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Chapter 1
An Introduction

Nearly all persons look not at theory from the standpoint
of established facts, you know, but at established facts from
the standpoint of theory; they cannot get beyond an assumed
conceptual net they have accepted, …
Einstein (letter to Schroedinger, 8 August 1935, in Albrecht
Fölsing, Albert Einstein, Eine Biographie, page 780, Suhrkamp
Verlag, 1993)

Abstract Auto-ContractiveMaps (Auto-CM) is a newer approach to artificial adap-
tive systems (AASs). In turn, AASs encompass the subject of artificial neural net-
works (ANNs). This chapter is an introduction to AASs.

1.1 Introduction

Artificial adaptive systems (AASs) are data driven systems. Thismeans that AASs try
to elicit, extract, fromdata the underlyingmodel of cause/effect. Thesemethods stand
in counter distinction to approaches that impose a model on the data as a means of
determining the relationship (cause and effect for example) among the data elements.
Informally speaking, for this monograph, we consider data as being what is known
about the system or problem, its input elements. The philosophy of AAS can be
described as and compared to natural/human language. Some parallels are striking.
The artificial sciences try to create models of reality, but how well they approximate
the “world” determines their effectiveness and usefulness. Human languages, in a
similar manner, try to approximate the reality of the subject at hand. There is another
similarity between artificial adaptive systems and human languages and that is that
both undergo dynamic changes to more closely resemble the “reality” of the entities
of interest.

Auto Contractive Maps that is the main topic of this book is an artificial adaptive
system, an artificial neural network, that adheres to the approach that Einstein men-
tions in his letter to Schroedinger. Auto-CM extracts the model from the data as will
be apparent in our subsequent presentation beginningwithChap. 3 of thismonograph.

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 An Introduction

Artificial adaptive systems include much of artificial intelligence and artificial
neural networks (ANNs). This monograph restricts itself to one particular type of
unsupervised ANN called Auto-Contractive Map (Auto-CM) and its supervised ver-
sion called K-Auto CM. The Auto-CM approach is a newer type of ANN that is pow-
erful enough as a stand-alone analytical tool. Auto-CM takes a different approach to
ANNs in that its analytical method is more akin to fixed-point algorithms where, in
our case, the values at the nodes converge to zero distributing their input dataset val-
ues to the weights. The final output of Auto-CM indicates a relationship among the
variables of the dataset and these are found in the weights. Traditional ANNs attempt
to stabilize theweights via some errorminimization techniques. Theweights ofAuto-
CM are also stabilized in the sense that the algorithm stops when all the node values
are essentially zero but this occurs because a fixed-point has been reached rather than
a minimum of an error function, for example, has been attained.

We not only present Auto-CM but show how to couple Auto-CM to two asso-
ciated graphical visualization components, the minimal spanning tree (MST) and
maximal regular graph (MRG) in order to graphically (in the graph theoretic sense)
depict the relationships in the dataset. In addition to these two visualization tools and
their interpretation of the underlying relationship in the data, we present methods to
transform the output of the neural network (our Auto-CM output) into new datasets
that allow for deeper interpretation of the data relationships akin to deep learning
methods. In particular, the original dataset may be transformed via Auto-CM into
new databases that have a richer set of relationships among variables and records; for
example, fuzzy relationships and relationships that “collapse” variables and records.
Our point of view is that the universe is not random and at the same time it loves
to make us work hard to understand her. Thus, ferreting out the “patterns” that are
in data is not easy. The ferreting out of patterns is what Auto-CM attempts to do.
Auto-CM attempts to uncover nature’s secrets.

What we present targets users, researchers and students of ANNs who wish to see
what a more ample approach to ANNs might look like. Only basic notions of mathe-
matics are assumed as well as an understanding of neural networks, though we derive
key features. Our level of presentation is at the upper level undergraduate to lower
level graduate student in computer science, mathematics, physics or engineering.

