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Foreword

In 1998, the editors convinced themselves that it was the right time to take stock of
recent research concerning the modern history of number theory, and to evaluate in
its light our comprehension of the development of this discipline as a whole. One
issue at stake was to bring together historiographical results coming from different
disciplines and linguistic domains which, we felt, had remained too often unaware
of each other.

We organized two meetings at the Mathematisches Forschungsinstitut Oberwol-
fach : first a small RIP-workshop held June 14–19, 1999, among historians of number
theory and historians of related topics, and then a larger conference which took place
June 17–23, 2001, two hundred years after the publication of Carl Friedrich Gauss’s
Disquisitiones Arithmeticae. The latter brought together historians and philosophers
of mathematics with number theorists interested in the recent history of their field.
Two further meetings, organized by one of us in Vienna and Zürich the following
years, continued our venture.

Two concrete projects arose from these activities. One concerned the creation
of resources, for scholars and students: we initiated a bibliography of secondary
literature on the History of Number Theory since 1800.1

The present volume is the second result of our work. It aims at answering the
question, already raised during the first workshop, on the role of Gauss’s Disquisi-
tiones Arithmeticae in the definition and evolution of number theory. This role is
here appraised in a comparative perspective, with attention both to the mathematical
reception of the treatise, and to its role as a model for doing mathematics. The volume
is the result of a collective work. Although all authors have kept their proper voices,
they have also accepted quite a bit of editorial interference with a view to making the
volume as coherent as possible. We have nonetheless left room for original analyses
and results, including newly discovered documents.

1. A preliminary version of this bibliography has been kindly put on line by Franz Lem-
mermeyer on a website hosted by the University of Heidelberg ( http://www.rzuser.uni-
heidelberg.de/∼hb3/HINTbib.html ).
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Fig. I. Title page of Disquisitiones Arithmeticae, 1801 edition
(Private copy)



Part I

A Book’s History

Welche Wichtigkeit Gauß: Disquisitiones Arithmeticae für die Ent-
wicklung der Mathematik gehabt haben, darüber existiert wohl
kein Zweifel. Es ist ein Werk, das ungefähr in der Mathematik
dieselbe Stellung einnimmt, wie die Kritik der reinen Vernunft
von Kant in der Philosophie.

Carl Itzigsohn, March 23, 1885



Fig. I.1. A newspaper review of the Disquisitiones Arithmeticae
Gazette nationale, ou le Moniteur universel, March 21, 1807



I.1

A Book in Search of a Discipline

(1801–1860)

CATHERINE GOLDSTEIN and NORBERT SCHAPPACHER

Carl Friedrich Gauss’s Disquisitiones Arithmeticae of 1801 has more than one claim
to glory: the contrast between the importance of the book and the youth of its
author; the innovative concepts, notations, and results presented therein; the length
and subtlety of some of its proofs; and its role in shaping number theory into a
distinguished mathematical discipline.

The awe that it inspired in mathematicians was displayed to the cultured public of
the Moniteur universel ou Gazette nationale1 as early as March 21, 1807, when Louis
Poinsot, who would succeed Joseph-Louis Lagrange at the Academy of Sciences six
years later, contributed a full page article about the French translation of the Disqui-
sitiones Arithmeticae:

The doctrine of numbers, in spite of [the works of previous mathematicians] has
remained, so to speak, immobile, as if it were to stay for ever the touchstone of their
powers and the measure of their intellectual penetration. This is why a treatise as
profound and as novel as his Arithmetical Investigations heralds M. Gauss as one of
the best mathematical minds in Europe.2

1. This French newspaper, created by Charles-Joseph Panckoucke in the first months of the
French Revolution, had the goal of informing its readers of administrative, political, and
cultural events and of promoting French achievements. It opened its columns regularly
to reviews of books recommended by the Institut national des sciences et des arts.

2. Gazette nationale ou Le Moniteur universel 80 (1807), 312: La doctrine des nombres
malgré leurs travaux [antérieurs] est restée, pour ainsi dire, immobile ; comme pour
être dans tous les tems, l’épreuve de leurs forces et la mesure de la pénétration de leur
esprit. C’est pourquoi Monsieur Gauss, par un ouvrage aussi profond et aussi neuf que
ses Recherches arithmétiques s’annonce certainement comme une des meilleures têtes
mathématiques de l’Europe.

3



4 I. A Book’s History

A long string of declarations left by readers of the book, from Niels Henrik Abel to
Hermann Minkowski, from Augustin-Louis Cauchy to Henry Smith, bears witness
to the profit they derived from it. During the XIXth century, its fame grew to almost
mythical dimensions. In 1891, Edouard Lucas referred to the Disquisitiones Arith-
meticae as an “imperishable monument [which] unveils the vast expanse and stunning
depth of the human mind,”3 and in his Berlin lecture course on the concept of number,
Leopold Kronecker called it “the Book of all Books.”4 In the process, new ways of
seeing the Disquisitiones came to the fore; they figure for instance in the presentation
given by John Theodore Merz in his celebrated four-volume History of European
Thought in the Nineteenth Century:

Germany … was already an important power in the Republic of exact science which
then had its centre in Paris. Just at the beginning of the nineteenth century two events
happened which foreboded for the highest branches of the mathematical sciences a
revival of the glory which in this department Kepler and Leibniz had already given to
their country. … The first was the publication of the ‘Disquisitiones Arithmeticae’
in Latin in 1801.5 … [Gauss] raised this part of mathematics into an independent
science of which the ‘Disquisitiones Arithmeticae’ is the first elaborate and system-
atic treatise.… It was … through Jacobi, and still more through his contemporary
Lejeune-Dirichlet … that the great work of Gauss on the theory of numbers, which
for twenty years had remained sealed with seven seals, was drawn into current ma-
thematical literature… The seals were only gradually broken. Lejeune-Dirichlet
did much in this way, others followed, notably Prof. Dedekind, who published the
lectures of Dirichlet and added much of his own.6

Gauss’s book (hereafter, we shall often use the abbreviation “the D.A.” to des-
ignate it) is now seen as having created number theory as a systematic discipline in
its own right, with the book, as well as the new discipline, represented as a landmark
of German culture. Moreover, a standard history of the book has been elaborated. It
stresses the impenetrability of the D.A. at the time of its appearance and integrates it
into a sweeping narrative, setting out a continuous unfolding of the book’s content,
from Johann Peter Gustav Lejeune-Dirichlet and Carl Gustav Jacob Jacobi on.

In this history modern algebraic number theory appears as the natural outgrowth
of the discipline founded by the Disquisitiones Arithmeticae. Historical studies
have accordingly focused on the emergence of this branch of number theory, in
particular on the works of Dirichlet, Ernst Eduard Kummer, Richard Dedekind,
Leopold Kronecker, and on the specific thread linking the D.A. to the masterpiece
of algebraic number theory, David Hilbert’s Zahlbericht of 1897. In addition, they
have also explored the fate of specific theorems or methods of the D.A. which are
relevant for number theorists today.

Yet a full understanding of the impact of the Disquisitiones Arithmeticae, at

3. [Lucas 1891], p. vi: Ce livre, monument impérissable dévoile l’immense étendue, l’éton-
nante profondeur de la pensée humaine.

4. [Kronecker 1891/2001], p. 219: das Buch aller Bücher.
5. The second event alluded to by Merz is the computation of Ceres’s orbit, also by Gauss.

