The Urban Book Series

Simon Elias Bibri

Smart Sustainable Cities of the Future

The Untapped Potential of Big Data Analytics and Context-Aware Computing for Advancing Sustainability

The Urban Book Series

Series Advisory Editors

Fatemeh Farnaz Arefian, University College London, London, UK Michael Batty, University College London, London, UK Simin Davoudi, Newcastle University, Newcastle, UK Geoffrey DeVerteuil, Cardiff University, Cardiff, UK Karl Kropf, Oxford Brookes University, Oxford, UK Marco Maretto, University of Parma, Parma, Italy Vítor Oliveira, Porto University, Porto, Portugal Christopher Silver, University of Florida, Gainesville, USA Giuseppe Strappa, Sapienza University of Rome, Rome, Italy Igor Vojnovic, Michigan State University, East Lansing, USA Jeremy Whitehand, University of Birmingham, Birmingham, UK

Aims and Scope

The Urban Book Series is a resource for urban studies and geography research worldwide. It provides a unique and innovative resource for the latest developments in the field, nurturing a comprehensive and encompassing publication venue for urban studies, urban geography, planning and regional development.

The series publishes peer-reviewed volumes related to urbanization, sustainability, urban environments, sustainable urbanism, governance, globalization, urban and sustainable development, spatial and area studies, urban management, urban infrastructure, urban dynamics, green cities and urban landscapes. It also invites research which documents urbanization processes and urban dynamics on a national, regional and local level, welcoming case studies, as well as comparative and applied research.

The series will appeal to urbanists, geographers, planners, engineers, architects, policy makers, and to all of those interested in a wide-ranging overview of contemporary urban studies and innovations in the field. It accepts monographs, edited volumes and textbooks.

More information about this series at http://www.springer.com/series/14773

Simon Elias Bibri

Smart Sustainable Cities of the Future

The Untapped Potential of Big Data Analytics and Context-Aware Computing for Advancing Sustainability

Simon Elias Bibri Department of Computer and Information Science, Department of Urban Design and Planning Norwegian University of Science and Technology Trondheim Norway

ISSN 2365-757X ISSN 2365-7588 (electronic) The Urban Book Series ISBN 978-3-319-73980-9 ISBN 978-3-319-73981-6 (eBook) https://doi.org/10.1007/978-3-319-73981-6

Library of Congress Control Number: 2017963284

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

The entire effort of your mind, soul, and heart working incessantly and in tandem, coupled wth your grit and perseverance, is what it takes to succeed in your intellectual endeavors. But to sustain momentum for the long haul or to cope with unforeseen circumstances as part of life sometimes necessitates special people to come along at the right time.

To my beloved sister, Amina, for her wholehearted love, immeasurable moral support, and unfailing encouragement; and to whom I owe my life for the sacrifice she has made for me, as well as for her willingness and determination to sacrifice a lot more so that I can continue to thrive in my academic endeavors and thus nourish my passion for the pursuit of knowledge.

To Prof. Bjørn Olav Åsvold—the most humanly generous and thoughtful person I have ever been so lucky as to have known whom I hold in highest regard in respect of his authentic moral fiber, genuine humbleness, and matchless empathy, and to whom I am deeply indebted for his immense help, incredible kindness, insightful advice, and approachability. I stand in awe of him.

Preface

It is a profoundly erroneous truism...that we should cultivate the habit of thinking what we are doing. The precise opposite is the case. Civilization advances by extending the number of important operations, which we can perform without thinking about them.

-Alfred Whitehead

With new scientific discoveries and technological innovations, most notably big data analytics and context-aware computing as powerful drivers for the next wave of urban analytics and planning, we hope to fulfill Alfred Whitehead's maxim of achieving progress through the increasing automation and intelligence of solutions for overcoming the challenges of sustainability and urbanization in the context of smart sustainable cities of the future. To put it differently, noteworthy advances in data science, computer science, and complexity science and the related technologies and their novel applications inevitably bring with them wide-ranging common visions on how cities as social fabrics epitomizing the microcosm of the world in terms of encapsulating in miniature its characteristic features as to environmental change, economic development, and social transformation will evolve in the future. They moreover open entirely new windows of opportunity for the application of engineering- and computing- inspired solutions to once intractable and wicked urban problems. This relates to the role of science-based technology in modern society in terms of advancing almost all human endeavors and activities. More importantly, the primary goal of the construction of the techno-urban vision of smart sustainable cities is to provoke thought and discussion, to create fertile insights, to generate new opportunities, to depict possible futures, and crucially, to align key stakeholders and mobilize resources into the same direction.

Key Aims and Major Themes

This scholarly book has been written as a timely and comprehensive reference for several classes of readers who are interested in the interplay between computing, ICT, sustainable development, sustainability science, urbanization, and urban

design and planning. It is therefore intended to help to explore the field of smart sustainable cities in its complexity, heterogeneity, and breadth, the many faces of a topical subject that is of major importance for the future, and that encompasses so much of modern urban life in an increasingly technologized, computerized, and urbanized world. Indeed, sustainable urban development is currently at the centre of debate in light of several ICT visions becoming concurrently achievable and deployable computing paradigms, and shaping the way cities will evolve in the future and tackle complex challenges with support of advanced technologies. Widely acknowledged as the most influential and enticing strands of contemporary computing and ICT, big data analytics and context-aware computing are certainly reshaping and enriching our experiences of how cities can function and be managed, planned, and developed. They are offering many new and unique opportunities for more informed and strategic decision-making with respect to our knowledge of how fast and best to address the challenges of sustainability and urbanization that are facing major cities of the world, and that will continue to grow in the years ahead. Therefore, there is a wide recognition and much enthusiasm about the immense possibilities created by new and more extensive sources of urban data to effectively monitor, understand, analyze, and plan cities to strategically improve their contribution to the goals of sustainable development through such processes as automation, optimization, control, management, strategy development, and policy design.

