condensation	157
		Synthesis of β-Keto Esters	157
		Mechanism of the Claisen Condensation	158
		Retrosynthesis of β-Keto Esters	159
		Example: β-Keto Ester (1,3-Dicarbonyl) TM	160
	4.2.2		161
		Synthesis of 1,5-Dicarbonyls	161
		Mechanism of the Michael Reaction	161
		Retrosynthesis of 1,5-Dicarbonyl Compounds	163
		Additional Applications of the Michael	
		Reaction	163
		Example: 1,5-Dicarbonyl TM	164
	Practi	ice Problem 4.2: Claisen and Michael Reactions	165
	4.2.3	Summary of Enolate Syntheses	165
	4.2.4	Robinson Annulation	166
		Synthesis of Cyclohexenone Derivatives	166
		Mechanism of the Robinson Annulation	167
		Retrosynthesis of Cyclohexenones	167
		Example: Cyclohexenone TM	168
4.3		gical" 2-Group Disconnections: Umpolung rity Reversal)	171
	4.3.1	Synthesis of TMs with a 1,2-Dioxygenated	
		Pattern	171
		1,2-Diol TMs	172
		α-Hydroxy Carboxylic Acid TMs: Umpolung	172
		α-Amino Acid TMs: The Strecker Synthesis	173
		α-Hydroxy Ketone TMs: The Dithiane Anion	173
		Example: α-Hydroxy Ketone TM	175

		CONTENTS	xiii
	4.3.2	Synthesis of TMs with a 1,4-Dioxygenated Pattern	176
		γ-Hydroxy Carbonyl TMs	177
		1,4-Dicarbonyl TMs	178
		Example: 1,4-Dioxygen TM	179
	Pract	ice Problem 4.3: "Illogical" 2-Group Patterns	181
	4.3.3		181
		rattern	101
CHAPTER 4 P	roblem	s 2-FG TMs	183
CHAPTER 5	Synthe	sis of Aromatic Target Molecules	187
5.1		rophilic Aromatic Substitution $I+E+\rightarrow ArE$)	189
	5.1.1	Mechanism of the Electrophilic Aromatic Substitution Reaction	189
		Electrophiles for Electrophilic Aromatic Substitution	190
	5.1.2	Electrophilic Aromatic Substitution on Substituted Benzenes	191
		Effects of Electron-Donating Groups (EDG)	191
		Effects of Electron-Withdrawing Groups (EWG)	192
		Effects of Halogens (F, Cl, Br, I)	193
		Directing Power of Substituents	194
		Reaction with Aniline (PhNH ₂): Use of Protective Groups	195
		Synthesis of Polysubstituted Aromatic TMs: Use of Blocking Groups	196
	Pract	ice Problem 5.1: Electrophilic Aromatic Substitution	197
	5.1.3	Retrosynthesis of Aromatic TMs	
		(Electrophilic Aromatic Substitution)	197
	Exan	nple: Aromatic TM 1	199
5.2		nesis of Aromatic TMs via Diazonium Salts J₂++Nu:→ArNu)	201
	5.2.1	Preparation of Diazonium Salts $(ArNH_2 \rightarrow ArN_2^+)$	201

	5.2.2 5.2.3	Use of Diazonium Salts (ArN ₂ ⁺ +Nu:→ArNu) Retrosynthesis of Aromatic TMs	202
	0.2.0	(via Diazonium Salts)	202
	Practi	ice Problem 5.2: Synthesis of Aromatic TMs	203
	Exam	ple: Aromatic TM 2	203
5		ophilic Aromatic Substitution +Nu:→ArNu)	205
	5.3.1	Mechanism of Nucleophilic Aromatic Substitution (S_NAr)	205
	5.3.2	Retrosynthesis of Aromatic TMs (S _N Ar)	206
	Exam	ple: Aromatic TM 3	207
CHAPTER 5	Problems	s Aromatic TMs	209
CHAPTER 6	Synthes	sis of Compounds Containing Rings	211
6	.1 Synth	esis of Cyclopropanes	213
	6.1.1	Retrosynthesis of Cyclopropane TMs	214
6	.2 Synth	esis of Cyclobutanes	215
	6.2.1	Retrosynthesis of Cyclobutane TMs	215
6	•	esis of Five-Membered Rings	
	(Radi	cal Cyclization Reactions)	217
	6.3.1	Baldwin's Rules	218
	6.3.2	Retrosynthesis of Methylcyclopentane TMs	218
	Exam	ple: Methylcyclopentane TM	219
6	-	esis of Six-Membered Rings s–Alder Reaction)	221
	6.4.1	The Dienophile $(E+)$	222
		Stereochemistry of Dienophile is Retained	222
	6.4.2	The Diene (Nu:)	223
		Stereochemistry of Bicyclic Diels–Alder Products	224
		Consideration of Acyclic Diene Stereochemistry	224

