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Foreword

Robotic manipulation and grasping is one of the most challenging problems in the
field of robotics. It requires the robot to have the ability to perceive and understand
its environment via multimodal sensing and strategies.

Compared with visual sensing modality, human’s understanding of the tactile
sensing modality remains limited. It is mainly because of the complexity of the
tactile signals, the restriction of the tactile perception techniques, and the lack of the
available tactile data. Moreover, since tactile sensing is highly coupled with other
sensory modalities, investigating its mechanism can largely improve the develop-
ment of cognitive science.

Recently, with the rapid development of artificial intelligence, and especially
machine learning techniques, the area of robotics has revealed great advances and
potential. I am pleased to see this book by Huaping and Fuchun. To the best of my
knowledge, this is the first book for a comprehensive approach to tactile perception
using machine learning. For the problem of tactile sensing in robotic manipulation,
they have established a novel technical framework, sparse coding, and dictionary
learning. With this framework, the complex tactile signals can be reconstructed as
new coding vectors. The sparsity is utilized to characterize many features such as
the correlations between multiple fingers and different tactile attributes. Moreover,
under the proposed framework, the authors also successfully solve the heteroge-
neous visual–tactile sensing fusion problem.

Therefore, I believe there are mainly three contributions in this book. Firstly, it
provides a comprehensive survey of tactile object recognition and of visual–tactile
fusion recognition technology, together with an analysis of the different represen-
tations for tactile and visual modalities. Secondly, it systematically unravels the
object attribute recognition problem in the field of robotic tactile perception and
understanding. Finally, it establishes a complete machine learning approach for the
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multimodal sensing fusion task. This work provides a good way of solving robotic
manipulation and grasping in unstructured and complex environments.

This book provides readers with an intuitive understanding and exciting appli-
cations in robotic tactile sensing. The tactile sensing promises to play a critical role
in robotic manipulation. I believe this book will reveal enormous practical impact as
well as scientific insights into tactile sensing research and education.

Prof. Angelo Cangelosi
University of Manchester
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Preface

Intelligent service robots have great potential in various application scenarios such
as home services, public health, and warehouse logistics. Robotic manipulator and
dexterous finger system are two key components of service robots to perform tasks
which require manipulation and grasp capability, for example, caring for the
elderly, surgical operations, and space or underwater exploration.

The technical challenges of manipulation and grasp involve a number of aspects
including mechanical structure, hand material, object property, environment per-
ception, and grasp planning. Among them, environment perception of service
robots brings obvious challenges to existing technologies for industrial robots used
for structured environments, due to the fact that service robots usually work in more
complex, dynamic, and uncertain environments. This requires the robots to perceive
and understand its environment in an accurate and timely manner. Referring to
humans’ approaches for sensing the environment through looking, listening, tast-
ing, smelling, touching, and then unintentionally integrate the information from all
channels, it is tempting to equip service robots with various sensors.

For both humans and robots, tactile sensing is the core approach used for
exploration and manipulation of objects. Unlike visual sensors, tactile sensors are
capable of perceiving some physical properties (e.g., softness/hardness, texture,
temperature) of an object. Incorporating tactile perception to the robots can not only
simulate human perception and cognitive mechanisms but also enable robots to
perform more satisfyingly at practical applications.

Furthermore, visual and tactile modalities are quite different from each other.
First of all, the format, frequency, and range of perceived object information are
different. Tactile sensing obtains information through constant physical contact with
target object, while the visual modality can simultaneously obtain multiple different
features of an object at a distance. Furthermore, some features can only be obtained
by one single perceptual mode. For example, the color of an object can only be
obtained visually, while the texture, hardness, and temperature of a surface are
obtained through tactile sensing.
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To tackle those intrinsically difficult problems in tactile perception and visual–
tactile fusion problems, we establish a unified sparse coding and dictionary learning
framework, which forms the main contents of this book. Furthermore, a set of
structured sparse coding models is developed to address the issues of dynamic
tactile sensing. The book then proves that the proposed framework is effective in
solving some challenging problems in the field of robotics and automation, e.g.,
multifinger tactile object recognition, multilabel tactile adjective recognition, and
multicategory material analysis. The proposed sparse coding model can be used to
tackle the challenging visual–tactile fusion recognition problem, and the book
develops a series of efficient optimization algorithms to implement the model.