The primary goal of this book is to help readers view the challenges of sustainability and urbanization in the context of smart sustainable cities of the future from the perspective of big data analytics and context-aware computing. It is also to understand the fundamental principles of extracting useful knowledge and inferring context knowledge from large masses of data for enhanced decision-making and insights pertaining to urban operational functioning, management, planning, and development for the purpose of addressing those challenges. This book involves innovative computer-based and data-analytic research on smart sustainable cities as complex and dynamic systems. It provides theoretical and applied contributions fostering a better understanding and development of such systems and the synergistic relationships between the underlying physical and informational landscapes. It offers contributions pertaining to the ongoing development of computer-based and data science technologies for the processing, analysis, management, modeling, and simulation of urban data and the associated application in the operating and organizing processes of urban life—urban systems—that will advance different aspects of sustainability and contain the multidimensional effects of urbanization. Accordingly, this book focuses on city-related disciplines and sciences in relation to big data and context-aware technologies and their novel applications. In this respect, I give special importance to the general principles of such disciplines and sciences in terms of how computer science and data science are reshaping them and facilitating their amalgamation in the context of sustainability thanks to recent discoveries in urban analytics and computing-that make it possible to acquire a better understanding of urban systems and to enable an effective coordination of urban domains, coupled with the breakthroughs at the level of the core enabling technologies underlying big data analytics and context-aware computing. These include sensing technologies, data processing platforms, middleware architectures, cloud and fog computing infrastructures, and wireless communication networks. Such discoveries and breakthroughs are making it increasingly possible to build novel systems based on that understanding and coordination for the purpose of strategically advancing the contribution of smart (and) sustainable cities to the goals of sustainable development.

To facilitate embarking on exploring the realm of smart sustainable cities of the future, I have designed this book around three related aims: to help readers gain essential underpinning knowledge about the topic of smart sustainable cities; to help them develop a deeper understanding of this emerging techno-urban phenomenon as they make connections between their own understandings of smart and sustainable cities and emerging theoretical, analytical, and applied concepts; and, more importantly, to encourage them to take part in the ongoing debate about smart sustainable urban development. This is indeed gaining special importance in, and whose prominence will increase throughout, the twenty-first century, as cities across the globe are increasingly facing intractable and wicked problems due to the imminent challenges of sustainability and urbanization.

Subject Treatment and What Makes the Book Unique in its Field

This book is the first of its kind with respect to the approach into probing the new techno-urban phenomenon and flourishing field of smart sustainable cities-based on a uniquely holistic and interdisciplinary perspective. In response to the growing need for an inclusive analysis or a multi-perspectival approach to the study of the phenomenon of smart sustainable cities, this book deals with the interdisciplinary aspects of the rapidly evolving field of smart sustainable urban planning and development in the context of technologically and ecologically advanced nations. This field is still in its early stages and the subject matter draws upon a set of influential theories and powerful discourses with practical applications—i.e. the application of urban design and planning, sustainable development, sustainability science, computer science, data science, and ICT as a foundation for future urban practices. In view of that, this book adopts a unique and compelling approach to cross-disciplinary integration entailing a variety of theoretical, applied, scientific, and technological perspectives drawn from computer science, data science, complexity sciences, ICT, socio-technical studies, environmental sciences, innovation science, urban studies, policy, philosophy, ecology, and sociology. This is meant to achieve a broader understanding of the multifaceted phenomenon of smart sustainable cities, and also constitutes a means to facilitate collaboration among and between an array of academic and scientific disciplines for the primary purpose of generating the kind of interactional knowledge necessary for a more integrated perspective on the topic of smart sustainable cities. This is a core contribution that supports the foundational ethos of interdisciplinarity associated with the blossoming field of smart sustainable urban planning and development.

In specific terms, the focus in this book is on exploring the potential of ICT of the new wave of computing to provide the technological infrastructures, solutions, and approaches necessary for advancing the contribution of sustainable urban forms to the goals of sustainable development based on an effective integration of the design and planning concepts and principles of such forms with big data analytics and context-aware computing in terms of the underlying core enabling technologies and their novel applications and services being offered by smart and smarter cities. While big data analytics and context-aware computing play a crucial role for smart sustainable cities, it is worth pointing out that other ICT potentials (robotics, cybernetics, etc.) also have a role to play in this regard. However, the use of big data analytics and context-aware computing as prerequisite technologies for realizing ICT of the new wave of computing entails that smart sustainable cities will take the form of constellations of instruments-architectures, platforms, applications, and computational and data analytics capabilities across many spatial scales that are connected through wirelessly ad hoc and mobile networks with a modicum of intelligence. These networks can provide and coordinate continuous data on different features of urban domains (activities, processes, structures, citizens, and entities) in terms of the flow of decisions about the physical, infrastructural, operational, functional, and socioeconomic forms of smart sustainable cities. This constitutes a fertile environment conducive to monitoring, understanding, analyzing, operating, managing, and planning smart sustainable cities. This is about leveraging their informational landscape in addressing the challenges of sustainability and urbanization. One of the salient driving factors for urban design and planning embracing the wave of smartness lies in the immense opportunities being created through the utilization of the innovative solutions and sophisticated methods increasingly enabled by big data and context-aware technologies that are being designed and applied for supporting the goals of sustainable development. In all, this book offers a novel, fresh, and all-encompassing approach to the exploration of smart sustainable cities as an integrated and holistic urban development strategy. In doing so, it combines academic, scientific, and practical relevance with urban, technological, social, and environmental analysis, supported with critical and reflective thinking.