CONTENTS	ΧV

		6.4.3	Regiochemistry of the Diels-Alder Reaction	225
			1,2-Disubstituted Product is Preferred over 1,3-	226
			1,4-Disubstituted Product is Preferred	220
			over 1,3-	227
		Pract	ice Problem 6.4: Diels–Alder Reaction	227
		6.4.4	Retrosynthesis of Cyclohexenes	
			(Diels–Alder)	228
			Retrosynthesis of 1,6-Dicarbonyl TMs	228
		6.4.5	Retrosynthesis of 1,4-Cyclohexadienes	229
CHAPTER	6 Pr	oblem	s Cyclic TMs	231
CHAPTER	7 l	Predict	ing and Controlling Stereochemistry	235
	7.1	React	tions that Form Racemates	237
		7.1.1	Formation of New Chiral Centers	238
		7.1.2		
			Racemization	240
	7.2	S _N 2 M	Iechanism: Backside Attack	243
	7.3	Elimi	nation Mechanisms	245
		7.3.1	E2 Elimination (Anti)	245
		7.3.2	Cope Elimination (Syn)	246
	7.4	Addit	tions to Alkenes and Alkynes	247
		7.4.1	Syn Additions	247
		7.4.2	Anti Additions	248
		Practi	ice Problem 7.4: Predicting Stereochemistry	
			(Substitution, Elimination, and Addition Reactions)	249
			Reactions)	249
	7.5	Addit	tions to Carbonyls	251
		7.5.1	Diastereoselectivity in Acyclic Systems:	
			Cram's Rule, Felkin-Ahn Model	252
			pple: Applying Cram's Rule	253
		7.5.2	Chelation Control by Neighboring Groups	253
			pple: Applying Chelation Control	254
		7.5.3	Addition to Cyclohexanones	254

	7.6	Additions to Enolates: Aldol Stereochemistry		
		7.6.1	Formation of (E) - and (Z) -Enolates	257
		7.6.2	Aldol Reaction with (E) - and (Z) -Enolates	258
		Exan	nples: Predicting Aldol Stereochemistry	259
	7.7	Enan	tioselectivity and Asymmetric Syntheses	261
		7.7.1	Prochiral Environments	261
			Pro-R and Pro-S Groups	262
		Pract	ice Problem 7.7: Prochiral Groups	263
			Re and Si Faces of a Trigonal Planar Atom	263
		7.7.2	Enantioselective Techniques	264
			Separation of Enantiomers via Resolution of Racemate	264
			Asymmetric Synthesis: Sharpless Epoxidation	265
			Enzymatic Transformations: Biocatalysis	266
CHAPTER	7 Pr	oblem	s Stereochemistry	269
CHAPTER		Transit Format	ion Metal-Mediated Carbon–Carbon Bond tion	273
	8.1	Trans	sition Metal Coordination Complexes	275
		8.1.1	Counting Electrons: The 18-Electron Rule	
				275
			Polydentate Ligands	275278
		8.1.2	Polydentate Ligands Palladium Catalysts	
			•	278
	8.2	Pract	Palladium Catalysts	278 279
	8.2	Pract	Palladium Catalysts ice Problem 8.1: Transition Metal Complexes	278 279 281
	8.2	Pract Orga	Palladium Catalysts ice Problem 8.1: Transition Metal Complexes nometallic Reaction Mechanisms	278279281283
	8.2	Orga 8.2.1	Palladium Catalysts ice Problem 8.1: Transition Metal Complexes nometallic Reaction Mechanisms Ligand Substitution	278279281283
	8.2	Orga 8.2.1	Palladium Catalysts ice Problem 8.1: Transition Metal Complexes nometallic Reaction Mechanisms Ligand Substitution Mechanisms that Change the Metal's	278 279 281 283 283
	8.2	Orga 8.2.1	Palladium Catalysts ice Problem 8.1: Transition Metal Complexes nometallic Reaction Mechanisms Ligand Substitution Mechanisms that Change the Metal's Oxidation State	278 279 281 283 283 284
	8.2	Orga 8.2.1	Palladium Catalysts ice Problem 8.1: Transition Metal Complexes nometallic Reaction Mechanisms Ligand Substitution Mechanisms that Change the Metal's Oxidation State Oxidative Addition Reductive Elimination Mechanisms that Retain the Metal's	278 279 281 283 283 284 284
	8.2	Orga 8.2.1 8.2.2	Palladium Catalysts ice Problem 8.1: Transition Metal Complexes nometallic Reaction Mechanisms Ligand Substitution Mechanisms that Change the Metal's Oxidation State Oxidative Addition Reductive Elimination Mechanisms that Retain the Metal's Oxidation State	278 279 281 283 283 284 284
	8.2	Orga 8.2.1 8.2.2	Palladium Catalysts ice Problem 8.1: Transition Metal Complexes nometallic Reaction Mechanisms Ligand Substitution Mechanisms that Change the Metal's Oxidation State Oxidative Addition Reductive Elimination Mechanisms that Retain the Metal's Oxidation State Migratory Insertion	278 279 281 283 283 284 284 284
	8.2	Orga 8.2.1 8.2.2	Palladium Catalysts ice Problem 8.1: Transition Metal Complexes nometallic Reaction Mechanisms Ligand Substitution Mechanisms that Change the Metal's Oxidation State Oxidative Addition Reductive Elimination Mechanisms that Retain the Metal's Oxidation State	278 279 281 283 283 284 284 284 285

