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Preface

The finite element method (FEM) is so powerful that many very complicated engineer-
ing problems can be solved by it. This book is primarily written for engineers. It intro-
duces the basic principles and applications of FEM. It may also be used as textbook in
universities and colleges.

The first purpose of this book is to make an easy read for engineers, so the physical
ideas are enhanced and the basic principles and computing methods are introduced in
an easy but accurate way.

The second purpose of this book is to be of practical value to engineers, so the formulas
that can be used to analyze problems in practical engineering are given in detail.

Thus, there are three distinguishing characteristics of this book: (1) it is easy to read;
(2) the theory and computing formulas of finite element method are complete; (3) it is of
practical use to readers, especially to engineers and professors and engineering students.

Before the publication of the first edition of this book in Chinese in 1979, the predicted
readers were engineers, but after publication it was noticed that it was well received not
only by engineers but also by professors and students in universities and colleges. It is
now not only a widely accepted reference book for engineers but also widely used as
textbook for professors and students in universities and colleges in China.

According to the Information Center of Chinese Academy of Science The Finite Ele-
ment Method, Theory, and Applications (in Chinese) is one of the most well-received 10
books in China in water resources and hydropower domain.

Now the new book in English will be published, I hope it will be well received not
only by engineers working in practical engineering project but also by professors and
students.
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Introduction to Finite Element Method and Matrix
Analysis of Truss

This chapter first introduces the basic conception of finite element method. The basic
principles of truss analysis are similar to finite element method but easier to be under-
stood, so the matrix analysis of truss is introduced later as an introduction to the finite
element method.

1.1 Introduction to Finite Element Method

A truss is shown in Figure 1.1(a) with all nodes pin jointed and each element is a member
only bearing axial force. A frame is shown in Figure 1.1(b) with all nodes rigid jointed
and each element is a member bearing bending moment, shearing force, and axial force.

A beam is shown in Figure 1.1(c). All of the above three types of structures may be
analyzed by structural mechanics and the theory of strength of materials. The basic
assumption of them is the plane section assumption; in other words, the plane per-
pendicular to the central axis of the member before deformation remains to be a plane
after deformation. For a rectangular high beam with relatively high ratio of the height
H to length L (H/L), as shown in Figure 1.1(d), the plane section assumption cannot
be applied. The calculation must be made according to the theory of elasticity that is
actually a complicated problem even though the shape is simple.

Figure 1.2 shows some engineering structures. Figure 1.2(a) shows a gravity dam on
the rock foundation. The dam body is nearly a triangle. However, there are slopes on both
upstream and downstream boundaries. The mechanical and thermal properties of the
dam body and the base rock are different. Figure 1.2(b) shows a double-curvature arch
dam, which is a parabolic shell with varied curvature and thickness, supported on the
base rock. Figure 1.2(c) shows an underground cavern in rock foundation. Figure 1.2(d)
shows a massive concrete block in the construction of the concrete dam. The block is
great in volume with concrete placed layer by layer. Generally, a layer of concrete with
thickness of 1.5–3.0 m is placed every 6–10 days. Due to different ages, the modulus of
elasticity, creep, and heat of hydration are all different in each layer.

For the various types of actual engineering structures shown in Figure 1.2, it is obvi-
ously impossible to work out the theoretical solutions by means of theory of elasticity.
Numerical method is probably the only solution for stress calculation. Previously,
attempts have been made to analyze such complicated structures by finite difference
method. For example, for plane problems, the structural sections are divided into
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2 The Finite Element Method
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Figure 1.1 Truss, frame, beam, and high beam.
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Figure 1.2 Practical engineering structures.

rectangular meshes, and the differential equations of equilibrium are transformed into
finite difference equations. But the rectangular computing mesh is difficult to adapt
to the boundary of the true structure, so it is rarely applied in the analysis of practical
complicated structures.

The finite element method divides the original structure into finite elements, as shown
in Figure 1.3.

The elements are a series of triangles of different size and shape; thus the computing
mesh can adapt to the boundary of the true structure. Furthermore, different elements

Figure 1.3 Cross section of gravity dam discreted into triangular elements.