Originality and Value

Up till now, no comprehensive book has, to the best of one's knowledge, been produced elsewhere—as to systematically exploring the field of smart sustainable cities in terms of seamlessly amalgamating the design and planning principles of sustainable urban forms with the novel applications of ICT of the new wave of computing for urban sustainability, i.e. merging the physical and informational landscapes of smart sustainable cities in ways that strategically assess, improve, and

Preface

sustain their contribution to the goals of sustainable development. Nor has any book approached the topic from the perspective of integrating data science, computer science, complexity science, and the social sciences—more specifically, the untapped potential of big data analytics and context-aware computing for overcoming the imminent challenges of sustainability and urbanization in the context of smart sustainable cities as complex systems. In this regard, this book combines big data and context-aware technologies and their novel applications for the sheer purpose of harnessing and leveraging the disruptive and synergetic effects of ICT on modern cities in the needed transition towards, and the advancement of, sustainable development. Especially, the effects of such technologies reinforce one another as to their efforts for transforming the processes operating and organizing urban life in a sustainable way by integrating data-centric and context-aware solutions to enhance and integrate urban systems and to facilitate collaboration and coordination among urban domains.

This seminal work provides the necessary material to inform relevant research communities of the state-of-the-art research and the latest development in the area of smart sustainable urban planning and development, as well as a valuable reference for scholars and practitioners who are seeking to contribute to, or already working toward, the development, deployment, and implementation of smart sustainable cities based on big data analytics and context-aware computing. In this respect, the upshot of this book enables researchers to focus their work on the identified challenges pertaining to and the existing gaps between smart cities and sustainable cities as established urban development strategies. Practitioners can use the outcome to identify common weaknesses and alternative solutions in sustainable urban planning and development initiatives and endeavors. While this book can best be seen as being aimed at those with a background in both computation and urban planning, it is primarily from a computation angle (it would be more appropriate for giving computer scientists a vantage on planning than giving planners a vantage on computation), yet with much valuable knowledge of relevance to urban planners.

Furthermore, its strength lies primarily in the topicality of the issues it deals with and the meaningfulness of the subjects it covers. Specifically, it covers topics of immediate relevance and importance owing to their relation to the contemporaneous phenomena of sustainable development, sustainability, urbanization, ICT, ubiquitous computing, and data science, in addition to comprising many aspects of future city life in terms of life quality, environmental quality, resource efficiency, mobility and accessibility enhancement, and so on. These are associated with the ongoing endeavors and initiatives for smartening up urban sustainability and integrating its dimensions.

Intended Readership

Smart Sustainable Cities of the Future is intended for several classes of readers, namely students, researchers, academics, data scientists, computer scientists, technologists, ICT experts, urban planners, urbanists, engineers, architectural designers, urban professionals, urban policy analysts and makers, and decision makers and leaders, whether they are new or already working or involved in the area of smart sustainable urban planning and development, as well as for all of those interested in a wide-ranging overview of contemporary urban innovations in the field. Specifically, I have written this book with two kinds of readers in mind. First, I am writing to students taking graduate and postgraduate courses or pursuing Master's and Ph.D. programs in the areas of smart cities, sustainable cities, urban design and planning, urban computing, urban informatics, urban science, urban sustainability, sustainable urban management, and so forth. Those familiar with smart cities and sustainable cities and the relationship between these two concepts or urban development approaches will certainly get more out of this book, and find much more that appeals to them in it than those without that grounding. However, those with more limited knowledge are supported with detailed explanations of the relevant conceptual, theoretical, discursive, and applied foundations with reference to the field of smart sustainable urban planning and development. This is meant to appease the uninitiated reader. Second, I anticipate that this book will be a useful resource for all of those involved or with interest in smart sustainable urban planning and development (scholars, scientists, practitioners, decision makers, futurists, etc) that are looking for an accessible and essential reference as to the interplay between the scientific and technological developments and the physical, social, and environmental dimensions of smart sustainable cities. In all, people in many academic disciplines and professional fields will find the wide-ranging coverage of the diverse strands comprising, and the multiple perspectives associated with, the flourishing field of smart sustainable cities to be of interest and value. My hope is that this book will also be suited to people of other societies than technologically and ecologically advanced nations.

Perspectives and Prospects

This book benefits indirectly from the work of many people working within, and at the intersection of, the fields of smart cities and sustainable cities. Thus, I am indebted to other writings in the sense of inspiring me into a quest for the immense opportunities created by endeavoring to integrate smart cities and sustainable cities as urban development strategies to achieve the required level of sustainability under what is labeled "smart sustainable cities of the future" in an increasingly computerized and urbanized world. This has led me to espouse an intellectually distinctive approach into writing this book so that it can offer a tremendous value with auspicious effects and be differentiated from other books on the topic on focus with regard to their emphases and scopes of scholarship, as well as to their research perspectives. This is manifested in identifying and leveraging the potential of explicitly bringing together the smart city and sustainable city endeavors in a form of a holistic urban development strategy, and in focusing on and amalgamating big data analytics and context-aware computing specifically. While this book has an ambitious goal, clearly it is not possible to deal with every aspect of smart sustainable cities in a single book, nor can it cover all of the chosen topics in equal depth. Nevertheless, it will be a great asset to relevant research and scientific communities, as well as to those who are interested in the notion of smart sustainable cities as a new techno-urban innovation or vision.

This book highlights the increasing urgency to link future discoveries in computing and emerging developments in ICT with the agenda and goals of sustainable development in the realm of smart sustainable cities, a promising urban development approach that emphasizes decoupling urban well-being and health and the quality of life of citizens from the energy use and concomitant environmental risks associated with urban operations, functions, services, designs, and policies. Indeed, current and future investments in ICT of the new wave of computing ought to be justified by environmental concerns and socioeconomic needs, thereby enabling livable and healthy human environments in conjunction with minimal demand on resources and minimal environmental impacts-rather than by sheer technical advancement and unjustified industrial competitiveness. What is mostly needed nowadays are techno-urban innovations and visions that are not driven by distant and overblown computing and ICT research agendas focused mainly on technological superiority motivated by short-term profits, narrow outlooks, and unsustained disruptive effects-but rather driven by the pursuit of the persistent delivery of robust solutions for promoting urban sustainability and stimulating research opportunities within the field.