This monograph continues this section with a general discussion of where Auto-
CM fits within the field of artificial intelligence. Chapter 2 has an overview of the
standard ANNs in order to clearly contrast the features of Auto-CM. Chapter 3 con-
tains the core of our monograph, Auto-CM, an unsupervised type of ANN. Chapter 4
presents the graphical component of Auto-CM. Chapter 5 looks at how the Auto-CM
output can be further transformed into new datasets that contain a wider view of the
relationships that exist among data elements. Chapter 6 presents a supervised version
of Auto-CM called K-Contractive Map. Chapter 7 compares Auto-CM with various
ANNs. We end this monograph with Chap. 8 which has more advanced notions of
how to add dynamic changes in time and spaces, to Auto-CM and hence ANNs.

https://doi.org/10.1007/978-3-319-75049-1_2
https://doi.org/10.1007/978-3-319-75049-1_3
https://doi.org/10.1007/978-3-319-75049-1_4
https://doi.org/10.1007/978-3-319-75049-1_5
https://doi.org/10.1007/978-3-319-75049-1_6
https://doi.org/10.1007/978-3-319-75049-1_7
https://doi.org/10.1007/978-3-319-75049-1_8


1.2 What Are Artificial Adaptive Systems 3

1.2 What Are Artificial Adaptive Systems

Our introduction begins with the differences between deterministic/stochastic and
adaptive approaches. Deterministic/stochastic systems are often called complicated
systems whereas adaptive systems are often called complex systems.

A system is a connected region of space-time, divided into components, whose
local and parallel interactions determine the functioning of the system itself. A sys-
tem, whose operation (interactions between its components) dynamically changes
the structure and/or the status of its members, while maintaining its space-time cohe-
sion, is what we call a complex system. A human cell that becomes a human or a
social organism, such as a group of scholars that becomes an academic department,
is a complex system.

A system whose complete permutation of all of its components allows the defini-
tion of all possible states of the system is a complicated system, themore complicated
the more numerous are its possible states. For example, a jumbo jet aircraft, with
all of its 200,000 small components, is complicated but is not a complex system. A
movie is a complicated system. A complicated system is a system whose operation
does not generate new information since every possible trajectory is defined a priori.

A complicated system,whichworks over time, ages since its performance remains
static. In a complex system the global behavior of the system is not inferred from
the simple sum of the behaviors of all of its components, or by linear interpolation
techniques. The overall behavior of a complex system is behavior that emerges from
the operation of the system over time. This process is therefore highly non-linear,
which in many cases is not formalized by equations in closed form. A complex
system is one whose operation generates new information over time, and over time
changes the structure and/or the state of its components, which we call an adaptive
system.

An artificial system is a model of a part of reality that is encoded in mathematical
relationships and implemented on a computer. Our view of an artificial adaptive
system is depicted in Fig. 1.1 below where evolutionary programming and ANNs
fall under the umbrella of AASs. Most of the features of Fig. 1.1 will be discussed
in Chap. 2.

The dynamics of an adaptive system necessitates a mathematics that does not
impose linear assumptions on the data. The mathematics that is needed works on
data using a “Socratic” style. Ideally, it works in a way in which the overall behavior
of the system emerges spontaneously by the local interaction of its components
represented by data and equations. This is the method of a “natural” operation,
from the identification of the targeted problem up to the interpretation of the results.
To achieve this, we look at problems as research questions on which we undertake
experiments via computer algorithms, simulations. This is the method of “Natural
Computation” (Bottom-Up) and it is the best way for the study of natural adaptive
systems (Buscema 2010). AASs are the mathematical expression of the Natural
Computation method. Their purpose is to bring out the overall operation of a natural
adaptive system, whose data represent discrete portions of the functioning system.

https://doi.org/10.1007/978-3-319-75049-1_2


4 1 An Introduction
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Fig. 1.1 Artificial adaptive systems

We will use the expression “cultural system” to mean a natural system whose
operation is filtered in a non-linear interaction between human brains. In natural sys-
tems and, therefore, also cultural ones, there is hidden information that lies within the
data and via AASs can be disclosed and become perceptible among the relationships
discovered in the data, and its information which is more visible and easily mea-
sureable. The hidden information reveals the “secret plan” that the natural adaptive
system is going to pursue.

Artificial Adaptive Systems look for traces of the hidden agenda of natural adap-
tive systems. The range of these applications is also related to Intelligent DataMining
([1] and see Fig. 1.2).

AASs emerge by subjecting the system to experiments. An “experiment” is the
design, execution, and completion of data processing from the initial treatment of a
selected or a complete set of available data including the interpretation of the local
results. By “simulation” we mean the process that starts from the application of the
different artificial adaptive algorithms to the data, up to the generation of results (see
Fig. 1.3). The category “research” in Fig. 1.3 may be considered to be related to the
same problem as different facets or they may be viewed as independent.