6. [Merz 1896–1914], vol. I, pp. 181, 181–182 (footnote), 187–188 and 721.
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all levels, requires more than just a “thicker description”7 of such milestones; it
requires that light be shed on other patterns of development, other readers, other
mathematical uses of the book – it requires a change in our questionnaire. We need
to answer specific questions, such as: What happened to the book outside Germany?
What were the particularities, if any, of its reception in Germany? Which parts of it
were read and reworked? And when? Which developments, in which domains, did it
stimulate – or hamper? What role did it play in later attempts to found mathematics
on arithmetic?

Such questions suggest narrower foci, which will be adopted in the various
chapters of the present volume. In this first part, however, we take advantage of the
concrete nature of our object of inquiry – a book – to draw a general map of its tracks
while sticking closely to the chronology. That is to say, instead of going backwards,
seeking in the Disquisitiones Arithmeticae hints and origins of more recent priorities,
we will proceed forwards, following Gauss’s text through time with the objective of
surveying and periodizing afresh its manifold effects.8

But let us start, first, at the beginning of all beginnings…

1. The Writing and the Architecture of the Disquisitiones Arithmeticae

Gauss began to investigate arithmetical questions, at least empirically, as early as
1792, and to prepare a number-theoretical treatise in 1796 (i.e., at age 19 and, if
we understand his mathematical diary correctly, soon after he had proved both the
constructibility of the 17-gon by ruler and compass and the quadratic reciprocity
law). An early version of the treatise was completed a year later.9 In November
1797, Gauss started rewriting the early version into the more mature text which he
would give to the printer bit by bit. Printing started in April 1798, but proceeded
very slowly for technical reasons on the part of the printer. Gauss resented this very
much, as his letters show; he was looking for a permanent position from 1798. But
he did use the delays to add new text, in particular to sec. 5 on quadratic forms, which
had roughly doubled in length by the time the book finally appeared in the summer
of 1801.10

7. The reference is to Gilbert Ryle and Clifford Geertz, in particular [Geertz 1973].
8. We have systematically tracked mentions of the D.A. in the main nineteenth-century jour-

nals, and then in the complete works – if published – of the mathematicians encountered.
For want of space (in the text or in the margin …), only part of the evidence used to
establish our main claims can be presented here.

9. Parts of the manuscript, known as Analysis residuorum, were published posthumously in
Gauss’s Werke; other parts were identified as such in 1980 by Uta Merzbach in different
German archives; see [Merzbach 1981], also for a global comparison of the early version
with the printed book; for detailed comparisons of specific parts, in particular sec. 2,
see [Bullynck 2006a] and [Bullynck 2006b], appendices A and B. See also [Schlesinger
1922], sec. III.

10. Basic data on the genesis of the Disquisitiones can be derived from Gauss’s mathematical
diary, [Gauss 1796–1814], and from his correspondence. Our quick summary here is
based on [Merzbach 1981]. What exactly Gauss found in his predecessors and how
he was influenced by them remains a difficult question, in spite of his own historical
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1.1. The First Sections: Congruences to the Fore

Let us skim through the contents of the Disquisitiones Arithmeticae as they appeared
in 1801.11 Although it may make somewhat tedious reading, we think it useful to
indicate the full variety of matters treated by Gauss. The 665 pages and 355 articles
of the main text are divided unevenly into seven sections. The first and smallest one
(7 pp., 12 arts.) establishes a new notion and notation which, despite its elementary
nature, modified the practice of number theory:

If the number a measures12 the difference of the numbers b, c, then b and c are said
to be congruent according to a; if not, incongruent; this a we call the modulus. Each
of the numbers b, c are called a residue of the other in the first case, a nonresidue in
the second.13

The corresponding notation b ≡ c (mod a) is introduced in art. 2. The remainder of
sec. 1 contains basic observations on convenient sets of residues modulo a and on the
compatibility of congruences with the arithmetic operations. To consider numbers
or equations up to a given integer was not new with Gauss.14 His innovation was to
turn this occasional computational device into a topic in its own right.

Section 2 (33 pp., 32 arts.) opens with several theorems on integers including the
unique prime factorization of integers (in art. 16), and then treats linear congruences
in arts. 29–37, including the Euclidean algorithm and what we call the Chinese
remainder theorem. At the end of sec. 2, Gauss added a few results for future
reference which had not figured in the 1797 manuscript, among them: (i) properties

remarks. We do not go into it here, referring for a first orientation and survey of Gauss’s
obvious predecessors, in particular Euler, Lagrange and Legendre, to [Weil 1984]; the
less-expected tradition of German arithmetical textbooks and the more general impact
of Lambert’s and Hindenburg’s works are explored in the original thesis of Maarten
Bullynck, [Bullynck 2006b].

11. The reader is invited to go back and forth between our rough summary and Gauss’s
original detailed table of contents which we reproduce on the double page 10–11. In
the present section, expressions in quotation marks, with no explicit reference attached,
are the English translations of key words from this Latin table of contents. The table is
copied from the 1801 edition of the D.A. except that, for the sake of readability, we have
modified the letters “u” and “v” according to current Latin spelling. Other surveys of the
book are proposed in [Bachmann 1911], [Rieger 1957], [Neumann 1979–1980], [Bühler
1981], chap. 3, [Neumann 2005].

12. Along with this classical Euclidean term “to measure” (metiri), which, as well as “mod-
ulus” (small measure), reminds us of the additive flavour of Euclidean division, Gauss
also used “to divide” (dividere) as of sec. 2, art. 13, in the context of a product of natural
integers. This diversity of expressions was not always maintained in translations.

13. Our translation of the opening paragraph of D.A., art. 1: Si numerus a numerorum b, c
differentiam metitur, b et c secundum a congrui dicuntur, sin minus, incongrui: ipsum
a modulum appellamus. Uterque numerorum b, c, priori in casu alterius residuum, in
posteriori vero nonresiduum vocatur.

14. Gauss acknowledged this fact in the footnote to art. 2, noticing that Legendre had used a
simple equality in such situations, and pleading at the same time for his own, unequivocal
notation. Other authors are discussed in [Bullynck 2006b], appendix A.
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of the number ϕ(A) of prime residues modulo A (arts. 38–39); (ii) in art. 42, a proof
that the product of two polynomials with leading coefficient 1 and with rational
coefficients that are not all integers cannot have all its coefficients integers;15 and
(iii) in arts. 43 and 44, a proof of Lagrange’s result that a polynomial congruence
modulo a prime cannot have more zeros than its degree.16

Section 3 (51 pp., 49 arts.) is entitled “On power residues.” As Gauss put it,
it treats “geometric progressions” 1, a, a2, a3,… modulo a prime number p (for a
number a not divisible by p), discusses the “period” of a modulo p and Fermat’s
theorem, contains two proofs for the existence of “primitive roots” modulo p, and
promotes the use of the “indices” of 1,…, p − 1 modulo p with respect to a fixed
primitive root, in analogy with logarithm tables.17 After a discussion, in arts. 61–68,
of nth roots mod p from the point of view of effective computations, the text returns
to calculations with respect to a fixed primitive root, and gives in particular in arts.
75–78 two proofs – and sketches a third one due to Lagrange – of Wilson’s theorem,
1 · 2 · · · (p − 1) ≡ −1 (mod p). The analogous constructions and results for an
odd prime power are discussed in arts. 82–89, the exceptional case of the powers
of p = 2 in arts. 90–91. Finally, integers n for which there exists a primitive root
modulo n are characterized in art. 92.