Furthermore, this book expects to elicit fertile insights and provide new perspectives in the event of amalgamating big data analytics and context-aware computing as advanced forms of ICT in the context of urban sustainability. This is meant to bring people from different academic disciplines and professional fields or working on cross connections of computing, ICT, sustainability science, sustainable development, and urban design and planning (including scholars, academics, researchers, scientists, experts, planners, architects, engineers, administrators, and policy makers) on a common platform to design, develop, disseminate, and concretize new ideas and concepts to significantly improve the field of smart sustainable cities and to promote related programs and initiatives based on big data analytics and context-aware computing.

Additionally, I consider that this book provides a form of grounding for further discussions to debate over the point that ICT of the new wave of computing has disruptive, substantive, and synergetic implications, in particular on forms of urban functioning, management, and planning that are necessary for urban sustainability practices in the future. This book also presents a basis for encouraging in-depth research on smart sustainable cities, thorough qualitative analyses, and empirical studies focused on establishing, uncovering, and substantiating the assumptions underlying the substance behind the smart wave of sustainable urban planning and development initiatives and endeavors in an increasingly computerized and urbanized world.

Finally, I believe that I have achieved an important goal with this book—by creating a valuable and strategic resource for the research community and industry involved in the domain of smart sustainable urban development. Especially, I believe that there is an urgent need for a comprehensive book on smart sustainable cities given that the field is remarkably heterogeneous with a large number and wide variety of research questions and opportunities yet to explore. I will be pleased if this book contributes to a better understanding of smart sustainable cities of the future, and helps in stimulating their development and implementation. All in all, I hope that this book will be enlightening, thought-provoking, and, more importantly, making good reading for the target audience. And ultimately, the first edition will be well received.

Trondheim, Norway May 2017 Simon Elias Bibri

Acknowledgements

This scholarly book as an integral part of my ongoing Ph.D. research is the fruit of rich learning experiences and valuable intellectual pursuits involving many people whom I have had the pleasure and privilege to meet during my academic studies in Sweden. I hope that our paths will cross again in the future. I am more indebted than I can possibly acknowledge to the people that have particularly contributed directly, indirectly, or unknowingly to my knowledge enrichment and intellectual development. Also, I am greatly thankful to those who have supported me throughout my academic journey, encouraged me to pursue the path of scientific research, believed in my intellectual abilities, and inspired me to become an academic author. I wish next to offer my most heartfelt thanks to those who have momentous intellectual experience.

I am deeply grateful to my main supervisor, Professor and Head of the Department of Computer and Information Science John Krogstie, for giving me the opportunity to carry out my doctoral studies in the area of smart sustainable cities of the future, playing a key role in coordinating the Ph.D. research project with the Department of Urban Design and Planning at NTNU, and allowing me to conduct my research on the interdisciplinary topic that I am truly passionate about —not forcing his interests onto me. I am also greatly thankful for his valuable comments and constructive suggestions on my drafts. His thoughtful guidance, insightful criticism, and timely support have kept me on a sound research path, while his good nature and humbleness made learning from, and sharing knowledge with, him such a delight. He has sparked several of my ideas and provided much more of an input to this book than he could probably realize. It has been a real privilege for me to share of his exceptional scientific knowledge as well as of his extraordinary human qualities.

I would also like to acknowledge and thank my co-supervisors, Professors Tor Medalen, Yngve Karl Frøyen, and Monica Divitini, for the fruitful discussions and the ensuing constructive inputs on the research path I have pursued. Their critical insights and thought-provoking questions have brought value to my research, and

Acknowledgements

helped me become more self-reflective and self-critical in order to broaden my perspective of thought and thus enhance my research work. Their diverse background and research interests give their inputs a distinct intellectual flavor in respect of the approach to my research topic.

I also owe special thanks to several professors at the Department of Computer and Information Science for their willingness to share knowledge and exchange ideas through informal intellectual conversations, as well as for making me feel so welcome, especially during the first 6 months of my Ph.D. research at NTNU. I would like to take this opportunity to extend my special thanks to Research Scientist Dirk Ahlers for his constructive inputs and suggestions. I am fortunate to be part of the scientific staff at this department and to be working in this academic environment. My learning experience has hitherto been rewarding and enjoyable.

I also owe a great deal of gratitude to the administrative and technical staff at the Department of Computer and Information Science for their constant support and immense help delivered throughout my Ph.D. studies. In particular, I am very thankful to Ellen Marie-Therese Solberg, who has been of much help with every possible practical and administrative matter. She is uniquely approachable and has been an ever present beacon of support, keeping her office door open and available for all the times when people need it. The administrative and technical staff has contributed tangibly to providing a working environment conducive to knowledge production and intellectual inspiration. The surrounding ambience has been so favorable that I personally felt, only after one year of conducting research, that it was the most auspicious time to start writing a scholarly book and contribute with it to the research community. This was way earlier than I have ever anticipated. In a nutshell, the vibe of the academic atmosphere at NTNU, coupled with flexible working hours, has been instrumental in boosting my intellectual productivity.

I also owe a debt of gratitude and appreciation to Prof. Diamanto Politis and Prof. Jonas Gabrielsson at Halmstad University, Sweden, for their unfailing encouragement, unwavering support, and readiness to give of their time and share their valuable knowledge and experience, as well as for being close academic friends of mine. They are the best professors I have ever had the privilege to have known during my long academic journey in Sweden. They are incredibly thoughtful and wonderfully kind people. I hold them in highest regard in respect of their humbleness, moral fiber, and integrity.

Finally, and most importantly, I would like to express my deepest gratitude and appreciation to my dearest sister, niece, and nephew, who have strengthened my morale by always cheering me up and standing by me like a pillar in times of need and in all situations. Thank you for always being there beside me through thick and thin. It is so amazing to have you as my family to lean on and to draw strength from, as well as to share intellectual interests, academic pursuits, and daily experiences with—I am so fortunate to have you in my life. You have long been a constantly restorative counterbalance to my life. You have made this piece of work possible and this intellectual journey delightful in more ways than one. Nothing compares to the joy of having a sister like you. Thank you for your sacrifices.

