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Foreword

In the early days, the high-voltage transistor was a discrete device, and the control
and protection circuits were implemented with small ICs and discrete components.
The interference between the circuits through common connections and supply lines
was limited.

Due to rapid technology and packaging advancements, it became possible in the
late seventies of the last century to integrate the high-voltage, high-power transistors
with their protection and control circuits on the same chip: the Smart Power IC. This
evolution is still ongoing with increasing power capability and switching speed of
the power transistors and increasing accuracy and complexity of the protection and
interface circuits on the same chip.

Most Smart Power ICs use junction isolation and increasingly suffer from
interferences through the common substrate. Besides capacitive and inductive
coupling between components, switching power devices also inject majority and
minority carriers of considerable magnitude into the substrate. This gives rise to
substrate biasing in the vicinity of the injection point and disturbance of sensitive
interface circuits far away from the injection point.

The effects of these substrate currents are very difficult to predict since they prop-
agate three-dimensionally through the substrate. Furthermore, traditional SPICE
simulations only calculate with majority carriers and neglect minority carriers.
Substrate couplings could hence not be included in the chip design cycle.

Traditionally, experimental test structures were used to quantify the substrate
couplings in a given technology. Expert designers then devised circuit layout and
protection structures with large margins to cope with the substrate interferences.

A much better and accurate approach is TCAD simulation of the whole chip.
Such simulation includes the behavior of the minority carriers and the three-
dimensional nature of the substrate current but requires tedious finite element
modeling of the three-dimensional chip and lengthy simulations.
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vi Foreword

In this book, a new approach is presented. Equivalent electrical circuits are
derived to model minority carriers in the substrate in SPICE, and a novel, meshing
strategy is used to limit the number of nodes to model the chip layout. Together these
advancements allow for simulation in SPICE of the parasitic substrate couplings
in Smart Power ICs with adequate accuracy, and the simulation complexity is low
enough to include critical layout interactions in the normal design cycle.

Herman Casier



Preface

Over the last century, electronics has been a major drive for the revolution in
communication systems and in data computing. The demand for integrated circuits
is accelerating as high integration of electronic functions is needed to share
information and control our environment. The everlasting consumer demand for
safety, energy efficiency, and connectivity explains why electronics is becoming of
prime importance. In this context, the automotive industry is taking full advantage
of this microelectronics revolution, and today, it happens to be one of the main users
of integrated circuits.

Safety requirements for modern automotive electronics call for more and more
robust circuits for power applications. In most situations, the mixed-signal circuit
design flow cannot track ultimate design failures in complex power circuits mainly
caused by parasitic substrate currents caused by majority/minority carriers. Tradi-
tionally, device simulations are carried out on a simplified model of the substrate
to identify these parasitic signals. However, it is almost impossible to get accurate
results with this approach. In addition, the circuit functionalities are excluded from
these simulations since there is no back annotation between the substrate model and
the circuit.

In this book, a novel substrate model and related extraction methodology is
investigated. The substrate model consists in three generalized lumped elements—
the EPFL diode, the EPFL resistor, and the EPFL homojunction—and a subdivision
of the Integrated circuit (IC) layout into elementary cells where the continuity
equation for the minority carriers is solved with the finite-difference method (FDM).
A nonuniform mesh procedure is also implemented to minimize the number of
nodes, giving rise to an equivalent three-dimensional model of the substrate. The
concept is fully compatible with conventional circuit design tools, and it can be
used for any high-voltage technology, including HV-CMOS and BCD processes. For
instance, the single and parallel activation of substrate parasitic bipolar transistors
in a 0:35 �m High voltage (HV) technology is verified with SPICE simulations,
predicting the activation of a latch-up in specific situations. To address the general
problem of reliability in IC design, a fast method to monitor parasitic substrate
currents is also presented. The substrate analysis and identification of critical
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viii Preface

substrate current path can be done during the preliminary design phase, allowing
the placement of protections in an optimal layout floor plan.

This book can be used as reference for engineers and students designing HV ICs
with high immunity to parasitic substrate current caused by the injection of minority
and majority carriers. It is divided into seven chapters dealing with a specific aspect
of the model or its applications.

Chapter 1 provides an overview of substrate coupling issues. The state of the art
of modeling strategies, including minority and majority carrier propagation into the
substrate, is presented, together with an overview of IC design flow showing the
main open issues in parasitic coupling.

Chapter 2 focuses on the architecture of standard HV technologies, highlighting
major causes and effects of parasitic substrate currents.