	CONTENTS	xvii
	Example of a Typical Catalytic Cycle: Alkene Hydrogenation with Wilkinson's Catalyst	288
8.3	Carbonylation and Decarbonylation	291
8.4	The Heck Reaction (ArX+Alkene → Ar-Alkene)	295
	Practice Problem 8.4: The Heck Reaction	296
8.5	Palladium-Catalyzed Cross-Coupling Reactions $(RX+R'M\rightarrow R-R')$	297
	8.5.1 Stille Reaction	298
	8.5.2 Suzuki–Miyaura Reaction	299
	Practice Problem 8.5—Cross-Coupling Reactions	302
8.6	Olefin Metathesis Reactions	303
	8.6.1 Ring-Closing Metathesis (RCM)	304
8.7	Retrosynthesis: Disconnections Based on Metal- Mediated Reactions	307
CHAPTER 8 P	roblems Transition Metal-Mediated Synthesis	309
Solutions to Pro	blems	313
Chapter 1: Prote	ective Groups	313
Chapter 2: Nucle	eophiles, Electrophiles and Redox	316
Chapter 3: 1-FG	TMs	320
Chapter 4: 2-FG	TMs	340
Chapter 5: Aron	natic TMs	358
Chapter 6: Cycli	c TMs	365
Chapter 7: Stere	ochemistry	375
Chapter 8: Trans	ition Metal Chemistry	385
Index		389

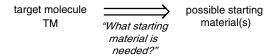
I really could have used this book when I started graduate school! I became fascinated with organic synthesis ever since running my first Grignard reaction as an undergraduate student at the University of Connecticut. As I watched the magnesium metal disappear into the solvent in my roundbottom flask, I was intrigued by the thought of making new molecules. Although my interest and enthusiasm continued as I entered graduate school at UCLA, I quickly found myself being thrown into the proverbial deep end when I took my first graduate course in organic synthesis. I had never taken a synthesis course at UConn, and my undergraduate organic chemistry course seemed like a foggy memory. I scoured every textbook I could find in an effort to stay afloat, but it was a struggle to work through the advanced material I found there. I benefited immensely from the mentorship and patience of my research advisor, and I eventually earned my Ph.D. in organic chemistry. Although I was able to make progress on my graduate research projects, I didn't truly appreciate the strategies of organic synthesis until I taught the course myself as a faculty member. As I embarked on my teaching career at Cal Poly Pomona, I was eager to share my passion for organic synthesis, but I found that most of my students experienced the same difficulties that I had encountered as a student. The quantum leap from sophomore-level organic chemistry to senior-level organic synthesis is nearly insurmountable for some students. I did my best to bridge this gap with my teaching, but it was a challenge since all of the available textbooks were written at the graduate level (or beyond!). Throughout many years of teaching the organic synthesis course, I gradually developed a teaching strategy that seemed to foster student success. My approach involves a significant amount of review of the sophomore-level material (functional group transformations, reagents, and reaction mechanisms) before changing the perspective and attempting to plan a synthesis (functional group analysis and making strategic disconnections: the retrosynthesis of a target molecule). Simply put, taking a year of organic chemistry does not make you an organic chemist, so this review is an essential element for most students. Through practice and experience, envisioning a reaction both in the forward direction and in the reverse direction eventually becomes a routine exercise, but it cannot be assumed to be a trivial matter from the beginning. Such an assumption is made when little to no distinction is made between