Contents

1	Introduction: The Rise of Sustainability, ICT, and Urbanization				
	and	the Mat	erialization of Smart Sustainable Cities	1	
	1.1	Extend	led Background	1	
		1.1.1	Global Shifts at Play Across the World: The		
			Dynamic Interplay Between Sustainability, ICT,		
		1.1.2	and UrbanizationA State-of-the-Art Overview of the Field of Smart	1	
			Sustainable Cities	7	
	1.2	The A	im and Objectives of the Book	29	
	1.3	The M	otivations for the Book	30	
	1.4	The St	ructure of the Book and Its Contents	31	
	Refe	rences .		36	
2	Cone	ceptual,	Theoretical, Disciplinary, and Discursive		
	Four	idations	: A Multidimensional Framework	39	
	2.1	Introdu	uction	40	
	2.2	The Co	onceptual and Theoretical Dimension of the		
		Found	ational Framework for Smart Sustainable City		
		Develo	opment	42	
		2.2.1	Concepts and Theories	42	
		2.2.2	The Key Constructs of the Conceptual and		
			Theoretical Framework	75	
	2.3	The D	isciplinary Dimension of the Foundational Framework		
		for Sm	art Sustainable City Development	76	
		2.3.1	On Academic Disciplines	76	
		2.3.2	Urban Planning	78	
		2.3.3	Urban Design	78	
		2.3.4	Data Science	79	
		2.3.5	Computing and Computer Science	80	
		2.3.6	Modeling and Simulation	84	
		2.3.7	Complexity Science (And Complex Systems)	87	
		2.3.8	Sustainability Discipline	89	
		2.2.0		0)	

	2.4	The Di	scursive Dimension of the Foundational Framework for	
		Smart	Sustainable City Development	92
		2.4.1	On Discourse and Its Role in Engineering Social	0.0
			Action	92
		2.4.2	Academic Discourses	94
		2.4.3	On the Discursive and Social Dimensions of Smart	
		_	Sustainable Cities	106
	2.5	Conclu	isions	118
	Refe	rences		121
3	Big I	Data An	alytics and Context-Aware Computing: Core	
	Enab	oling Tee	chnologies, Techniques, Processes, and Systems	133
	3.1	Introdu	iction	134
	3.2	Related	1 Work	137
	3.3	The Co	ore Enabling Technologies of Big Data Analytics	
		and Co	ontext-Aware Computing	141
		3.3.1	Pervasive Sensing for Urban Sustainability	142
		3.3.2	Wireless Communication Network Technologies	
			and Smart Network Infrastructures	150
		3.3.3	Data Processing Platforms for Big Data Analytics	152
		3.3.4	Cloud Computing for Big Data Analytics:	
			Characteristic Features and Benefits	153
		3.3.5	Fog and Edge Computing	155
		3.3.6	Middleware Infrastructure for Context-Aware	
			Computing: Characteristics and Functions	159
		3.3.7	Big Data Management	161
		3.3.8	Advanced Big Data Analytics Techniques and	
			Algorithms	162
		3.3.9	Privacy Mechanisms and Security Measures	163
		3.3.10	Standards and Open Standards	164
	3.4	The St	ate-of-the-Art Analytical and Computational	
		Process	ses	165
		3.4.1	The Process of Data Mining	165
		3.4.2	The Process of Context Recognition	166
		3.4.3	Basic Issues of Context-Aware Applications	167
	3.5	Contex	t-Aware Computing and Its Computational,	
		Techni	cal, and Urban Dimensions	168
		3.5.1	Context Awareness Technology for Urban	
			Sustainability	168
		3.5.2	Context Awareness and Its Feasibility in Urban	
			Intelligence	169
		3.5.3	Sensor Observations and Dynamic Urban Models	170
		3.5.4	Urban Context Recognition Techniques and	
			Algorithms	172
	3.6	Conclu	isions	181
	Refe	ences		183

4	Data	Data Science for Urban Sustainability: Data Mining and					
	Data	-Analyti	ic Thinking in the Next Wave of City Analytics	189			
	4.1	Introdu	uction	190			
	4.2	Theore	etical Background	194			
		4.2.1	Data Science Fundamentals, Data Mining,				
			and Urban Sustainability Problems	194			
		4.2.2	Supervised Versus Unsupervised Learning Methods:				
			Predictive and Descriptive Data Mining	198			
	4.3	Related	d Work	200			
		4.3.1	Big Data Analytics and Data Mining	200			
		4.3.2	Data Processing Platforms	203			
		4.3.3	Big Data for Urban Analytics	205			
		4.3.4	'Big Data' Studies: Academic				
			and Scientific Research	207			
	4.4	From 1	Urban Sustainability Problems to Data Mining Tasks	209			
		4.4.1	Classification	210			
		4.4.2	Regression	211			
		4.4.3	Clustering	212			
		4.4.4	Similarity Matching	213			
		4.4.5	Co-occurrence	213			
		4.4.6	Profiling	214			
		4.4.7	Link Prediction	214			
		4.4.8	Data Reduction	215			
		4.4.9	Causal Modeling	216			
	4.5	The D	ata Mining Process: Data-Analytic Solutions				
		to Urb	an Sustainability Problems	217			
		4.5.1	Urban Sustainability Problem Understanding	218			
		4.5.2	Data Understanding	220			
		4.5.3	Data Preparation	221			
		4.5.4	Model Building	222			
		4.5.5	Results Evaluation	224			
		4.5.6	Results Deployment	225			
	4.6	Applic	ations of Data Mining for Urban Sustainability				
		Analyt	ics	227			
		4.6.1	Energy Management	228			
		4.6.2	Healthcare	228			
		4.6.3	Water Management	228			
		4.6.4	Education	228			
		4.6.5	Mobility	229			
	4.7	Answe	ering Examples of Urban Sustainability Questions Using				
		Differe	ent Big Data Analytics Techniques	229			