Section 4 (73 pp., 59 arts.), “On congruences of degree 2,” develops a systematic
theory of “quadratic residues” (i.e., residues of perfect squares). It culminates in the
“fundamental theorem” of this theory, from which “can be deduced almost everything
that can be said about quadratic residues,”18 and which Gauss stated as:

If p is a prime number of the form 4n + 1, then +p, if p is of the form 4n + 3, then
−p, will be a [quadratic] residue, resp. nonresidue, of any prime number which,
taken positively, is a residue, resp. nonresidue of p.19

Gauss motivated this quadratic reciprocity law experimentally, gave the general
statement and formalized it in tables of possible cases (arts. 131 and 132), using the
notation a Ra′, resp. aNa′, to mean that a is a quadratic residue, resp. nonresidue,
modulo a′.20 He also gave here the first proof of the law, an elementary one by

15. This is one of several results known today as “Gauss’s lemma.”
16. See [Bullynck 2006a], for a closer study of sec. 2 in comparison to Gauss’s earlier

manuscript of the D.A.
17. In modern terms, the period is the order of the element a in the multiplicative group

(Z/pZ)∗, Fermat’s theorem states that this order divides p − 1, a primitive root is a
generator of the group and the index of an element is the corresponding exponent with
respect to the chosen generator.

18. D.A., art. 131: … omnia fere quae de residuis quadraticis dici possunt, huic theoremati
innituntur.

19. Our translation of D.A., art. 131: Si p est numerus primus formae 4n +1, erit +p, si vero
p formae 4n + 3, erit −p residuum vel non residuum cuiusuis numeri primi qui positive
acceptus ipsius p est residuum vel non residuum. The supplementary theorems about the
quadratic residue behaviour of −1 and 2 are treated in parallel.

20. Today one usually sees this quadratic reciprocity law written in terms of Legendre’s
symbol. It is defined, for any integer a and p a prime number not dividing a, by
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induction.21 A crucial nontrivial ingredient (used in art. 139) is a special case of a
theorem stated in art. 125, to the effect that, for every integer which is not a perfect
square, there are prime numbers modulo which it is a quadratic nonresidue.22

1.2. Quadratic Forms

The focus changes in sec. 5 of the D.A., which treats “forms and indeterminate
equations of the second degree,” mostly binary forms, in part also ternary. With its
357 pp. and 156 arts., this section occupies more than half of the whole Disquisitiones
Arithmeticae. Leonhard Euler, Joseph-Louis Lagrange, and Adrien-Marie Legendre
had forged tools to study the representation of integers by quadratic forms. Gauss,
however, moved away from this Diophantine aspect towards a treatment of quadratic
forms as objects in their own right, and, as he had done for congruences, explicitly
pinpointed and named the key tools. This move is evident already in the opening of
sec. 5:

The form axx + 2bxy + cyy,23 when the indeterminates x, y are not at stake, we
will write like this, (a, b, c).24

Gauss then immediately singled out the quantity bb − ac which he called the
“determinant”25 – “on the nature of which, as we will show in the sequel, the prop-

(
a
p

) = ±1 ≡ a
p−1

2 (mod p), that is, 1 if a is quadratic residue modulo p, −1 if not; see
[Legendre 1788], p. 186, and D.A., art. 106, for the last congruence. Given distinct odd

prime numbers p, q , the quadratic reciprocity law then says that
(

p
q

) = (−1)
p−1

2
q−1

2
(

q
p

)
.

Notwithstanding Dirichlet’s criticism (published after Gauss’s death) of the D.A. as lack-
ing a notational calculus for quadratic residues, [Dirichlet 1889–1897], vol. 2, p. 123, one
may point out that Gauss’s formulation stresses the normalization of ±p, a phenomenon
that would recur with higher reciprocity laws; see [Neumann 2005], p. 308.

21. In the late 1960s, John Tate “lifted directly from the argument which was used by Gauss in
his first proof of the quadratic reciprocity law” his determination of the second K -group of
the field of rational numbers K2(Q); see [Milnor 1971], p. 102. More generally, Gauss’s
argument is seen to provide an inductive procedure to determine successively the local
factors at all primes p of a given Steinberg symbol on Q∗ × Q∗, and the decomposition
of the universal continuous Steinberg symbol with values in {±1} is tantamount to the
reciprocity law. See [Milnor 1971], p. 101–107; cf. [Tate 1971], § 3.

22. This follows easily from the reciprocity law; Gauss does not even bother to give the
details. The difficulty is to prove it directly (arts. 125–129) in a special case which then
makes the proof by complete induction of the reciprocity law work: that every ±p, for a
prime p of the form 4n + 1, is a quadratic nonresidue modulo some prime q < p.

23. Gauss’s convention that the coefficient of the mixed term be even is original and its
advantages and drawbacks have been much in debate; see J. Schwermer’s chap. VIII.1.

24. D.A., art. 153: Formam axx + 2bxy + cyy, quando de indeterminatis x, y non agitur,
ita designabimus (a, b, c). In [Kronecker 1891/2001], p. 235, this move is heralded as
the first time in history that a system of three discrete quantities was introduced.

25. Nowadays called, sometimes up to a constant, the discriminant of the form. For the
various normalizations and names of this quantity in the XIXth century, see [Dickson
1919–1923], vol. 3, p. 2. We will usually employ Gauss’s word in this chapter.



1. GOLDSTEIN, SCHAPPACHER: A Book in Search of a Discipline 9

erties of the form chiefly depend”26 – showing that it is a quadratic residue of any
integer primitively represented27 by the form (art. 154).

The first part of sec. 5 (arts. 153–222, 146 pp.) is devoted to a vast enterprise
of a finer classification of the forms of given determinant, to which the problem of
representing numbers by forms is reduced. Gauss defined two quadratic forms (art.
158) to be equivalent if they are transformed into one another under substitutions of
the indeterminates, changing (x, y) into (αx +βy, γ x +δy), for integral coefficients
α, β, γ, δ, with αδ−βγ = +1 or = −1.28 Two equivalent forms represent the same
numbers. If αδ−βγ = +1, the equivalence is said to be “proper,” if αδ−βγ = −1,
“improper.” While integral invertible substitutions were already used by Lagrange,
this finer distinction is due to Gauss and greatly exploited by him. After generalities
relating to these notions and to the representation of numbers by forms – in particular
(art. 162), the link between the problem of finding all transformations between two,
say, properly equivalent forms, when one is known, and the solutions of the equation
t2 − Du2 = m2, where D is the determinant of the forms and m the greatest common
divisor of their coefficients – the discussion then splits into two very different cases
according to whether the determinant is negative or positive. In each case, Gauss
showed that any given form is properly equivalent to a so-called “reduced” form
(art. 171 for negative, art. 183 for positive discriminants), not necessarily unique,
characterized by inequalities imposed on the coefficients.29 The number of reduced
forms – and thus also the number of equivalence classes of forms – of a given
determinant is finite. Equivalence among reduced forms is studied – in particular,
the distribution of the reduced forms of given positive determinant into “periods” of
equivalent reduced forms, art. 185 – and a general procedure is given to determine if
two binary quadratic forms with the same determinant are (properly or improperly)
equivalent and to find all transformations between them. Using this, Gauss settled
the general problem of representing integers by quadratic forms (arts. 180–181, 205,
212), as well as the resolution in integers of quadratic equations with two unknowns
and integral coefficients (art. 216). The first half of sec. 5 closes with a brief historical
reminder (art. 222).

The classification of forms also ushers the reader into the second half of sec. 5,
entitled “further investigations on forms.” Art. 223 fixes an algorithm to find a good
representative for every (proper equivalence) class of quadratic forms of a given
determinant. Representing classes by reduced forms avoids working with the infinite
classes abstractly, just as Gauss never worked with our field Z/pZ, the elements of
which are infinite sets of integers, but with conveniently chosen residues modulo p.