XX PREFACE

undergraduate-level and graduate-level organic synthesis courses, and it can result in a frustrating experience for the student. This book is designed as an intermediate-level introduction to the tools and skills needed to study organic synthesis. It contains worked-through examples and detailed solutions to the end-of-chapter problems, so it is ideal for any student who is interested in pursuing research in the field of organic chemistry, including beginning graduate students. For the second edition, over 130 mid-level, in-chapter problems have been added to provide opportunities for practice and self-assessment. With its thorough review of the reactions of organic chemistry and its Study Guide approach, this book aims to build confidence as it deepens students' knowledge. More challenging topics are also explored, with the goal of raising students to a new skill level and preparing them for advanced coursework. To the students studying organic chemistry, I offer this book along with the same advice that I give to my kids (a quote from Mahatma Gandhi), "Live as if you were to die tomorrow. Learn as if you were to live forever."

ACKNOWLEDGMENTS

I want to thank my students for making this the greatest job in the world, my graduate advisor, Mike Jung, for providing a supportive environment and for believing in a struggling student, and my mentor, Phil Beauchamp, who is both a passionate teacher and an organic synthesis junkie. The preparation of the manuscripts would be impossible without my tireless reviewers, including Phil Beauchamp, Chantal Stieber, Joe Casalnuovo, Chris Nichols, Phil Lukeman, Richard Johnson, and especially Michael O'Donnell, an avid lifelong student of chemistry who somehow found the first edition of my book before it was even finished! Thanks to my extended family for their love, support, and friendship...and for making me the person that I am today. Most of all, I am grateful to my wolfpack, Mike, Ellie, and Andy, because the most important things in life aren't things.


SYNTHETIC TOOLBOX 1: RETROSYNTHESIS AND PROTECTIVE GROUPS

This book will demonstrate how to synthesize target molecules (TMs) that contain various functional groups (FGs) such as C≡C (alkyne), OH (alcohol or carboxylic acid), and C=O (aldehyde, ketone, and many others). The process of planning a synthesis, called a retrosynthesis, is one of the most critical tools within the "toolbox" needed to solve synthesis problems. The method of retrosynthetic analysis is introduced in this chapter and is used throughout the book. This first chapter will also review the use of protective groups in organic synthesis. The second chapter provides additional useful tools needed by the beginning synthesis student, by reviewing common nucleophiles and electrophiles, as well as some general reagents for oxidation and reduction reactions.

RETROSYNTHETIC ANALYSIS

Every organic synthesis problem actually begins at the end of the story, a target molecule (TM). The goal is to design a reasonable synthesis that affords the TM as the major product. In the interest of saving both time and money, an ideal synthesis will employ readily available starting materials and will be as efficient as possible. The planning of a synthesis involves imagining the possible reactions that could give the desired product; this process is called doing a retrosynthesis or performing a retrosynthetic analysis of a TM. A special arrow is used to denote a retrosynthetic step. The ⇒ arrow leading away from the TM represents the question "What starting materials could I use to make this product?" and points to an answer to that question. The analysis begins by identifying a functional group present on the target molecule and recalling the various reactions that are known to give products containing that functional group (or pattern of FGs). The process is continued by analyzing the functional groups in the proposed starting material and doing another retrosynthetic step, continuing to work backward toward simple, commercially available starting materials. Once the retrosynthetic analysis is complete, then the forward multistep synthesis can be developed, beginning with the proposed starting materials and treating them with the necessary reagents to eventually transform them into the desired TM.

Retrosynthesis (planning a synthesis)

Synthesis (making the TM)

Retrosynthesis and Synthesis of a Target Molecule (TM)

A retrosynthesis involves working backward from the given target molecule (work done in our minds and on paper), while the synthesis is the forward path leading to the target molecule (experimental work done in the lab). Performing a retrosynthetic analysis is challenging since it requires not only knowledge of an enormous set of known organic reactions but also the ability to imagine the experimental conditions necessary to produce a desired product. This challenge becomes more manageable by developing a systematic approach to synthesis problems.*

When evaluating a given target molecule, it is important to consider how the functional groups present in the TM can be formed. There are two possibilities for creating a given functional group: by conversion from a different functional group (called a functional group interconversion or FGI), or as a result of a carbon—carbon bond-forming reaction (requiring a retrosynthetic "disconnection"). In order to synthesize a target molecule (or transform a given starting material into a desired product), a combination of FGIs and carbon—carbon bond-forming reactions will typically be required. While the key to the "synthesis" of complex organic molecules is the formation of new carbon—carbon bonds, the synthetic chemist must also be fully capable of swapping one functional group for another.