	4.8 Knowledge Discovery in Databases (KDD)		edge Discovery in Databases (KDD)	
		and Re	lated Issues	231
		4.8.1	Understanding the Process of KDD and Illustration	
			of Its Key Steps	231
		4.8.2	Overlaps and Commonalities Between Data Mining	
			and KDD Processes	232
		4.8.3	A Holistic System in Support of the Process	
			of KDD for Urban Sustainability	233
		4.8.4	The Need for Coordination: Database Integration	
			and Domain Networking	234
	4.9	The Ro	ble of Big Human Mobility Data in the Next Wave	
		of Urba	an Sustainability Analytics	235
		4.9.1	Mobility Knowledge Discovery and Its Use in	
			Relation to Sustainable Urban Forms	235
		4.9.2	New Systems for Mobility Behavior Discovery in	
			Relation to Urban Sustainability	238
	4.10	Conclu	sions	239
	Refere	ences		243
5	Unnr	aadant	ad Innovations in Sustainable Urban Planning.	
3	Novel	Analyt	ical Solutions and Data Driven Decision Making	
	Droco	Analyt	ical Solutions and Data-Driven Decision-Making	247
	5 1	Introdu		247
	5.2	Urban	Planning and Its Data Driven and	240
	5.2	Sustain	ability_Oriented Dimensions	252
	53	The Ne	eventy-Oriented Dimensions	232
	5.5	in Ligh	of Big Data	253
	5 /	Data D	riven Decision Making and Related Processes in	233
	5.4	Sustain	able Urban Planning	258
	5 5	Urban	Rig Data Sources	250
	5.5	The Na	and for Coordination and Coupling: A Typology	201
	5.0	of Sma	ext Sustainable City Functions	263
	57	Key Sc	vientific and Evaluative Challenges of Smart	205
	5.7	Sustain	able Urban Planning	264
		5 7 1	Scientific Challenges	204
		572	On the Evoluation of Smort Sustainable Cities	204
	5 8	J.7.2 Investi	off the Evaluation of Sinart Sustainable Cities	207
	5.8	Urbon	Earms to Sustainability	272
			Assessment Dessent Issues in Sustainable Linhan	213
		5.8.1	Assessment Research Issues in Sustainable Orban	072
		500	Mahilim and Transland No. Tools for the	213
		5.8.2	Modility and Travel and New Tools for the	074
		502	Governance of Related Demand	274
		5.8.5	Ine Untapped Potential of Big Data Analytics in	075
			Urban Design and Planning	215

Contents

		5.8.4	An Alternative to Traditional Data Collection	
			and Analysis Methods for Investigating Sustainable	
			Urban Forms	276
		5.8.5	The Role of Big Mobility Data in Evaluating	
			Sustainable Urban Forms	277
	5.9	Wickee	d Problems and the Role of the Uses	
		of Big	Data in Urban Design and Planning	280
	5.10	Urban	Big Data and Sustainable Development Indicators	
		and Ta	rgets: Opportunities and Challenges	286
	5.11	Conclu	isions	291
	Refer	ences		293
6	Syste	me Thir	aking and Complexity Science and the Polevance	
U	of Ri	n Data .	Analytics Intelligence Functions and Simulation	
	Mode	g Data 1 de	Analytics, Intelligence Functions, and Simulation	207
	6.1	Introdu	iction	298
	6.2	Theore	stical Frameworks	301
	0.2	6.2.1	Systems Thinking	301
		622	Systems Theory	301
		6.2.2	Complexity Science and Complex Systems	204
		624	Some Bolovent Links Potwaen Theoretical	304
		0.2.4	Fromousels	206
	62	Create	Frameworks	300
	0.3	Sustain	addinity, Sustainability Principles, and Sustainability	207
	6.4	Science	e as Grounded in Systems Thinking	210
	0.4	Smart	Sustainable Cities as Complex Systems	212
	6.5	Urban	Sustainability: A Systems Thinking View	313
	6.6	Issues	of System Structure: The Technological Component	210
		of Sma		316
	6.7	On De	ep Urban and Environmental Sustainability	317
	6.8	Key C	oncepts of Systems Thinking and Their Relevance	
		to Sma		320
		6.8.1	Chaos Theory	320
		6.8.2	Open and Closed System	325
		6.8.3	Data-Information-Knowledge	329
		6.8.4	Cybernetics	334
		6.8.5	System Interaction	338
	6.9	Compl	exity Science in the Context of Smart	
		Sustair	nable Cities	341
		6.9.1	Complex Systems Simulation: Challenges and	
			Driving Forces	341
		6.9.2	New Prospects and Opportunities	343
		6.9.3	A New Class of Urban Simulation Models in Light of	
			Complexity Science	345
	6.10	The Ro	ole of Big Data Analytics in Disentangling Intractable	
		Proble	ms	351