26. D.A., art. 154: Numerum bb − ac, a cuius indole proprietates formae (a, b, c) imprimis
pendere, in sequentibus docebimus, determinantem huius formae vocabimus.

27. I.e., which can be written as axx + 2bxy + cyy, for two coprime integers x and y.
28. Gauss also handled the general case of arbitrary substitutions with integral coefficients

transforming a form into another one which is then said to be “contained” in the first.
29. A reduced form (A, B,C) of determinant D < 0 is such that A ≤ 2

√−D/3, B ≤ A/2,
C ≥ A. A reduced form of determinant D > 0 is such that 0 ≤ B <

√
D,

√
D − B ≤

|A| ≤ √
D + B.
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Original Table of Contents of the Disquisitiones Arithmeticae

Dedicatio. Praefatio.

Sectio prima. De numerorum congruentia in genere.

Numeri congrui, moduli, residua et non residua, art. 1 sq. Residua minima, 4. Propositiones
elementares de congruis, 5. Quaedam applicationes, 12.

Sectio secunda. De congruentiis primi gradus.

Theoremata praeliminaria de numeris primis, factoribus etc. 13. Solutio congruentiarum
primi gradus, 26. De inveniendo numero secundum modulos datos residuis datis congruo 32.
Congruentiae lineares quae plures incognitas implicant 37. Theoremata varia 38.

Sectio tertia. De residuis potestatum.

Residua terminorum progressionis geometricae ab unitate incipientis constituunt seriem pe-
riodicam, 45. Considerantur primo moduli qui sunt numeri primi. Ponendo modulum = p,
multitudo terminorum in periodo metitur numerum p −1 art. 49. Fermatii theorema, 50. Quot
numeris respondeant periodi, in quibus terminorum multitudo est divisor datus numeri p − 1
art. 52. Radices primitivae, bases, indices, 57. Algorithmus indicum, 58. De radicibus congru-
entiae xn ≡ A, art. 60. Nexus indicum in systematibus diversis, 69. Bases usibus peculiaribus
accommodatae, 72. Methodus radices primitivas assignandi, 73. Theoremata varia de periodis
et radicibus primitivis, 75. (Theorema Wilsonianum, 76). De modulis qui sunt numerorum
primorum potestates, 82. Moduli qui sunt potestates binarii, 90. Moduli e pluribus primis
compositi, 92.

Sectio quarta. De congruentiis secundi gradus.

Residua et nonresidua quadratica art. 94. Quoties modulus est numerus primus, multitudo
residuorum ipso minorum multitudini nonresiduorum aequalis, 96. Quaestio, utrum numerus
compositus residuum numeri primi dati sit an nonresiduum, ab indole factorum pendet, 98.
De modulis, qui sunt numeri compositi, 100. Criterium generale, utrum numerus datus nu-
meri primi dati residuum sit an nonresiduum, 106. Disquisitiones de numeris primis quorum
residua aut non residua sint numeri dati 107 sqq. Residuum −1 art. 108. Residua +2 et −2,
art. 112. Residua +3 et −3, art. 117. Residua +5 et −5 art. 121. De ±7 art. 124. Praepa-
ratio ad disquisitionem generalem, 125. Per inductionem theorema generale (fundamentale)
stabilitur, conclusionesque inde deducuntur 130. Demonstratio rigorosa huius theorematis,
135. Methodus analoga, theorema art. 114 demonstrandi, 145. Solutio problematis generalis
146. De formis linearibus omnes numeros primos continentibus, quorum vel residuum vel non
residuum est numerus quicunque datus 147. De aliorum laboribus circa has investigationes
151. De congruentiis secundi gradus non puris 152.

Sectio quinta. De formis aequationibusque indeterminatis secundi gradus.

Disquisitionis propositum; formarum definitio et signum 153. Numerorum repraesentatio;
determinans 154. Valores expr.

√
(bb − ac) (mod. M) ad quos repraesentatio numeri M per

formam (a, b, c) pertinet, 155. Forma aliam implicans, sive sub alia contenta; transformatio,
propria et impropria, 157. Aequivalentia, propria et impropria 158. Formae oppositae 159,
contiguae 160. Divisores communes coëfficientium formarum 161. Nexus omnium transfor-
mationum similium formae datae in formam datam 162. Formae ancipites 163. Theorema
circa casum ubi forma sub alia simul proprie et improprie contenta est 164. Generalia de
repraesentationibus numerorum per formas, earumque nexu cum transformationibus 166. De
formis determinantis negativi 171. Applicationes speciales ad discerptionem numerorum in
quadrata duo, in quadratum simplex et duplex, in simplex et triplex 182. De formis deter-
minantis positivi non-quadrati 183. De formis determinantis quadrati 206. Formae sub aliis
contentae quibus tamen non aequivalent 213. Formae determinantis 0 art. 215. Solutio gener-
alis omnium aequationum indeterminatarum secundi gradus duas incognitas implicantium per
numeros integros 216. Annotationes historicae 222.
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DISQUISITIONES ULTERIORES DE FORMIS. Distributio formarum determinantis dati in clas-
ses 223; classium in ordines 226. Ordinum partitio in genera 228. De compositione formarum
238. Compositio ordinum 245, generum 246, classium 249. Pro determinante dato in singulis
generibus eiusdem ordinis classes aeque multae continentur 252. Comparantur multitudines
classium in singulis generibus ordinum diversorum contentarum 253. De multitudine clas-
sium ancipitum 257. Certe semissi omnium characterum pro determinante dato assignabilium
genera proprie primitiva (positiva pro det. neg.) respondere nequeunt 261. Theorematis funda-
mentalis et reliquorum theorematum ad residua −1,+2,−2 pertinentium demonstratio secunda
262. Ea characterum semissis, quibus genera respondere nequeunt, propius determinantur 263.
Methodus peculiaris, numeros primos in duo quadrata decomponendi 265. DIGRESSIO CONTI-

NENS TRACTATUM DE FORMIS TERNARIIS 266 sqq. Quaedam applicationes ad theoriam formarum
binariarum. De invenienda forma e cuius duplicatione forma binaria data generis principalis
oriatur 286. Omnibus characteribus, praeter eos, qui in artt. 262, 263 impossibiles inventi sunt,
genera revera respondent 287, III. Theoria decompositionis tum numerorum tum formarum
binariarum in tria quadrata 288. Demonstratio theorematum Fermatianorum, quemvis inte-
grum in tres numeros trigonales vel quatuor quadrata discerpi posse 293. Solutio aequationis
axx + byy + czz = 0 art. 294. De methodo per quam ill. Le Gendre theorema fundamentale
tractavit 296. Repraesentatio cifrae per formas ternarias quascunque 299. Solutio generalis
aequationum indeterminatarum secundi gradus duas incognitas implicantium per quantitates
rationales 300. De multitudine mediocri generum 301, classium 302. Algorithmus singularis
classium proprie primitivarum; determinantes regulares et irregulares etc. art. 305.

Sectio sexta. Variae applicationes disquisitionum praecedentium.

Resolutio fractionum in simpliciores 309. Conversio fractionum communium in decimales
312. Solutio congruentiae xx ≡ A per methodum exclusionis 319. Solutio aequationis
indeterminatae mxx + nyy = A per exclusiones 323. Alia methodus congruentiam xx ≡ A
solvendi pro eo casu ubi A est negativus 327. Duae methodi, numeros compositos a primis
dignoscendi, illorumque factores investigandi, 329.

Sectio septima. De aequationibus, circuli sectiones definientibus.