Chapter 3 details the mathematical derivation of the EPFL substrate model where
equations are translated into equivalent enhanced devices in order to be solved by
circuit simulators.

Chapter 4 analyzes the EPFL substrate model with respect to numerical device
simulators, including DC, AC, transient, and temperature simulations. Finally,
breakdown simulations of basic ESD devices are discussed and demonstrate the
ability of the model to simulate snapback behaviors.

Chapter 5 describes the procedure developed to implement the substrate extrac-
tion tool still preserving back annotation with the circuit. A specific meshing
and technology reduction methodology is also developed to simplify the extracted
network.

Chapter 6 is the ultimate assessment of the model with respect to experimental
data and discusses the performance in terms of simulation speed and memory
storage.

Finally, in Chap. 7, a novel procedure is presented to simulate and control
substrate currents aiming layout optimization. A survey of the most recent advances
in designing passive and active isolation structures is also presented and analyzed in
details with the model.

Lausanne, Switzerland Pietro Buccella
Camillo Stefanucci

Maher Kayal
Jean-Michel Sallese
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Chapter 1
Overview of Parasitic Substrate Coupling

1.1 Substrate Parasitic Current

In an IC, electrical couplings between analog and digital circuits take place
through minimal impedance paths between the metal interconnections layers and
the substrate. Concerning metals, the parasitic contributions generated by resis-
tances and capacitances can be directly obtained from the layout. Concerning the
semiconductor substrate, the situation is much more complex since both majority
and minority carriers currents come into play and the minimum impedance paths
are not easily identified.

Electrical parasitic coupling between analog and digital circuits in mixed-signal
designs is commonly referred as substrate noise. In industrial and automotive appli-
cations, additional parasitic currents are generated by the switching of inductive
loads or by stringent ESD and Electromagnetic compatibility (EMC) tests. For
instance, a significant injection of minority carriers (electrons in a p-type substrate)
in substrates occurs when power MOSFETs driving an inductive load are switched
off. In this situation, the drain voltage of the power transistor is suddenly biased
below the substrate potential, and the parasitic substrate Bipolar junction transistor
(BJT) is activated.

The injected minority carriers generate a reverse substrate current that can be
collected by n-type wells of digital and analog circuits nearby. Moreover the reverse
current flow can be of hundreds of milliamperes and can generate a latch-up, which
is the most disruptive effect that can be triggered by an injection of minority carriers.

In general, three kinds of substrate current can be identified, each of them having
different characteristics and mitigation strategies [1, 2]. Here, a p-type substrate is
considered.

• Majority carriers current: when a parasitic PNP transistor is activated, it injects
majority carriers into the substrate, thus generating a substrate potential shift
(de-biasing). The substrate acts as a distributed collector for the parasitic BJT,
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2 1 Overview of Parasitic Substrate Coupling

and the de-biasing becomes dependent on the equivalent bulk resistivity. Proper
P+ grounding schemes are required to reduce these potential shifts;

• Minority carriers current: when the parasitic device is a NPN transistor,
minority carriers are injected into the substrate and generate currents that interact
with surrounding n-wells. Now, the substrate holds for the distributed base of a
parasitic multi-collector BJT. The presence of additional n-wells and the layout
floor planning have a huge impact in the resulting coupling currents;

• Switching noise current: AC currents from fast switching transistors can
also couple through junction capacitances, generating high-frequency noise and
substrate potential spikes. In this case the substrate acts as a distributed RC
network, and the contact placements, as well as decoupling capacitors, are needed
to mitigate the induced noise.

The first two types of substrate current are those generated in power stages of
HV ICs when PN junctions of HV MOSFETs are forward biased and start injecting
electrons (minority carriers) or holes (majority carriers) into the substrate. These
charges can disturb nearby circuits and, in the worst case, can destroy the chip if a
latch-up is triggered. Then, it is essential to adopt effective strategies at the circuit
level (e.g., proper timing of transistor control signals) and during the layout stage
(e.g., using appropriate guard rings and proper floor planning). However, no model
is available to predict these parasitic signals during the design of the circuit.

Moreover, these kinds of couplings depend on the substrate doping as well.
HV technologies require low doping in order to increase breakdown voltages. At
the same time, low-doped substrates mean long minority and majority carrier’s
lifetimes and diffusion lengths. In this case, parasitic currents can generate coupling
mechanisms far in the IC. To fix this issue and force recombination, a P++ highly
doped substrate can be used together with a p-epi layer.