	6.11	Sophisticated Approaches into Tackling Urban Sustainability	251
		FIODICINS France 6 11 1 Urban Intelligence	254
		6.11.1 Urban Intelligence Functions	354 257
	6 10	0.11.2 Urban Simulation Models	331
	6.12	Urban Design Perspectives in Light of Systems Thinking	360
		6.12.1 Urban Design Problem and Process	301
	(12	6.12.2 Urban Design Perspectives	362
	0.13 D.C		363
	Refer	ences	366
7	Susta	inable Urban Forms: Time to Smarten up with Big Data	
	Analy	tics and Context–Aware Computing for Sustainability	371
	7.1	Introduction	372
	7.2	Research Approach: Thematic Analysis	377
	7.3	Thematic Analysis Results	379
		7.3.1 Typologies and Design Concepts of Models of	
		Sustainable Urban Form and Related Themes	379
		7.3.2 Big Data Analytics and Context-Aware Computing	
		Technologies and Their Applications	383
	7.4	Merging Big Data and Context-Aware Applications with	
		Typologies and Design Concepts	387
	7.5	Two Analytical Frameworks for Merging Physical and	
		Informational Landscapes	391
		7.5.1 On the Analytical Frameworks	391
		7.5.2 Description and Illustration of the Proposed	
		Analytical Frameworks	392
	7.6	Context Awareness for Physical Service Environments	
		Within Smart Sustainable Cities	398
	7.7	Constituents of the Analytical Frameworks: Urban	
		Physical and Informational Landscapes	401
		7.7.1 Urban Physical Landscape	402
		7.7.2 Urban Informational Landscape	402
	7.8	On the Implementation of the Analytical Frameworks	407
	7.9	Conclusions	410
	Refer	ences	414
8	Mana	ging Urban Complexity: Project and Risk Management	
Ū	and I	Polycentric and Participatory Governance	419
	8.1	Introduction	420
	8.2	Urban and ICT Project Management	423
		8.2.1 Project Management: Defining Characteristics	0
		Types, and Approaches.	423
		8.2.2 Urban Development Projects	425
		8.2.3 ICT Project Management	434
		8.2.4 Urban Development and ICT Project Managers	444

9

8.3	Risk N	Ianagement	448
	8.3.1	Definitional Issues of Risk Analysis and Risk	
		Management	449
	8.3.2	Digital Risks	450
	8.3.3	On Qualitative and Quantitative Approaches	
		to Risk Analysis	451
	8.3.4	Risk Management Methods, Challenges, and	
		Principles	452
	8.3.5	Risk Sources: Tangible and Intangible Variables	454
	8.3.6	Cloud Computing and Information Security Risks	455
	8.3.7	Urban Development and ICT Project Management:	
		Risks and Uncertainties and the Time-Cost-Quality	
		Dilemma	457
8.4	Advan	ced Governance Models for Smart Sustainable	
	City D	Pevelopment	462
	8.4.1	Sustainability by Design or Governance	
		and Urban Actors as Categories of Discourse	462
	8.4.2	The Role of Network Governance in Smart	
		Sustainable City Development	464
	8.4.3	Polycentric Governance Systems and Governance	
		Networks	464
	8.4.4	Social Norms and Regulatory Frameworks for	
		Inducing Behavioral Change	466
	8.4.5	Community-Led Management and Collective	
		Management of Common Urban Resources	466
	8.4.6	City Governance Structures: New Forms of	
		Governance and Widespread Participation of the	
		Citizenry	468
	8.4.7	Big Data Governance	469
	8.4.8	Research Opportunities for the Governance	
	~ .	of City Development	472
8.5	Conclu	isions	474
Refer	ences .		477
Big I	Data An	alytics and Context-Aware Computing:	
Char	acteristi	ics, Commonalities, Differences, Applications,	
and	Challeng	ges	481
9.1	Introdu	uction	482
9.2	Key C	ommonalities and Differences Between Big Data	
	Analyt	ics and Context-Aware Computing	485
9.3	Opport	tunities and Characteristics of Big Data	
	and Co	ontext-Aware Applications	488
	9.3.1	The Potential of ICT of the New Wave of Computing	
		Underpinned by Big and Context Data	488

	9.3.2	Demarcation Lines Between the Applications of ICT of the New Wave of Computing	490
	933	Types of Big Data and Context-Aware Applications	491
94	Snecifi	cs of Big Data and Context-Aware Applications	771
2.4	in Urbs	an Domains	401
	9 <i>A</i> 1	The Link Between Big Data and UbiComp	771
	7.4.1	and the IoT and Between Context Data and AmI	
		and SenComp	492
	942	Smart Transport and Mobility	403
	943	Smart Traffic Lights and Signals	494
	944	Smart Fnergy	495
	945	Smart Grid	496
	946	Smart Environment	497
	9. 4 .0	Smart Buildings	108
	0/8	Infrastructure Monitoring and Management	100
	9.4.0	Smart Public Safety and Civil Security	499
	9.4.9	Smart Urban Dianning and Design	500
	9.4.10	Smart Education	500
	9.4.11	Small Education	502
	9.4.12	Academic and Scientific Descenth	505
	9.4.15	The Investigation and Evaluation of the Typologies	303
	9.4.14	The investigation and Evaluation of the Typologies	507
	0 4 15	and Design Concepts of Sustainable Orban Forms	507
	9.4.15	Other Smart Applications for Environmental	7 00
	0 4 1 6	Sustainability	508
0.5	9.4.16	Large-Scale Deployments	510
9.5	Challer	nges and Open Issues	512
	9.5.1	Design Science Constraints	512
	9.5.2	Data Analysis and Management	513
	9.5.3	Context Awareness: Design, Engineering,	
		and Modeling	514
	9.5.4	Privacy and Security	515
	9.5.5	Urban Growth and Data Growth	517
	9.5.6	Data Quality	518
	9.5.7	Data Sharing	519
	9.5.8	Controversies	520
	9.5.9	Cost and Deployment	521
	9.5.10	Coupling, Integrating, and Coordinating ICT	
		of the New Wave of Computing	522
	9.5.11	Environmental Risks Posed by ICT of the New Wave	
		of Computing	523
9.6	On the	Technological Innovation System Approach to	
	Tacklin	g the Current Challenges	524
9.7	Conclu	sions	526
Refer	ences		529