Disquisitio reducitur ad casum simplicissimum, ubi multitudo partium, in quas circulum
secare oportet, est numerus primus 336. Aequationes pro functionibus trigonometricis ar-
cuum qui sunt pars aut partes totius peripheriae; reductio functionum trigonometricarum ad
radices aequationis xn − 1 = 0 art. 337. Theoria radicum huius aequationis (ubi supponi-
tur, n esse numerum primum). Omittendo radicem 1, reliquae (�) continentur in aequatione
X = xn−1 + xn−2 +etc.+ x +1 = 0. Functio X resolvi nequit in factores inferiores, in quibus
omnes coëfficientes sint rationales 341. Propositum disquisitionum sequentium declaratur 342.
Omnes radices � in certas classes (periodos) distribuuntur 343. Varia theoremata de his peri-
odis 344 sqq. His disquisitionibus superstruitur solutio aequationis X = 0 art. 352. Exempla
pro n = 19, ubi negotium ad duas aequationes cubicas unamque quadraticam, et pro n = 17,
ubi ad quatuor quadraticas reducitur artt. 353, 354. Disquisitiones ulteriores de hoc argumento.
Aggregata, in quibus terminorum multitudo par, sunt quantitates reales 355. De aequatione,
per quam distributio radicum � in duas periodos definitur 356. Demonstratio theorematis in
sect. IV commemorati 357. De aequatione pro distributione radicum � in tres periodos 338.
Aequationum, per quas radices� inveniuntur reductio ad puras 359. Applicatio disquisitionum
praecedentium ad functiones trigonometricas. Methodus, angulos quibus singulae radices �
respondeant dignoscendi 361. Tangentes, cotangentes, secantes et cosecantes e sinubus et
cosinubus absque divisione derivantur 362. Methodus, aequationes pro functionibus trigono-
metricis successive deprimendi 363. Sectiones circuli, quas per aequationes quadraticas sive
per constructiones geometricas perficere dicet 365.

Additamenta.
Tabulae.
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In art. 226, certain classes are grouped together into an “order” according to the
divisibility properties of their coefficients.30 There follows (arts. 229–233) a finer
grouping of the classes within a given order according to their “genus.” Gauss
showed that, for every odd prime divisor p of the determinant of a form (with
coprime coefficients), integers prime to p that can be represented by the form (and
thus by all forms of its class) are either all quadratic residues, or all nonresidues
modulo p: recording this information, as well as similar information at p = 2 for
even discriminants, defines the “character” of the form (or of the class of the form).
Classes with the same character are put into the same genus. The principal genus
for a determinant D is that of the principal form (1, 0,−D).31

In art. 235, Gauss defined a form F(X, Y ) = AX X+2B XY +CY Y to be a “com-
posite” of f (x, y) = axx + 2bxy + cyy and f ′(x ′, y′) = a′x ′x ′ + 2b′x ′y′ + c′y′y′,
if F(B1, B2) = f (x, y) · f ′(x ′, y′), for certain transformations of the indeterminates
Bi (x, y; x ′, y′), bilinear, as we would say, in x, y and x ′, y′. While this definition
generalizes time-honoured relations like the following,32 with F = f = f ′ :

(xx ′ − N yy′)2 + N (xy′ + yx ′)2 = (x2 + N y2) · (x ′2 + N y′2),

the generality of the concept allowed Gauss to enter uncharted territory, for instance,
to check – by elaborate computations – formal properties like the commutativity and
associativity of the operation, as far as it is defined on the level of forms (arts. 240–
241). In the end, the concept yields a multiplicative structure on the set of orders
(art. 245) and of genera, with the principal genus acting like a neutral element (arts.
246–248), and indeed of classes (art. 239 and art. 249) of the same determinant.33

This rich new structure gave Gauss a tremendous leverage: to answer new
questions, for instance, on the distribution of the classes among the genera (arts.
251–253); to come back to his favourite theorem, the quadratic reciprocity law,
and derive a second proof of it from a consideration of the number of characters
that actually correspond to genera of a given discriminant (arts. 261–262); to solve a
long-standing conjecture of Fermat’s (art. 293) to the effect that every positive integer
is the sum of three triangular numbers. For this last application, as well as for deeper
insight into the number of genera, Gauss quickly generalized (art. 266 ff.) the basic
theory of reduced forms, classes etc., from binary to ternary quadratic forms. This

30. It is with explicit reference to this terminology that Richard Dedekind would later intro-
duce the notion of order into algebraic number theory in [Dedekind 1930–1932], vol. 1,
pp. 105–158.

31. See also §2 of F. Lemmermeyer’s chap. VIII.3 below. Such classificatory schemes, then
part and parcel of the natural sciences, already existed in mathematics, with variants,
see Hindenburg’s classification in [Bullynck 2006b], pp. 259–260. Note, however, that
Gauss put classes below genera and orders.

32. [Weil 1986]. Cf. the blackboard in [Weil 1979], vol. III, p. ii.
33. This particularly difficult theory of the composition of forms has been reformulated several

times by Gauss’s successors; two different perspectives, emphasizing different aspects
of its history and of its current relevance, are proposed in chaps. II.2 and II.3 below, by
H.M. Edwards and by D. Fenster and J. Schwermer.
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gave him in particular explicit formulae for the number of representations of binary
quadratic forms, and of integers, by ternary forms, implying especially that every
integer ≡ 3 (mod 8) can be written as the sum of three squares, which is tantamount
to Fermat’s claim.34 Sec. 5 closes (arts. 305–307) by open-ended reflections on the
analogy between the multiplicative structure of the prime residue classes modulo an
integer and of the classes of quadratic forms.35

Sec. 5 sometimes displays, and often hides, a tremendous amount of explicit
computations performed by Gauss,36 of numbers of classes, genera, or representa-
tions. To mention just one striking example of such extensive computations, which
had an intriguing long term history, Gauss observed that any given “classification,”
that is, any given pair of numbers, one for the number of genera (which Gauss wrote
as a Roman numeral) and one for the number of classes contained in a single genus
(Arabic numeral), is realized by at most finitely many negative determinants:

It seems beyond doubt that the sequences written down do indeed break off, and
by analogy the same conclusion may be extended to any other classification. For
instance, since in the whole tenth thousand of determinants there is none correspond-
ing to a class number less than 24, it is highly probable that the classifications I.23,
I.21 etc.; II.11; II.10 etc.; IV.5; IV.4; IV.3; IV.2 stop already before −9000, or at least
that they contain extremely few determinants beyond −10000. However, rigorous
proofs of these observations appear to be most difficult.37

34. The entry in Gauss’s mathematical diary about this problem is the only one accompanied
by Archimedes’s exclamation “EYPHKA”; see [Gauss 1796–1814], July 10, 1796.

35. This as well as the composition of orders and genera alluded to above would provide one
of the sources for the later development of the abstract concept of group, see [Wussing
1969], I, § 3.3, and [Wussing 2001].

36. Examples relative to the composition of forms are displayed in H.M. Edwards’s chap.
II.2 below, who argues that such computations play a crucial role in Gauss’s conception
of a well-founded theory. See also Gauss’s addition to art. 306 at the end of the 1801
edition and the tables in [Gauss 1863/1876], pp. 399–509. Gauss discussed how much
numerical material on quadratic forms ought to be published in extenso in an 1841 letter
to H. C. Schumacher, translated in [Smith 1859–1865], §119. Cf. [Maennchen 1930] and
[Neumann 1979–1980], p. 26.