Figure 1.3 illustrates what we consider to be a robust research protocol and it is
how we validated all our algorithms and examples. An AAS can be thought of being
implemented as follows.We assumewe have identified the problem,whichmeanswe
have collected significant and non-trivial questions and facts about a specific natural
and/or cultural system of interest. It also means that we have speculated about the
possible operation of such a system, that is, we have formed hypotheses which can
be methodologically verified in the following steps.
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Fig. 1.2 The main components of Intelligent Data Mining schematized in order to understand
natural adaptive systems

1. The Data. The study’s questions and/or hypotheses need to be translated into
structured input entities or data. That is, data is what we know about the system.
Such data must be statistically representative of the process that we want to
examine. The data must be collected with appropriate statistical criteria and/or
must be generated by special experiments/trials. In all cases, the data that is
available will be the only input for the next steps of the research process. All of
the research has to be completely data driven.

2. Data Pre-processing. The data available for research should be organized and
structuredwith appropriate algorithms, in order to create a database presenting all
the information in an explicit format. Consequently, adaptive algorithms that will
be used later, will facilitate the discovery of distributed and/or hidden information
and structures in the database.

3. Adaptive Algorithms. Choose the AAS algorithms that are appropriate for the
research and arrange them in sequential and/or parallel structures. The choice
and the organization of the algorithms in a framework define research design.

4. Blind Validation Methods. The individual algorithms and the research design
must bevalidated in ablind fashion, splitting thedata numerous times into training
and testing data subsets. There are various protocols available to implement the
research’s validation phase, and the most appropriate protocol has to be chosen
for the assigned research. In addition, a suitable cost function that measures the
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Fig. 1.3 Research, experiment and computer simulation dynamics

results of the different simulations has to be selected, according to statistical
criteria.

5. Results Interpretation. This phase is very delicate. We need to interpret the
different outputs of the experiment in relation to the questions and assumptions
we made in the initial phase of the research when the experimental simulation
proves itself to be significantly correct. This phase should lead to new hypotheses
and/or questions that allow the experimental cycle to start from the beginning.
These new hypotheses might be based on comparisons with known results or on
predictions that were made requiring re-evaluation of the assumptions.

6. Storage of New Information. The storage of the results obtained, and their
interpretation, is new knowledge that was not present in the initial phase of the
research. This knowledge should be structured and organized in a new database,
upgradeable over time, and can possibly be the object of further experiments.

The content of any research should not to be constrained a priori for two reasons.
First, data must be the only source of knowledge of the targeted problem for the
adaptive algorithms. In other words, any constraints and/or extra knowledge about
the problem, has to be expressed in the form of quantitative and/or qualitative data.
Second, artificial adaptive systems are equipped with a specific capacity to learn the
complex dynamics of any process only from the data. This data have to be provided
in a statistically meaningful manner. AASs, therefore, are algorithms that do not
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follow specific a priori rules. They do not optimize the relationships between linear
data. Artificial adaptive systems learn directly from the data and they evolve in order
to define the mathematical function that interpolates the assigned data in an optimal
or near-optimal way. In this sense, artificial adaptive systems can be called “Meta-
Models”, because they learn the intrinsic model from the data.

1.3 The Components

The components of a research problem involving AASs can be briefly described by
three components (see Fig. 1.4):

1. Databases;
2. Artificial Adaptive System Algorithms;
3. Validation Protocols.

Some recommended strategies in carrying out research from the point of view of
an AAS process are:

1. Carry out many different experimentations that fail, in order to “grow up”; failure
is a necessary condition and an opportunity to be embraced for needed develop-
ment, innovation and changes;

2. Learn to consider and to look at any process from the same point of view that
nature has adopted in order to generate that process;

3. Pay attention to the relationships among the objects, because relationships among
objects are perceived before the objects, for example, when you see two points

Fig. 1.4 The research process using artificial adaptive system methodology
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in the space, your gaze is the relationship between the two points, without your
gaze, the two points may not be linked together;

4. “Listen” to the weak links among things because the weak links often explain
the strong(er) ones, for example, there seems to be a weak link between the head
and the feet. But many headaches depend upon the way in which we move our
feet and our posture;

5. Use mathematics to transform any random “scribble” into a possible pattern,
because nature may in certain circumstances try to ignore noise. An addative
inverse relationship between variance and entropy may exist in certain circum-
stances [2].

In short, what we invite the reader to consider and to explore in the following
pages is achieved by using only three aspects:

a. Data of the process targeted to be investigated, the “problem”;
b. The use of AAS algorithms in computer simulations of the problem;
c. Blind validation tests.