This book is divided into four parts. Part I presents the research background and
motivation and introduces the representation and kernel of the concerned tactile and
visual modalities. Part II focuses on the tactile perception problem. In Chap. 3, a
joint sparse coding method for multifingered tactile fusion task is presented. In
Chaps. 4–6, more complicated dictionary learning methods are developed to tackle
the difficult tasks of object recognition, tactile adjective property analysis, and
material identification. Part III presents more advanced applications of sparse
coding and dictionary learning methodology on the heterogeneous visual–tactile

Fig. 1 Organization of the book: logical dependency among parts and chapters
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fusion problems. Similarly, the joint sparse coding is firstly used to establish the
basic framework to tackle the intrinsic problems in visual–tactile fusion in Chap. 7.
Chapters 8 and 9 present complicated dictionary learning methods to address the
material identification and cross-modal retrieval tasks. Part IV contains Chap. 10,
which summarizes this book and presents some prospects. For clear illustration, an
outline of the logical dependency among chapters is demonstrated in Fig. 1. Note
that we try our best to make each chapter self-contained. Nevertheless, the sparse
coding and dictionary learning methods developed in Chaps. 3–9 are always
dependent on the kernel representation presented in Chap. 2.

This book is suitable as a reference book for graduate students with a basic
knowledge of machine learning as well as professional researchers interested in
robotic tactile perception and understanding, and machine learning.

Beijing, China Huaping Liu
July 2017 Fuchun Sun
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Part I
Background

This part of the book comprises two chapters. In Chap. 1, a survey about the tactile
object recognition and visual–tactile fusion recognition technology is presented. The
technical challenges for tactile perception and visual–tactile fusion understanding
are also analyzed in this chapter. Chapter 2 serves as a basis of the whole book, by
providing different representations for the tactile and visual modalities.

http://dx.doi.org/10.1007/978-981-10-6171-4_1
http://dx.doi.org/10.1007/978-981-10-6171-4_2


Chapter 1
Introduction

Abstract For robots, tactile perception is a key function utilized to obtain informa-
tion from environment. Unlike vision sensors, tactile sensors can directly measure
various physical properties of objects and the environment. Similarly, humans also
use touch sensory receptors as an important approach to perceive and interact with
the environment. In this chapter, a detailed discussion associated with tactile object
recognition is presented. Current studies on tactile object recognition are divided into
three sub-categories, and detailed analyses are provided. In addition, some advanced
topics such as visual–tactile fusion, exploratory procedure, and datasets are dis-
cussed.

1.1 Robotic Manipulation and Grasp

The robotic manipulator and the dexterous finger system are most important com-
ponents for service robots to perform tasks such as heavy domestic work, caring for
the elderly, surgical operations, and space or underwater exploration. All of those
operations require a manipulation and grasp capability, which remains a challenging
problem for intelligent robots. Thoughmany scholars have investigated related prob-
lems for several decades [6, 9, 12, 78, 86], the available robotic hand applications
are still far from satisfying practical usage. This restricts development of many appli-
cations such as electronic commerce, which has benefitted from successful mobile
robots. Figuratively, the problem of Last Mile can be solved with the outdoor mobile
robots; the problem of Last Foot can be solved with the indoor mobile robots; and the
problem of Last Inchmust be solvedwith roboticmanipulation and grasp technology.
Recently, somemajor Internet companies have started promoting research on robotic
manipulation and grasp. For example, Amazon held the Amazon Picking Challenge
(APC)1 in 2015 (see the left panel of Fig. 1.12) at the 2015 International Conference
on Robotics and Automation (ICRA) in Seattle, Washington. After that event, APC

1https://www.amazonrobotics.com/site/binaries/content/assets/amazonrobotics/pdfs/2015-apc-
summary.pdf.
2This image is adopted from the website http://robohub.org/team-rbo-from-berlin-wins-amazon-
picking-challenge-convincingly/.
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4 1 Introduction

Fig. 1.1 LEFT: Amazon Picking Challenge which was held at ICRA2015. RIGHT: Robotic Grasp-
ing and Manipulation Competition which was held at IROS2016

Fig. 1.2 LEFT: Google’s collaborative manipulations. Copyright (2016) Sage. Reprinted, with
permission, from Ref. [60]. RIGHT: Deep learning robot developed by CMU. Copyright (2016)
IEEE. Reprinted, with permission, from Ref. [75]

was held at RoboCup. The goal of the APC is to strengthen ties between the industrial
and academic robotic communities in order to promote shared and open solutions
to some of the major problems in unstructured automation. In 2016, the Robotic
Grasping and Manipulation Competition3 was held at International Conference on
Intelligent Robots and Systems (IROS) in Korea (see the right panel of Fig. 1.1).
Google also reported some appealing results on collaborative learning of grasp skills
(see the left panel of Fig. 1.2). MIT Technology Review reported on research in a
story headlined Deep-Learning Robot Takes 10 Days to Teach Itself to Grasp (see
the right panel of Fig. 1.2). All of these events show that robotic manipulation and
grasp attract considerable attention from both industry and academia.

The technical challenges of manipulation and grasp involve a number of aspects
including mechanical structure, hand material, object property, environment percep-
tion, and grasp planning. Among them, environment perception is especially difficult
compared with industrial robots used for structured environments. In fact, service
robots encounter complex, dynamic, and uncertain environments. This requires the
robots to perceive and understand its environment in an accurate and timely manner.

3http://www.rhgm.org/activities/competition_iros2016/competition_iros_summary.pdf.
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