37. Our translation of D.A., art. 303: Nullum dubium esse videtur, quin series adscriptae
revera abruptae sint, et per analogiam conclusionem eandem ad quasuis alias classifi-
cationes extendere licebit. E.g. quum in tota milliade decima determinantium nullus se
obtulerit, cui multitudo classium infra 24 responderit: maxime est verisimile, classifica-
tiones I.23, I.21 etc.; II.11; II.10 etc.; IV.5; IV.4; IV.3; IV.2 iam ante −9000 desiisse, aut
saltem perpaucis determinantibus ultra −10000 comprendere. Demonstrationes autem
rigorosae harum observationum perdifficiles esse videntur. Indeed, for one of the sim-
plest constellations of numbers of classes and genera (corresponding to “orders of class
number one” in imaginary quadratic fields, in Richard Dedekind’s terminology of 1877),
the proof that the list of determinants found by Gauss (art. 303) is actually complete was
given by Kurt Heegner only in 1954 – and at first not accepted – by a method which
subsequently would greatly enrich the arithmetic of elliptic curves. A book on Heegner
by H. Opolka, S.J. Patterson, and N. Schappacher is in preparation.
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1.3. Applications

Explicit calculations had evidently been part and parcel of number theory for Gauss
ever since he acquired a copy of [Lambert 1770] at age 15, and launched into counting
prime numbers in given intervals in order to guess their asymptotic distribution.38 In
these tables, Johann Heinrich Lambert made the memorable comment:

What one has to note with respect to all factorization methods proposed so far, is
that primes take longest, yet cannot be factored. This is because there is no way of
knowing beforehand whether a given number has any divisors or not.39

The whole D.A. is illustrated by many non-trivial examples and accompanied by
numerical tables. Section 6 (52 pp., 27 arts.) is explicitly dedicated to computational
applications. In the earlier part of sec. 6, Gauss discussed explicit methods for partial
fraction decomposition, decimal expansion, and quadratic congruences. Its latter part
(arts. 329–334) takes up Lambert’s problem and proposes two primality tests: one
is based on the fact that a number which is a quadratic residue of a given integer M
is also a quadratic residue of its divisors and relies on results of sec. 4; the second
method uses the number of values of

√−D mod M , for −D a quadratic residue of
M , and the results on forms of determinant −D established in sec. 5.

The final Section 7 on cyclotomy (74 pp., 31 arts.) is probably the most famous
part of the Disquisitiones Arithmeticae, then and now, because it contains the con-
ditions of constructibility of regular polygons with ruler and compass. After a few
reminders on circular functions – in particular (art. 337), the fact that trigonometric
functions of the angles k P/n, for a fixed integer n and for k = 0, 1, 2, . . . n − 1,
where P = 2π denotes “the circumference of the circle,” are roots of equations of
degree n – Gauss focused on the prime case and the irreducible40 equation

X = 0, where X = xn − 1

x − 1
= xn−1 + xn−2 + · · · + x + 1 ; n > 2 prime,

which his aim is to “decompose gradually into an increasing number of factors in
such a way that the coefficients of these factors can be determined by equations of as

38. See Gauss’s letter to Johann Franz Encke of December 24, 1849 in [Gauss 1863/1876],
pp. 444–447. In [Biermann 1977], pp. 7–18, it is established that the page of Gauss’s
mathematical diary which follows the last entry of July 9, 1814, records the dates when
Gauss counted prime numbers in certain intervals. On the influence of Lambert’s and
Hindenburg’s tables on Gauss’s sec. 6, see [Bullynck 2006b]. See also [Maennchen
1930], in particular pp. 27–35.

39. [Lambert 1770], pp. 29–30: Was übrigens bey allen bißher erfundenen Methoden, die
Theiler der Zahlen aufzusuchen, zu bemerken ist, besteht darinn, daß man bey Primzahlen
am längsten aufsuchen muß, und zuletzt doch nichts findet, weil man nicht voraus weiß,
ob eine forgegebene Zahl Theiler hat oder nicht. Lambert went on to propose Fermat’s
Little Theorem as a first necessary criterion for primality.

40. D.A., art. 341. The word “irreducible” was established a few decades later. Cf. O. Neu-
mann’s chap. II.1 below.



1. GOLDSTEIN, SCHAPPACHER: A Book in Search of a Discipline 15

low a degree as possible, until one arrives at simple factors, i.e., at the roots� of X .”41

Art. 353 illustrates the procedure for n = 19, which requires solving two equations
of degree three and one quadratic equation (because n − 1 = 3 · 3 · 2); art. 354 does
the same for n = 17 which leads to four quadratic equations (n − 1 = 2 · 2 · 2 · 2).42

All roots of X = 0 are powers r i of one of them, but to solve the equation, Gauss
replaced the natural sequence of the exponents i , that is 1, 2, . . . , n − 1, by the more
efficient bookkeeping provided by sec. 3:

But in this [natural] form of the roots there is presented no means of distributing them
into cyclical periods, nor even of ascertaining the existence of such periods or of
determining their laws. It was the happy substitution of a geometrical series formed
by the successive powers of a primitive root of n in place of the arithmetical series
of natural numbers, as the indices [i.e., exponents] of r , which enabled [Gauss] to
exhibit not merely all the different roots of the equation xn−1

x−1 , but which also made
manifest the cyclical periods which existed among them. Thus if α was a primitive
root of n and n − 1 = mk, then in the series r , rα , rα

2
, . . . , rα

k−1
, . . . , rα

mk−1
the

m successive series which are formed by the selection of every k th term, beginning
with the first, the second … are periodical.43

Complementary results on the auxiliary equations, i.e., those satisfied by the sums
over all the roots of unity in a given period, are given in art. 359, applications to the
division of the circle in the final arts. 365 and 366. As a byproduct of his resolution
of X = 0, Gauss also initiated a study of what are today called “Gauss sums,” i.e.,
certain (weighted) sums of roots of unity, like the sum of a period, or of special
values of circular functions. For instance, he proved (art. 356) that, for an odd prime
n and an integer k not divisible by n,

∑
R

cos
k R P

n
−

∑
N

cos
k N P

n
= ±√

n or 0,

according to whether n ≡ 1 or n ≡ 3 mod 4. Here, R varies over the quadratic
residues, N over the quadratic non-residues modulo n.44

1.4. The Disquisitiones Arithmeticae as a System

In the preface of the D.A., Gauss explicitly restricted the objects of arithmetic to be
the rational integers; he wrote:

41. Our translation of D.A., art. 342: Propositum disquisitionum sequentium … eo tendit, ut
X in factores continuo plures GRADATIM resolvatur, et quidem ita, ut horum coëfficientes
per aequationes ordinis quam infimi determinentur, usque dum hoc modo ad factores
simplices sive ad radices � ipsas perveniatur.

42. For Gauss’s early annoucements of these results and details on the case of the 17-gon,
see [Reich 2000]. The impact on the theory of equations is discussed in O. Neumann’s
chap. II.1.

43. [Peacock 1834], p. 316. Gauss described his view in his letter to Christian Gerling of
January 6, 1819; see [Gauss & Gerling 1927/1975], p. 188.

44. The sign of
√

n depends on whether k is or is not a quadratic residue modulo n, but Gauss
did not succeed in proving this fact in the D.A. See S.J. Patterson’s chap. VIII.2 below.
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The theory of the division of the circle … which is treated in sec. 7 does not belong
by itself to arithmetic, but its principles can only be drawn from higher arithmetic.45

In sec. 7 itself, he promised that the “intimate connection” of the topic with higher
arithmetic “will be made abundantly clear by the treatment itself.”46 There is of
course the technical link mentioned above, that is, the bookkeeping of the roots of
unity via sec. 3. But the “intimate connection” that Gauss announced goes further
and also concerns the systemic architecture of the treatise.