Another aspect that helps during experiments or research trials is the capability
to be completely coherent inside every experiment and completely incoherent going
from one experiment to another. That is, to test a theory one needs to be coherent and
analytic within each experiment, then “jump” to a completely different experiment
in order to test the same theory.

We end this section by reiterating that the topic of interest to this monograph is the
unsupervised ANN called Auto-CM and its supervised version together with their
connections to graphs and database transformations. Therefore, we will, in the next
chapter, briefly review ANNs.
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Chapter 2
Artificial Neural Networks

Abstract Artificial Adaptive Systems include Artificial Neural Networks (ANNs
or simply neural networks as they are commonly known). The philosophy of neural
networks is to extract from data the underlying model that relates this data as an
input/output (domain/range) pair. This is quite different from the way most math-
ematical modeling processes operate. Most mathematical modeling processes nor-
mally impose on the given data a model fromwhich the input to output relationship is
obtained. For example, a linear model that is a “best fit” in some sense, that relates the
input to the output is such a model. What is imposed on the data by artificial neural
networks is an a priori architecture rather than an a priori model. From the archi-
tecture, a model is extracted. It is clear, from any process that seeks to relate input
to output (domain to range), requires a representation of the relationships among
data. The advantage of imposing an architecture rather than a data model, is that it
allows for the model to adapt. Fundamentally, a neural network is represented by its
architecture. Thus, we look at the architecture first followed by a brief introduction
of the two types of approaches for implementing the architecture—supervised and
unsupervised neural networks. Recall that Auto-CM, which we discuss in Chap. 3, is
an unsupervised ANN while K-CM, discussed in Chap. 6, is a supervised version of
Auto-CM. However, in this chapter, we show that, in fact, supervised and unsuper-
vised neural networks can be viewed within one framework in the case of the linear
perceptron. The chapter ends with a brief look at some theoretical considerations.

2.1 Introduction

We begin with the anatomy of neural networks, its architecture. ANNs are a family of
methods inspired by the human brain’s learning capability. ANNs are scientifically
used in three different epistemological ways:

1. To understand, the function of the brain by computer simulations;
2. To reproduce in computer algorithms, the way the brain functions in its relation-

ship with the environment, for example, in problem solving, driving a car, and
so on (human brain emulation);

© Springer International Publishing AG, part of Springer Nature 2018
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3. To understand the transition from individual to collective behavior (data analysis,
data mining and the research on complex systems are part of this).

Currently ANNs comprise a range of very different models, but they all share the
following characteristics.

• The fundamental elements of ANNs are the nodes, also known as processing
elements and their connections.

• Each node in an ANN has its own input through which it receives communications
from the other nodes or from the environment, and its own output, through which
it communicates with other nodes or with the environment. In addition, it has an
internal function, f (·) which transforms its global input into an output.

• Each connection may poses an internal relationship or “force” between pairs of
nodes that excite or inhibit each other. Positive values indicate excitatory connec-
tions and negative ones indicate inhibitory connections.

• Connections between nodesmay change over time. This dynamic (time dimension)
triggers a learning process throughout the entire ANN. The way the law by which
the connections change in time is called the “learning equation”.
In order for the connections of the ANN to properly change, the environment must
act on the ANN several times.

• When ANNs are used to process data, the data are ANN’s environment. Thus, in
order to process data, the data is subjected to the ANN several times.

• The overall dynamic of an ANN depends exclusively on the local interaction of its
nodes. The final state of the ANN “evolves” “spontaneously” from the interaction
of all of its components (nodes).

• Communications between nodes in every ANN tend to occur in parallel. This
parallelism may be synchronous or asynchronous and each ANN may emphasize
this parallelism in a different way. In synchronousANNs, all nodes simultaneously
update their state variables whereas in the asynchronous regime a random node is
chosen to update and the other nodes likewise are updated in a random fashion.
However, an ANN always has some form of parallelism in the activity of its nodes.
From a theoretical viewpoint this parallelism does not depend on the hardware on
which the ANNs are implemented.

The architecture of every ANN is composed of the following five components:

1. Type and number of nodes and their corresponding properties;
2. Type and number of connections and their corresponding location;
3. Type and number of layers;
4. Type of signal flow strategy;
5. Type of learning strategy.

In short, ANNs have nodes, connections, layers, signal flow, and learning strategy.
These five aspects are discussed next.

The Nodes
There are three types of ANN nodes, depending on the position they occupy within
the ANN.


