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Chapter 1

Adsorptive Heat Transformation
and Storage: Thermodynamic
and Kinetic Aspects

Nomenclature

A Adsorber

Ad-HEx Adsorbent-heat exchanger

AHP Adsorption heat pump

AHT Adsorptive heat transformer

C Condenser, thermal capacity J K™'

60) Coefficient of performance

d Thickness, m

AF Adsorption potential, J mol ™

E Evaporator

LTI Large Temperature Jump method

LPJ Large Pressure Jump method

h Convective heat transfer coefficient, W m 2 K
HEx Heat exchanger

HMT Heat and mass transfer

m Dry adsorbent mass, kg

P Pressure, Pa

PD Pressure driven

Q Thermal energy, J

R Universal gas constant, J mol ' K

S Solid, entropy J kg_l, heat transfer surface area, m>
SP Specific power, W kg~ !

T Temperature, K

TD Temperature driven

U Overall heat transfer coefficient, W m 2 K !
A\ Vapour

w Water uptake, g g-1

\\% Work, J
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2 1 Adsorptive Heat Transformation and Storage ...

Greek Symbols

A Differential operator
A Thermal conductivity, W m ! K

Subscripts

0 Initial stage, saturation vapour
ads Adsorbent/adsorption

c Cooling

con Condensation
des Desorption
ef  Effective

ev  Evaporation
f Fluid

h Heating

H High

L Low

M Medium
met Metal

us  Useful

w  Wall/solid side

At present, the majority of thermodynamic cycles of heat engines are
high-temperature cycles that are realized by internal combustion engines, steam and
gas turbines, etc. [1]. Traditional heat engine cycles are mainly based on burning of
organic fuel that may result in dramatic increase of CO, emissions and global
warming. The world community has realized the gravity of these problems and
taken initiatives to alleviate or reverse this situation. Fulfilment of these initiatives
requires, first of all, the replacement of fossil fuels with renewable energy sources
(e.g. the sun, wind, ambient heat, natural water basins, soil, air). These new heat
sources have significantly lower temperature potential than that achieved by
burning of fossil fuels which opens a niche for applying adsorption technologies for
heat transformation and storage [2].

A classical heat engine consumes heat Q; from a heat source with high tem-
perature Ty, discharges heat O, to a heat sink with lower temperature 77 and
produces the maximal work W= Q; — O, = Q; (1 — T1/Ty) [3] (the left part of
Fig. 1.1). The produced work can be used to drive a heat pumping cycle (the right
part of Fig. 1.1). An adsorptive heat transformer (AHT) operates between three
thermostats (Ty, T, Ty) (Fig. 1.2) and consumes/produces only thermal energy. In
this chapter, we shortly survey the fundamentals of the heat transformation via
adsorption processes:



