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Preface

Hydroinformatics, defined as management of information related to the water sector
using ICT tools, is a large domain of engineering technology and sciences.
Modelling and simulation are historically the points of departure for hydroinfor-
matics and are one of the most important parts of it. Neither the SimHydro cycle of
international conferences nor the present book has the purpose or ambition to cover
thematically the whole extent of the subjects. The purpose is to concentrate on a
limited number of specific areas and subjects that are not usually considered as such
during most global international conferences.

Modelling in fluid mechanics, hydraulics and hydrology, whether using digital
tools or scale models, has reached sufficient maturity to be in daily use by engineers
for analysis, design and communication. Increasingly complex cases can be han-
dled, thanks to ever-more sophisticated tools and increasingly abundant computing
power. The emerging environment populated with new generation of sensors, using
cloud-computing resources, producing big data, is challenging the current practices
of modelling and requests innovation in methodology and concepts for a real
integration into the decision-making processes. At the same time, the request to
integrate vulnerability and resilience dimensions in the various engineering
approaches is becoming more and more frequent.

With respect to these issues, however, a number of questions still remain open:
coupling of models, data acquisition and management, uncertainties (both epistemic
and random) of results supplied by models, use of 3D CFD models for complex
phenomena and large-scale problems, etc. All these points are continuously
explored and investigated by researchers, scientists and engineers. Like in all sci-
entific domains, most recent and advanced developments have to be discussed and
shared regularly in a growing community. The SimHydro 2017 conference,
following the three previous editions, has contributed to this objective by providing
a platform for exchanges and discussion for the different actors in the water domain.

SimHydro is a permanent cycle of conferences held every 2 years, hosted by
Polytech Nice Sophia and organised by the Société Hydrotechnique de France and
its partners. It aims, as the subject, at recent advances in modelling and hydroin-
formatics and at the participation and exchanges at European scale (it is open to all
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other researchers and participants but the purpose is to maintain a specific platform
for the region that was a birthplace of both domains).

The latest SimHydro conference was held in Sophia Antipolis, France, from 14
to 16 June 2017. The conference was jointly organised by the Société
Hydrotechnique de France (SHF), the Association Française de Mécanique (AFM),
the University of Nice Sophia Antipolis/Polytech Nice Sophia and with the support
of the International Association for Hydro-Environment Engineering and Research
(IAHR), the Environmental and Water Resources Institute (EWRI) of the American
Society of Civil Engineers (ASCE) and the Canadian Society for Civil Engineering
(CSCE). Several sponsors also supported the conference: EDF, CNR, ARTELIA,
SETEC-HYDRATEC, DHI, TENEVIA and GEOMOD. The conference attracted
152 delegates from 42 countries who participated in 20 sessions where 117 papers
were presented. The programme was organised around nine main themes:

1. Hydro-environmental issues. Modelling in eco-hydraulics
2. Uncertainties and data assimilation
3. Scale models in hydraulics and their place and complementarities in simulation

concepts
4. Flow instabilities in hydraulics: how to deal with?
5. Real-time modelling of Hydraulic structures and networks and events
6. Lessons learned from 2015 flash floods in the French Riviera (Côte d’Azur) area

and other similar areas
7. Modelling tools for urban floods (pluvial, fluvial and marine submersions)
8. 3D two-phase flows (experiments and modelling)
9. Hydraulic machineries

Within these general themes, topics like coupling of models, data assimilation
and uncertainties, urban flooding, data and uncertainties in hydraulic modelling,
model efficiency and real situations, new methods for numerical models, hydraulic
machinery, 3D flows in the near field of structure, models for complex phenomena
have been covered. The conference, by attracting researchers, engineers and
decision-makers, has promoted and facilitated the dialogue between communities
with two symposia (Symposium 1: Uncertainty: a real test case on the Garonne
river & Symposium 2: Physical models, their place and their complementarities
with mathematical models in order to optimise hydraulic structure modelling) and
one special session dedicated to the return of experience on the 2015 French Riviera
floods where needs and expectations were widely discussed. Exchanges have been
very fruitful on crucial questions related to sources of uncertainty in modelling, the
crisis management during extreme flood events, the needs for operational fore-
casting systems, the state of the art in research and development in the domain of
numerical fluid mechanics, the stakeholder’s capacity to understand results, the
means for dialogue directly or indirectly between the stakeholders and the model
developers, and the information’s exchange between stakeholders and developers.

In order to contribute to this dialogue and to provide useful references, following
the successful experiences of 2012 and 2014, the organisers of SimHydro 2017
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have decided to elaborate this book. This volume gathers a selection of the most
significant contributions received and presented during the conference. The
objective is to provide the reader with an overview of the ongoing developments
and the state of the art taking place in four major themes that are as follows:

• Methods for modelling and uncertainty;
• Hydroinformatics systems and applications;
• Flood simulation and forecasting; and
• Advanced approaches to special and complex hydraulics applications.

Obviously, all dimensions of these themes cannot be covered in a single book.
However, the editors are convinced that the contents may contribute to provide to
the reader essential references for understanding the actual challenges and devel-
opments in these areas of the hydroinformatics field.

This volume represents the sum of the efforts invested by authors, members
of the scientific committee and members of the organising committee. The editors
are also grateful for the dedicated assistance of the reviewers who worked tirelessly
behind the scene to ensure the quality of the papers. We hope this book will serve as
a reference source on hydroinformatics for researchers, scientists, engineers and
managers alike.

Sophia Antipolis Philippe Gourbesville
August 2017 Jean Cunge

Guy Caignaert
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Part I
Methods for Modeling & Uncertainty

This part of the book contains a selection of papers presented at SimHydro 2017
and belonging to two areas:

• Methods for modelling and uncertainty problems in modelling and
• Use of models.
In time, these two subjects were considered as one area. The question was how

good were models, i.e. how certain was the quality of solution of the original
equations given the algorithm and software applied. The situation changed and now
the uncertainty concerns the much wider field of questions. Problems of methods
for a number of years have been rather occulted by engineering community because
of the everyday use of commercial software and an unfortunate idea that entered the
minds of many, namely, that now everything can be modelled and that modelling
solves all problems. New methods and algorithms were developed and known
mainly by research community and were not massively employed because of
commercial software easy to obtain and offer user-friendly interfaces. The situation
seems to evolve and, precisely, SimHydro conferences allow each time the pro-
jection of new methods towards engineering community through a number of
specific papers like those found in this part of the book.

Coming back to the uncertainty problems, some papers presented here enter
conceptual levels that change the category of traditional approach. In engineering
project and practice, when modelling is concerned, next to everything is uncertain:

• First: do you need a model? A model of what? Do you know the phenomena
you wish to model? Hopefully, you do not expect that you will discover
physical phenomena using models that are solutions of equations that describe
these phenomena, what means that the latter are already known!

• Then: since known equations describe the physical laws that govern problems
of your interest, what is the certainty of their numerical solutions provided by
given algorithm?



• Then: are the data such as topography and similar sufficiently well known and
introduced in the model to be at the level of required certainty of the results of
the latter?

• Then: suppose you are interested in flooding problem and you use some
industrial simulation software, are you sure that if through some tuning of
resistance coefficients you could reproduce past observed flood, then the
results for exceptional catastrophic ungauged flood will be as good? And if
not, how good?

• Other level of uncertainty: how certain are information concerning the possi-
bility of catastrophic dyke breaking along the river as compared to the
uncertainty of results obtained from possibly best modelling of open channel
flow system? What is the uncertainty of the conclusion of studies face to the
question of a decision-making manager: ‘when, at which discharge observed
upstream, should I evacuate cities and industries situated in lateral valley
protected by dykes that can break?’. Here, we are not any longer at the level of
uncertainty of the results of modelling but at the level of uncertainty of con-
sequences of decisions that, nevertheless, are based or conditioned by the
results of the models. In other terms, the uncertainty in water resources
management and engineering becomes the subject of overall approach, and
traditional sensitivity studies (Monte Carlo and similar) of the given model
results are standard peripheral activity. Not surprisingly, this general approach
appearing in some papers of this part of SimHydro 2017 comes from nuclear
safety domain, and they no doubt promise future developments and
applications.

Philippe Gourbesville
Jean Cunge

Guy Caignaert
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Large Markov Decision Processes Based
Management Strategy of Inland
Waterways in Uncertain Context

Guillaume Desquesnes, Guillaume Lozenguez, Arnaud Doniec
and Éric Duviella

1 Introduction

It is now well recognized that human activities have a big impact on climate
change. It is mainly due to the emission of greenhouse gas (GHG). The last report
of IPCC [1] indicate that anthropogenic GHG emissions “came by 11% from
transport” from 2000 to 2010. They recommend technical and behavioral mitigation
measures in the transport sector. One solution should be a shift of the truck traffic to
the inland waterway network that would provide both economic and environment
benefits [2, 3]. These mitigation measures are also advocated by the last historical
agreement of the COP21 in Paris. This one aims at limiting the temperature increase
to 1.5 °C from 2100. By focalizing on inland navigation, it is thus expected an
increase of traffic [4], with an estimated growth of 35% [5], and an increase of the
frequency and intensity of flood and drought periods in close future. Management
of inland waterways must deal with this new challenge.

An inland waterway network (IWN) is a large scale system build by humans, to
responds to their needs, which can be divided in reaches connected by locks. To
allow navigation, the level of a reach has to be in a certain range called the
navigation rectangle. The role of IWN managers consists in minimizing the time
where reaches are outside of their navigation rectangle, by optimizing the water
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resource allocation amongst reaches using locks, gates or pumps. It allows to avoid
important economic and ecological costs.

To overcome this issue, efficient adaptive water resource management strategies
have been designed in [6] dealing with the expected constraints. These management
strategies allow determining the resilience of IWN and optimizing water resource
allocation. However, the used approaches are based on deterministic model of IWN
and are limited when uncertainties have to be considered. For instance, the exact
number of boats crossing the locks every day is not always known, uncontrolled
withdrawals and water intakes are located along the reaches, exchanges with
groundwater can occur and obviously weather phenomena will influence the water
levels. Hence, it is necessary to introduce a stochastic modeling of the inland water
networks. The IWN are modeled as large Markov Decision Processes (MDP), as
introduced in [7], taking into account uncertainties to obtain a resilient planning for
the network. This model is tested with real data from the IWN of the north of
France.

This article is organized as follows: first we introduce more formally the inland
waterway networks and its operation. Then in a second part, we will quickly
introduce Markov Decision Processes and the modeling of IWN using such for-
malism. Finally, the results and resilience from the modeling of real data will be
presented.

2 Inland Waterway Network Management

An inland waterway network (see Fig. 1) is a large scale system, mostly used for
navigation. It can provide safe and efficient transports of goods [8]. It is mostly
composed of interconnected canalized rivers and artificial channels that are divided
by locks. Any part of a river or channel separated by at least two locks is a
navigational reach. For simplicity sake, navigational reach will be called reach for
the rest of this article.

The goal of an inland waterway manager is to maintain a correct level of water in
all reaches to make navigation possible. This level has to respect conditions defined
by the navigation rectangle of the reach (see Fig. 2) and be as close as possible from
the Normal Navigation Level (NNL). The lower and upper boundaries of the
navigation rectangle are respectively the Lowest Navigation Level (LNL) and the
Highest Navigation Level (HNL). The non-respect of the navigation rectangle could
results in damage of both the network and the boat and so forbid navigation.

For normal situations, boats crossing locks is the main perturbation of the water
level, since using a lock drains water from a reach towards another reach. Multiple
other factors affect the water level, such as ground exchanges, natural rivers joining
in a reach, the weather and other unknown exchanges, like illegal discharges. Locks
are not dedicated to control water level as they are only tools to help compensate the
difference of elevations in the network. However, specialized structures are presents
all over the network to control the level of water. Structures, such as gates or dams
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are used to send water downstream and when available, pumps can be used to send
some upstream. Those are the mains structures used to displace the water resource
between the reaches of the network.

At the moment, navigation is only allowed during daytime periods, with few
exceptions, notably on Sunday. Reaches management is based on human expertise
gathered over time. However, new policies leading to traffic increase and climate
change will impose new constraints that will heavily impact the current manage-
ment strategies. An adaptive and resilient approach based on Markov Decision

Fig. 1 Small part of the north of France IWN

Fig. 2 NNL and navigation rectangle
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Processes has been proposed to anticipate the impact of those constraints and ensure
the navigation requirements at each point of the network. It determines a global
planning for the water distribution on the whole network by taking into account the
uncertainties of climate events and of the navigation demand. The allocation of
water is planned over a certain horizon to allow better anticipation of possible future
events. Information on the current state of the inland waterway network is col-
lectable in real time through a network of level sensors equipping the reaches.

3 Markov Decision Process

3.1 Definition

Markov Decision Process (MDP) is a generic framework modeling control possi-
bility of stochastic of stochastic dynamic system as a probabilistic automaton. The
framework is well adapted to the inland waterway network supervision since the
state of the network is fully observable (in state of water volumes) and the control is
uncertain due to uncontrolled water transit.

A MDP is defined as a tuple 〈S, A, T, R〉 with S and A respectively the finite state
and action sets that define the system and its control possibilities. T is the transition
function defined as T: S � A � S ! [0, 1]. T(s, a, s′) is the probability to reach the
state s’ after doing the action a in state s. The reward function R is defined as R:
S � A � S ! ℝ, R(s, a, s′) gives the reward obtained by attaining state s′ after
executing a from s.

A policy function p: S ! A is an assignation of action to each system state.
Optimally solving a MDP consists in finding an optimal policy p* that maximizes
the expected reward. p* maximizes the value function of Bellman equation [9]:

VpðsÞ ¼
X
s02S

Tðs; pðsÞ; s0Þ � ðRðs; pðsÞ; s0Þ þVpðs0ÞÞ ð1Þ

Multiple algorithms exists to solve optimally a MDP, a notable version is Value
Iteration [10].

3.2 Application to the Inland Waterway Management

A quick simplified reminder of the modeling of IWN using Markov Decision
Process, introduced in [7] is proposed here. The aim is to plan the best course of
actions for the entire network over s time steps, under possibly evolving conditions.
For example, the fluvial traffic could have an unexpected increase on some reaches,
leading to an increased locks usage; a sudden downpour would increase the vol-
umes of affected reaches.

6 G. Desquesnes et al.



A time step represents a period of twelve hours in the network. At the moment,
they model the active navigation periods during daytime and the inactive periods
during the night. Large time steps are used to smooth the uncertainties on the traffic
and other temporal variations, as well as considering the water level to be uniform
on each reach.

3.2.1 Definition of States and Actions

A state of the system, will represent the complete value of the network at a given
time, and thus be an assignation of volumes for each reach of the network at a given
time step. Similarly, an action will represent the amount of water moved by each
transfer point (lock, pump, gate or dam) corresponding to the decision of a
manager.

However, the MDP formalism requires discrete states and actions set. Since the
volumes observed (obtained from level measures) and transferred between each
reach are continuous, they had to be discretized in intervals. All possible volumes of
the reach are divided in regulars intervals (see Fig. 3), with the exception of the first
and last intervals. They represent values outside of the navigation rectangle, so
respectively all values under the LNL and over the HNL. To simplify the model,
they are considered to be of infinite size. Transfer points follow a similar dis-
cretization, however as they are considered fully controllable they do not have
intervals of infinite size.