Despite the impressive theoretical display of sec. 5, one cannot fully grasp the
systemic qualities of the D.A. from the torso that Gauss published in 1801. At several
places in the D.A. and in his correspondence a forthcoming volume II is referred to.
The only solid piece of evidence we have is what remains of Gauss’s 1796–1797
manuscript of the treatise. This differs from the structure of the published D.A.
in that it contains an (incomplete) 8th chapter (caput octavum), devoted to higher
congruences, i.e., polynomials with integer coefficients taken modulo a prime and
modulo an irreducible polynomial.47 Thus, according to Gauss’s original plan, sec.
7 would not have been so conspicuously isolated, but would have been naturally
integrated into a greater, systemic unity. The division of the circle would have
provided a model for the topic of the caput octavum, the theory of higher congruences;
it would have appeared as part of a theory which, among many other insights, yields
two entirely new proofs of the quadratic reciprocity law.48

The treatise would thus have come full circle in several respects: beginning with
ordinary congruences and ending with higher congruences; encountering various
periodic structures along the way: prime residues, periods of reduced quadratic
forms of positive discriminant, classes of quadratic forms which are all multiples
of one class, cyclotomic periods and their analogues mod p; and proving quadratic
reciprocity four separate times in the process.

That scientificity ought to be expressed by way of a system was a widespread
idea in Germany in the second half of the XVIIIth century. Lambert, whose works
were well represented in Gauss’s library, wrote, besides his scientific œuvre, sev-
eral philosophical texts developing this idea, at least two of which Gauss owned
personally.49 German idealist philosophers from Immanuel Kant to Georg Wilhelm
Friedrich Hegel, for instance Johann Gottlieb Fichte, Friedrich Wilhelm Joseph von

45. Our translation of D.A., praefatio: Theoria divisionis circuli …, quae in Sect. VII trac-
tatur, ipsa quidem per se ad Arithmeticam non pertinet, attamen eius principia unice ex
Arithmetica Sublimiori petenda sunt.

46. D.A., art. 335: tractatio ipsa abunde declarabit, quam intimo nexu hoc argumentum cum
arithmetica sublimiori coniunctum sit.

47. We summarize in this paragraph G. Frei’s analysis, in chap. II.4 below, of the caput
octavum and its importance for the economy of the whole treatise that Gauss originally
planned.

48. Gauss published them later independently; see G. Frei’s chap. II. 4 below.
49. Maarten Bullynck has drawn our attention to [Lambert 1764] and [Lambert 1771]; see

[Bullynck 2006b], p. 278. Unfortunately, the dates of acquisition for these items are not
known.
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Schelling, Karl Leonhard Reinhold, and Jakob Friedrich Fries, cultivated various
systemic programmes. Starting with Fichte, a system with a circular instead of
linear architecture – returning to its initial point which thereby receives its higher
justification – is called upon to provide a self-justifying foundation for the unfolding
of self-consciousness. With Hegel this would become the unfolding of reason; in
his first philosophical publication, which appeared in the same year as Gauss’s D.A.,
Hegel wrote that “the method of the system, which may be called neither analytical
nor synthetical, is realized most purely if it appears as the development of reason
itself.”50

The systemic design of Gauss’s original plan for his arithmetic fits those ambient
ideas remarkably well.51 It makes it possible, for instance, to appreciate the four
proofs of the quadratic reciprocity law originally planned for the treatise in a dual
way: deducing a theorem at a certain place of the systemic development endows it
with a specific theoretical meaning;52 on the other hand, the various proofs of the
same result connect these theoretical frameworks into a system which is not simply
a deduction of increasingly complicated theorems from initial axioms. In Gauss’s
words,

It is the insight into the marvellous interlinking of the truths of higher arithmetic
which constitutes the greatest appeal of these investigations.53

Another systemic cyclicity is created precisely by the already mentioned recurrence
of periodic structures throughout the treatise. Gauss himself insisted on the analogy
between what we call cyclic components of class groups and the multiplicative
structure of residues modulo a prime number:

The proof of the preceding theorem will be found to be completely analogous to the
proofs of arts. 45, 49, and the theory of the multiplication of classes actually has a
very great affinity in every respect with the argument of sec. 3.54

50. [Hegel 1801], p. 35: Am reinsten gibt sich die weder synthetisch noch analytisch zu nen-
nende Methode des Systems, wenn sie als eine Entwicklung der Vernunft selbst erscheint.
For a general orientation about the philosophical ideas alluded to in this paragraph, see
[Ritter, Gründer 1998], art. “System,” pp. 835–843.

51. In spite of Gauss’s philosophical interests – e.g., he is said to have read Kant’s Critique
of Pure Reason several times; see [Dunnington 1955], p. 315; cf. J. Ferreirós’s chap.
III.2 and J. Boniface’s chap. V.1 below – we have no evidence of a direct and conscious
inspiration; later mentions of Hegel by Gauss are rather critical; see for instance [Gauss
& Schumacher 1862], vol. 4, no 944, p. 337. A reference to Gauss’s idea of science as a
system in the not very reliable biographical essay [Waltershausen 1856], p. 97, suggests
only a banal deductive structure.

52. From the philosophical point of view, cf. [Hartmann 1972], p. 106: “The point easily
lost sight of is that the [systemic] methodological structure provides a new meaning to
categories that already have a meaning.”

53. Our translation of [Gauss 1817], p. 160: Dann ist gerade die Einsicht in die wunderbare
Verkettung der Wahrheiten der höhern Arithmetik dasjenige, das einen Hauptreiz dieses
Studiums ausmacht, und nicht selten wiederum zur Entdeckung neuer Wahrheiten führt.

54. Our translation of D.A., art. 306: Demonstratio theor. praec. omnino analoga invenietur
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Gauss thus drew the attention of the reader to the fact that sec. 3 was not only
instrumental for decomposing the cyclotomic equation in sec. 7 but also linked the
theory of forms to the rest. He also significantly called “irregular” a determinant
whose principal genus was not cyclic, i.e., not constituted by the multiples of a single
class of forms.

Half a century later, the mathematician Ernst Eduard Kummer reflected upon a
suitable system for “the more recent mathematics,” and concluded that it should not
be linear but

rather like the system of the universe; its goal would be to give not just the deduction
of the mathematical truths, but an insight into all the essential relations among
them.55

As mentioned above, the subject of the Disquisitiones Arithmeticae was natural
numbers and Gauss’s proofs were anchored in intricate computations, both formal
(as in the sec. 5) and numerical, ultimately based on integers. The tension between
this anchorage of the book and the striving towards a wider theoretical scope, as
illustrated in the last section of the D.A., will be a recurring theme in what follows.
It explains why the question of the reception of the book is tightly linked to the
shaping of number theory as a specific discipline.

2. The Early Years of the Disquisitiones Arithmeticae

Gauss’s own impressions of the early reception of the Disquisitiones Arithmeticae
are scattered in his correspondence. A letter of June 16, 1805, to Antoine-Charles
Marcel Poullet-Delisle, his French translator,56 summarizes them well:

It is for me as sweet as it is flattering that the investigations contained in my Work, to
which I devoted the best part of my youth, and which were the source of my sweetest
pleasures, have acquired so many friends in France; a fate quite different from what

demonstrationibus in arts. 45, 49, reveraque theoria multiplicationis classium cum argu-
mento in Sect. III tractato permagnam undique affinitatem habet. Cf. the note on D.A.,
art. 306.IX: “Démonstration de quelques théorèmes concernant les périodes des classes
des formes binaires du second degré,” [Gauss 1863/1876], pp. 266–268, where Gauss
used, of course informally, the word “group” (groupe) referring to all classes of forms of
given determinant.