1.1.1 RETROSYNTHESIS BY FUNCTIONAL GROUP INTERCONVERSION (FGI)

Each functional group has a characteristic reactivity; for example, it might be electron-rich, electron-deficient, acidic, or basic. In order to synthesize organic compounds, we must construct the desired carbon framework while locating the required functional groups in the appropriate

^{*} For the classic textbook on such an approach, see Stuart Warren and Paul Wyatt, *Organic Synthesis: The Disconnection Approach*, 2nd ed. (Wiley, 2009).

positions. This necessitates that the chemist is familiar not only with the reactivities of each functional group but also with the possible interconversions between functional groups. Such functional group interconversions (FGIs) enable the chemist to move along a synthetic pathway toward a desired target.

Examples of Functional Group Interconversions (FGI)

Let us consider a carboxylic acid target molecule (RCO₂H). There are many ways to generate a carboxylic acid functional group, so there are many possible syntheses to consider (often, there may be more than one good solution to a given synthesis problem!). One reaction that gives a carboxylic acid product is the hydrolysis of a carboxylic acid derivative, such as a nitrile. Therefore, a possible retrosynthesis of a carboxylic acid TM (What starting materials are needed?) is to consider an FGI and imagine a nitrile starting material. In other words, if we had a nitrile in our hands, we could convert it to a carboxylic acid, leading to a synthesis of the target molecule.

Retrosynthesis of a TM via FGI

$$R-C \equiv N \xrightarrow{H_3O^+} R \xrightarrow{O}$$

Synthesis of the TM

Choice of Reagents

There is almost always more than one reagent that can be used to achieve any given transformation. In fact, a quick look at a book such as Comprehensive Organic Transformations by Richard Larock* reveals that there may be dozens of possibilities. Why have so many methods been developed over the years for organic reactions? Because not every molecule—or every chemist has the same needs. The most obvious reason any "one size fits all" approach fails is that complex synthetic targets contain a wide variety of functional groups. The molecule as a whole must tolerate the reaction conditions used, and side reactions with other functional groups must be kept to a minimum. For example, chromic acid oxidation (Na₂Cr₂O₂, H₂SO₄) of a 2° alcohol to give a ketone would not be useful if the starting material contains any functional groups that are sensitive to acidic conditions. In such a case, the Swern oxidation might be preferred (DMSO, ClCOCOCl, Et,N). New reagents, catalysts, and methods are continuously being developed, with goals of having better selectivity, better tolerance for certain functional groups, being "greener" with less waste or lower toxicity, requiring fewer steps, being more efficient and/or less expensive, and so on.

The focus of this book is on the *strategies* of organic synthesis; it is not intended to be comprehensive in the treatment of modern reagents. Instead, reagents used are those that are typically found in undergraduate organic chemistry textbooks. Hopefully, these reagents will be familiar to the reader, although they would not necessarily be the ones selected when the synthesis moves from paper to the laboratory. Furthermore, experimental details have largely been omitted from this book. For example, osmium tetroxide oxidation of an alkene is given simply as "OsO₄." In reality, this expensive and toxic reagent is used in catalytic amounts in conjunction with some other oxidizing agent (e.g., NMO), so the precise reagents and experimental reaction conditions are much more complex than what is presented herein.

1.1.2 RETROSYNTHESIS BY MAKING A DISCONNECTION

Rather than being created via an FGI, a functional group (or pattern of FGs) may be created as a result of a reaction that also forms a carbon—carbon sigma bond. In that case, the retrosynthesis involves the disconnection of that

^{*} Richard C. Larock, Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd ed. (Wiley-VCH, 1999).

[†] Tse-Lok Ho, Fieser and Fieser's Reagents for Organic Synthesis Volumes 1–26, and Collective Index for Volumes 1–22, Set, 1st ed. (Wiley, 2011); Leo A. Paquette et al., Encyclopedia of Reagents for Organic Synthesis, 14 Volume Set, 2nd ed. (Wiley, 2009); George Zweifel and Michael Nantz, Modern Organic Synthesis, 1st ed. (W. H. Freeman, 2006).

[‡] A. I. Vogel et al., Vogel's Textbook of Practical Organic Chemistry, 5th ed. (Prentice Hall, 1996).