Formally, the set of states S is defined as the combination of all possible intervals
of each reach at all time steps. In a network of N reaches the set can be written as:

Fig. 3 Discretization of a reach water volume in intervals
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S ¼ 0; . . .; sf g �
YN
i¼1

0; riout½ � ð2Þ

Having the time step modeled in the state add the possibility to express temporal
probabilities on uncontrolled or unknown inputs and outputs of the network.

Similarly the set of actions A is defined as the combination of the intervals of
volumes transferred by each transfer point. Unlike the states, actions are time
independent as, the assumption is made that the control capacities don’t change
over time. A is defined as:

A ¼
Y

i; j2 0;N½ �2
Ai; j ð3Þ

where Ai; j is the set of possible volumes intervals for points of transfer linking reach
i to reach j. The reach with identifier 0 represents external elements, such as external
rivers, that connects and is able to bring or take from any managed reach. The status
of those external elements is not modeled in the state, they might correspond to
reaches of a foreign country managed by another organism. It is important to note
that the number of transfer points is limited as the inland waterway network is
sparsely connected. In all transfer points Ai; j, between two unconnected reaches
i and j, no transfer is possible ðAi; j ¼ f0gÞ.

Details on the transition function constructionwill not be presented in this article. It
simply corresponds to the probability of uncertain water displacement that take into
account the discretization. More information and details are available in [7].

3.2.2 Reward Function

The objective of the planning is to maintain all reaches within their navigation
rectangle and to try to minimize their distance to their NNL. This corresponds to the
following function, to maximize, defined in cooperation with expert of the man-
agement of inland waterways.

Rðs; a; s0Þ ¼ f ðaÞ �
XN
i¼1

ðNNLi � ri
0
sÞ2 if ri

0
s 2 Reci

g2 if ri
0
s \Reci ¼ ;

ð0:5� gÞ2 if ri
0
s \Reci 6¼ ; and ri

0
s 62 Reci

8<
: ð4Þ

where the function f(a) represent costs relative to the usage of the different transfer
points. For example, using an electric pump costs more than opening a gate. This
function will be highly specific to each reach and network. NNLi is the volume
corresponding to the NNL of reach i. ri

0
s is the volumes of reach i in state s′. g is a

penalty cost for halting the navigation when the water level is fully outside of the
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navigation rectangle. Half the cost is applied when the interval is only partially
outside the rectangle of navigation.

This reward function penalized drastically the distance to the NNL, with a
prohibitive cost when outside of the navigation rectangle. A smaller cost is used
optimize the choice of transfer points used.

4 Application on Real Data

The Douai-Fontinettes-Grand Carré subnetwork in the north of France inland
waterway network has been modeled using the proposed modeling and plan over.
This network is composed of three reaches with different navigations conditions
(see Table 1). The three reaches, represented by circles, are connected by gates and
locks, as arrows (see Fig. 4). Those reaches are connected to unmodeled part of the
network by transfer points (arrows: 0, 1, 2, 7, 8, 9, 10, 11) that consists in locks,
gates and external rivers. Their water levels are divided in 12 intervals, 10 of them
with a fixed size, the first and last are considered of infinite size. In this scenario,
only three transfer points are controllable by the manager of the subnetwork
(arrows: 4, 6, 11), with respectively 124, 375 and 352 actions each.

Multiple operating scenarios corresponding to real case applications have been
proposed to test the proposed planning approach. All those scenarios are over eight
12 h time steps corresponding to 4 days. The traffic values for each lock correspond
to the average traffic of the subnetwork for a single period (see Table 2). The
minimum and maximum transfer capacity of controllable transfer points are fixed
and supposed to be the same for each scenario (see Table 3). The values transferred
by each other transfer points will be dependent of the scenarios and so will be
introduced during their presentation. The planning of all scenarios has not been
subject to variations, however those will be present during the simulations to test
the resilience. Due to the size of the model, a distributed version of the algorithm
had to be used for the resolution. This lead to solutions that are local optimum. The
decomposition of the subnetwork for the distribution is shown by the different
colors of transfer points (see Fig. 4).