Concerning the switching noise generated during AC operation, it is attributed
to capacitive coupling phenomena driven by the junction capacitances, in contrast
to substrate current from bipolar transistors that are DC contributions. Switching
noise is generated by high-frequency operation of digital and mixed-signal circuits,
but still it is a source of noise for sensitive analog or RF cells [3]. This kind of
substrate coupling can be easily modeled with a distribute RC network [4] as shown
in Fig. 1.1 where a power stage, a logic block, and a sensitive bandgap circuit are
placed nearby. Here the aggressor is the fast switching logic, and the noise detected
depends on the equivalent impedance of the substrate [5]. But when the power stage
is activated, meaning that a DC current sinks in a parasitic multi-collector structure,
the RC modeling approach is unable to predict the induced shift in the bias voltage
of the bandgap circuit (the selected victim) [6, 7]. In any case, during the switching
of the power MOSFETs, AC and DC contributions coexist and must be taken into
account.

In order to suppress substrate switching noise, the RC time constant must be
increased by introducing grounding schemes and decoupling capacitances. Also in
this case, the doping of the substrate has an influence since it fixes the resistance
of the bulk [8]. For low-doped substrates, the resistivity is high, and the noise is
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Fig. 1.1 Cross section showing impedance paths of substrate couplings: (top) switching noise
from an inverter and (bottom) belowground condition of a H-Bridge injecting current into the
substrate. In the first case, the n-well acts as a decoupling capacitor, while in the second case, it
behaves as an additional collector for the parasitic NPN BJT device

decreased by increasing the distance between the noisy elements and the sensitive
circuits. For high-doped substrates, the P++ bulk propagates the noise “uniformly”
across the chip, and the distance has a negligible impact. However, in this case the
resistivity is lower and also the overall RC noise.

1.2 Electrical Modeling of the Substrate: State of the Art

The coupling related to a parasitic NPN BJT is very dependent on the distance
between emitting and collecting wells in the layout. There is no reliable compact
model to simulate parasitic currents generated by these parasitic BJTs since the
current gain ˇ of a lateral NPN BJTs depends on the 3D layout configuration.
Foundries may provide additional layout guidelines to avoid or reduce substrate
coupling currents. Additionally, measurements of BJTs are done to estimate the
sensitivity of parasitic signals to the layout [9, 10]. This is done by injecting a current
IE into the substrate and measuring the collected current IC from different collector
nodes. It results in some empirical fitting curves for the parameter ˛ D IC=IE that is
used to quantify the substrate couplings. Still, such results cannot be generalized for
multi-collector or multi-emitter configurations due to the nonlinearity of minority
carrier’s current propagation. Finally, depending on the layout, additional coupling
mechanisms are competing, and these are almost impossible to predict with a
predefined BJT model.
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Fig. 1.2 Comparison of different substrate modeling methodologies

Different substrate modeling methodologies are compared in Fig. 1.2. The accu-
racy refers to the predictability of the model with respect to different layouts and
electrical configurations. As expected, Technology computer-aided design (TCAD)
software is the most accurate to simulate the substrate current since transport
equations are solved numerically. However, this requires lots of computer resources
and long simulation time and cannot be extended to a full IC. In this context, TCAD
has been used to analyze substrate couplings in HV circuits like a H-Bridge [11]
once the technology parameters are properly calibrated [12]. Then, co-simulation
of mixed-signal design flow and TCAD as proposed by Gnani et al. [13] happens
to be the most accurate solution to analyze substrate current coupling. Still, one
drawback is the lack of back-annotation between the “selected” piece of substrate
in TCAD and the original circuit schematic. A solution was proposed by Kollmitzer
et al. [14] where TCAD is used to characterize minority carriers couplings and to
create a model that can be included into the original circuit by the means of Look-
up tables (LuTs). However, to ensure accuracy, a new TCAD simulation is required
each time a different layout is analyzed.

Other numerical techniques have been exploited to reduce the simulation time
down to seconds. One is to use Green’s function to solve the diffusion equation
of minority carriers [15]. This option requires a complex mathematical formulation
that can hardly include drift currents, a serious limitation under high electric fields.
Moreover, it cannot be integrated directly in circuit simulators.

This is the strategy adopted by Oehmen et al. [16]. In their approach the
substrate is divided into spheres, and the diffusion equation is solved in polar
coordinate satisfying Kirchhoff’s laws. The equation is solved in each single sphere
to calculate the injected electrons concentration, while the coupling currents are
computed as linear combinations of all minority carriers’ densities. Nevertheless,
this methodology still focuses on the diffusion of minority carriers, neglecting drift
current components and majority carriers (e.g., the vertical PNP BJT cannot be
simulated with this approach).