55. [Kummer 1975], vol. 2, p. 697: die neuere Mathematik … wird sich erst später ihr eigen-
thümliches System schaffen, und zwar wol nicht mehr nur ein in einer Linie fortlaufendes,
dessen Vollkommenheit allein darin liegt, dass das Folgende überall durch das Vorherge-
hende begründet werde, sondern ein dem Weltsysteme ähnlicheres, dessen Aufgabe es
sein wird, über die blosse Begründung der mathematischen Wahrheiten hinausgehend,
eine allseitige Erkenntnis der wesentlichen Beziehungen derselben zueinander zu geben.
In [Kummer 1975], vol. 2, p. 687, the parallel is made explicit between Hegel’s principle
of the systemic “self-interpretation of content” (Sichselbstauslegen des Inhalts) and the
system required for the new mathematics since Gauss.

56. On his life, see [Boncompagni 1882].
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they found in Germany where a taste for the most difficult parts of pure mathematics
is the property of a very small number of persons.57

The Disquisitiones Arithmeticae had in fact been mentioned at the French Academy
at least as early as January 1802:

Citizen Legendre communicates a geometrical discovery, made in Germany by M.
Charles Frédéric Bruce [sic], from Brunswick, and published by him in his work
entitled Disquisitiones arithmeticae, Leipsik, 1801,58

and was commented upon very positively from all quarters.59 The project of a French
translation was supported by arguably the most prominent mathematician of the
time, Pierre-Siméon Laplace, and on May 31, 1804, Joseph-Louis Lagrange wrote
to Gauss:

Your Disquisitiones have put you at once among the first mathematicians, and I
consider the last section as one which contains the most beautiful analytic discovery
made in a long time. Your work on planets will moreover have the merit of the
importance of its topic.60

The beginning of this praise is often quoted, but taken in its entirety, the citation pro-
vides important clues about the early reception of the D.A. First, attention focused
on the last section, the resolution of xn − 1 = 0 through auxiliary equations and
its consequences for the constructibility of regular polygons; this is the part of the
book which borders both on the general theory of equations and on geometry. Sec-
ond, Gauss’s innovation was described as “analytical.” Finally, number theory (and
more generally pure mathematics) was considered a subsidiary subject compared to
astronomy or mathematical physics.

57. Letter published by Ernest Fauque de Jonquières in 1896, Comptes rendus de l’Académie
des sciences 122, p. 829: Il m’est aussi doux que flatteur que les recherches contenues
dans mon Ouvrage, auxquelles j’avais dévoué la plus belle partie de ma jeunesse, et qui
ont été la source de mes plus douces jouissances, aient acquis tant d’amis en France;
sort bien inégal à celui qu’elles ont trouvé en Allemagne où le goût pour les parties
plus difficiles des mathématiques pures n’est la propriété que d’un fort petit nombre de
personnes. In the letter, Gauss also expressed his hopes to publish the sequel of the D.A.,
a project he described as delayed for lack of time and printer.

58. Procès verbaux de l’Académie des sciences, registre 114, vol. II, séance du 6 pluviôse an 10
(26 janvier 1802), p. 457: Le Citoyen Legendre communique une découverte géométrique,
faite en Allemagne par M. Charles Frédéric Bruce, de Brunswick, et publiée par lui dans
son ouvrage intitulé Disquisitiones arithmeticae, Leipsik, 1801.

59. Gauss’s fame in France was decisive for his connection to Alexander von Humboldt (then
in Paris), and for establishing on the German scene, through Humboldt, a place for himself
and, afterwards, for other number theorists; see H. Pieper’s chap. III.1 in this volume.

60. [Lagrange 1867–1892], vol. 14, p. 299: Vos Disquisitiones vous ont mis tout de suite
au rang des premiers géomètres et je regarde la dernière section commme contenant la
plus belle découverte analytique qui ait été faite depuis longtemps. Votre travail sur les
planètes aura de plus le mérite de l’importance de son objet. “Geometer” (géomètre)
remains a standard terminology for “mathematician” in French during the XIXth century.



20 I. A Book’s History

This challenges the disciplinary position of the Disquisitiones Arithmeticae both
in its mathematical and cultural aspects. Two situations typified the first genera-
tion of its readers:61 either their involvement with the book, even if significant and
fruitful, occupied only a small part within all their mathematical activities, or they
themselves occupied a marginal position in the mathematical community. Augustin-
Louis Cauchy is a good example of the first category, and Sophie Germain of the
second.62 And Gauss himself, after all, turned to astronomy and geodesy to secure a
position.

This does not mean, however, that the reading of the D.A. at the time was
restricted to one section, nor that it remained superficial and did not lead at all to
innovative work. Sophie Germain displayed in her papers a thorough knowledge of
all the sections: those on congruences of course which she used freely in her work on
Fermat’s Last Theorem as well as in her new proof of the quadratic residue behaviour
of the prime 2, but also the difficult sec. 5, and specifically the composition of forms
and the theory of ternary forms.63 In his memoir on symmetric functions, presented
to the Institut on November 30, 1812, Cauchy relied on concepts and a notation
which he borrowed directly from the D.A., such as the idea of an adjoint and the
notion of determinant, to prove that if a function of n quantities takes less than p
distinct values, where p is the greatest prime divisor of n, then it can take at most 2
values, and furthermore to develop his theory of combinations and of determinants,
seen with hindsight as key steps towards the development of group theory.64

However, as Lagrange’s quote suggested, the D.A. was first of all taken up for
its treatment of xn − 1 and therefore mostly in treatises on algebra. For instance,
Sylvestre François Lacroix included in the third edition of his Complément des
Élemens d’algèbre (1804) a discussion of Gauss’s results in the section on binomial
equations.65 Lagrange’s second edition of his Traité de la résolution des équations

61. Different aspects of this early reception have been documented in [Neumann 1979–1980],
[Reich 1996], [Reich 2000], [Goldstein 2003], and [Neumann 2005].

62. On the shifting professional status of number theory and number theorists, and the char-
acteristics of the craft at different moments, see [Goldstein 1989].

63. See for instance Bibliothèque Nationale de France, Manuscripts f.fr 9118, pp. 40–41,
86; f.fr. 9114, pp. 92–94. On Germain’s work, see [Edwards 1977], pp. 61–65, and
[Laubenbacher, Pengelley 1998].

64. See [Cauchy 1815], where Cauchy – perhaps significantly – refers to Gauss’s “Recherches
analytiques” [sic]; cf. [Belhoste 1991], pp. 32–35. Between 1813 and 1815, Cauchy also
published, in [Cauchy 1813–1815], his proof of Fermat’s general claim to the effect that
each natural number is the sum of no more than n n-gonal numbers. Gauss had shown
in passing how to reduce the case n = 4 (already proved by Lagrange) to his theorem
for n = 3; see end of D.A., art. 293. Cauchy then managed to reduce the cases n ≥ 5
to those proven by Gauss; the most original elements of this proof, however, seem quite
independent of the D.A.

65. [Lacroix 1804], p. 92: M. Gauss, dans un ouvrage très-remarquable, intitulé Disquisi-
tiones Arithmeticae, a fait voir que toute équation à deux termes, dont l’exposant est
un nombre premier, peut être décomposée rationnellement en d’autres équations dont
les degrés sont marqués par les facteurs premiers du nombre qui précède d’une unité ce