As actions of the modeled network corresponds to intervals of volumes by each
controllable transfer point, the simulations use random values drawn from each
interval of the chosen action instead of choosing the best or average values.

Table 1 Network properties

Reach Name LNL (m3) NNL
(m3)

HNL
(m3)

Interval size
(m3)

0 Douai-Don-Cuinchy 8,660,177 8,778,810 9,016,076 26,363

1 Cuinchy-Fontinettes 9,348,300 9,458,280 9,568,260 24,440

2 Don-Grand-Carré 3,766,098 3,824,038 3,881,978 12,876

Large Markov Decision Processes Based Management … 9



The goal is to have a better perception of quality of the interval selected by the
policy. Because the volumes transferred are chosen randomly, fives simulations
were made for each scenario. This help visualizing the consequences of the random
selection of transferred volumes of the used policy. A single policy is produced for
each scenario but is simulated on different conditions, both expected and unex-
pected. Five different conditions are tested per scenario. The first three tests cor-
respond to expected conditions of traffic and water availability. In the first test, all
reaches start at their NNL, in the second they start close to their HNL and in the
third one they begin close to their LNL. In the last two tests, the traffic is respec-
tively 10% higher and lower than the expected at all time.

Fig. 4 Decomposition of the subnetwork

Table 2 Average traffic and volumes transferred per lock per 12 h

Lock 0 3 5 7 9

Traffic (boat) 21 13 14 10 16

Volumes (m3) 140,889 45,838 82,656 230,000 117,424

Table 3 Controllable transfer points capacities per 12 h

Transfer points 4 6 11

Volumes (m3) 0–432,000 0–1,296,000 0–2,592,000
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4.1 Normal Conditions

The first scenario corresponds to the normal conditions of navigation, with navi-
gation allowed only during daytime periods. No perturbation are anticipated on the
network and the expected traffic corresponds to the average value. The volumes
transferred by the uncontrollable transfer points in this scenario are defined in
Table 4.

On Fig. 5, it is possible to see the evolution of the relative distance of the three
reaches to their NNL over time under normal condition and expected traffic, with a
value of 100 corresponding to a volume at the HNL and a value at −100 to the
LNL. One can see the volumes of the three reaches oscillating around their
respective NNL. The oscillations are due to the discretization of both the state and
action in interval. An interval of volume corresponds to a single state, which means
a single action from the policy, however the optimal actions for two opposite points
in the interval might be different. For example, if an interval englobes the NNL, the
optimal choice for the upper part of the interval would be to decrease the volumes
while for the lower part it would be preferable to increase it. The impact of the
oscillation is dependent on the size of the intervals, and smaller discretization would
lead to better results but with an increased size of the model.

If the reaches start from a suboptimal position (see Figs. 6 and 7), they are able
to recover to a solution close to their NNL by following the planning produced. It is

Table 4 Uncontrollable volumes per 12 h

Transfer point 1 2 8 10

Volumes (m3) 283,392 −43,200 27,216 51,840

Fig. 5 Normal conditions, starting from the NNL
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possible to see that coming back from the LNL is easier than from the HNL. This
due to the fact that, in this network, storing water is easier than removing it.

The last two experimentations consist in having respectively an increase (see
Fig. 8) or decrease (see Fig. 9) of the traffic compared to the expected value. In
both cases the reaches manage to stay relatively close to their NNL, even if the
limits, of the plan resilience, seem to be showing in the case of a smaller traffic than
expected as, reach 0 has trouble to reduce its water level.

Fig. 6 Starting close to the HNL

Fig. 7 Starting close to the LNL
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For this scenario, the produced plan was able to maintain ideal navigation
conditions in expected cases, to recover from bad events that leaves the network at
suboptimal water levels and was able to adapt to unexpected traffic conditions.

Fig. 8 Traffic 10% greater than expected

Fig. 9 Traffic 10% lower than expected
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