Tran	Transitioning from Smart Cities to Smarter Cities: The Future Potential of ICT of Pervasive Computing for Advancing					
Fotel	iuai oi i	ol Sustainability	4			
	Introdu		-			
10.1			-			
10.2	A State	e-of-the-Art Overview	-			
	10.2.1	Smart Cities	-			
10.2	10.2.2	Smarter Cities	-			
10.3	Enviro	nmental Risks and Potential Mitigation Approaches	-			
	10.3.1					
	10.3.2		-			
	10.3.3	Systemic Effects	-			
	10.3.4	Constitutive Effects.	-			
10.4	Philose	ophical and Disciplinary Debates on Smarter Cities				
	10.4.1	Questioning and Challenging ICT-Driven				
		Environmentally Sustainable Urban Development				
	10.4.2	The Meaning and Implication of ICT of Pervasive				
		Computing for Urban Culture				
	10.4.3	Encounters of ICT Use and Application in Urban				
		Planning and Development	:			
10.5	The Ef	fect and Potential of ICT of Pervasive Computing				
	for Adv	vancing Environmental Sustainability				
	10.5.1	On the Productive and Constitutive Force of ICT				
		of Pervasive Computing				
	10.5.2	Large-Scale Deployments of UbiComp, AmI, the IoT,				
		and SenComp Driven by Environmental Gains				
	10.5.3	Applications of ICT of Pervasive Computing				
		for Environmental Sustainability				
	10.5.4	The Untapped Potential of Big Data Analytics				
		and Context-Aware Computing for Advancing				
		Environmental Sustainability				
10.6	Moving	g Beyond the Visions of Smart Cities: Rethinking				
	Prevail	ing Assumptions and Embracing Alternative Research				
	Direction	ons	:			
10.7	On the	Transition Governance of Smarter Cities—Innovative				
	Techno	blogical Strategic Niches				
10.8	The Ro	ble of Political Action in Smarter Cities as a				
	Techno	o-Urban Discourse and an Amalgam of Innovation				
	System	18	4			
	10.8.1	On the Discursive Genesis of Smarter Cities	4			
	10.8.2	Political Mechanisms: Shaping the Discourse				
		and Innovation System of Smarter Cities				
	10.8.3	Discursive-Material Dialectics of Smarter Cities				
10.9	Conclu	sions				
Refer	ences					

Аррі	oaches t	o Futures Studies: A Scholarly	
and	Planning	Approach to Strategic Smart	
Susta	inable C	City Development	601
11.1	Introdu	ction	602
11.2	Theoret	tical Background	606
	11.2.1	Strategic Smart Sustainable Urban Planning	606
	11.2.2	Strategic Smart Sustainable Urban Development	609
11.3	Futures	Studies: Dimensions, Objectives, Types,	
	and Ap	proaches	611
	11.3.1	Cyclical Pattern Analysis	614
	11.3.2	Trend Analysis	615
	11.3.3	Technological Forecasting	616
	11.3.4	Visioning	618
	11.3.5	Scenario Planning	620
11.4	Backcas	sting Approach to Strategic Planning	623
	11.4.1	Historical Origins and Characteristic Features	623
	11.4.2	Backcasting Versus Forecasting	625
	11.4.3	The Relevance and Purpose of Backcasting	
		as a Scholarly Methodology for Strategic Smart	
		Sustainable City Development	627
	11.4.4	The Multiplicity and Adaptation of Methodological	
		Frameworks for Backcasting	629
	11.4.5	Methodological Frameworks for Backcasting-	
		Participatory Backcasting	632
11.5	A Syntl	hesized Scholarly and Planning Approach	
	to Strate	egic Smart Sustainable City Development	637
	11.5.1	Premises and Assumptions Underlying	
		the Synthesis	637
	11.5.2	The Outcome of the Synthesis	639
11.6	Case St	tudies	639
	11.6.1	The Project Gothenburg 2050	639
	11.6.2	Ph.D. Project: A Novel Model for Smart	
		Sustainable City	642
11.7	Backcas	sting as a Useful Tool for Achieving Urban	
	Sustaina	ability: The Shaping Role of Political Action	
	in Susta	ainability Transitions	647
11.8	System	Thinking and Backcasting	651
11.9	Conclus	sions	653
Refe	ences		657

About the Author

Simon Elias Bibri is a Ph.D. scholar in the area of smart sustainable cities of the future and Assistant Professor at the Norwegian University of Science and Technology (NTNU), Department of Computer and Information Science and Department of Urban Design and Planning, Trondheim, Norway. His true passion for academic and lifelong learning, coupled with his natural thirst for interdisciplinary and transdisciplinary knowledge, has led him to wittingly and voluntarily pursue an unusual academic journey by embarking on studying a diverse range of subject areas—at the intersection of computer science, information science, environmental science, and the social and human sciences. His intellectual pursuits and endeavors have hitherto resulted in an educational background encompassing knowledge from, and meta-knowledge about, different academic and scientific disciplines. He holds the following academic degrees:

- Bachelor of Science in computer engineering with a major in ICT management and strategy
- Master of Science in computer science with a major in ICT for sustainability
- Master of Science in computer science with a major in informatics
- Master of Science in computer and systems sciences with a major in decision support and risk analysis
- Master of Science in entrepreneurship and innovation with a major in new venture creation
- Master of Science in strategic leadership toward sustainability
- Master of Science in sustainable urban development and planning
- Master of Science in environmental science with a major in eco-technology and sustainable development
- Master of Social Science with a major in business administration (MBA)
- Master of Arts in communication and media for social change
- Postgraduate degree (one year of Master courses) in management and economics
- Ph.D. in ICT with a major in smart sustainable cities of the future (underway).

Bibri has earned all his Master's degrees from different Swedish universities, namely Lund University, West University, Blekinge Institute of Technology, Malmö University, Stockholm University, and Mid Sweden University.

Before embarking on his long, still ongoing, academic journey, Bibri served as a sustainability and ICT strategist, business engineer, consultant, and researcher. Over the past few years and in parallel with his academic studies, he has been involved in a number of research and consulting projects pertaining to green ICT strategy, big data analytics, strategic sustainability innovations, sustainable business model innovation, sustainable urban planning, and green and social innovation.

Bibri's current areas of research work include smart sustainable cities; Ambient Intelligence (AmI), Ubiquitous Computing (UbiComp), the Internet of Things (IoT), and Sentient Computing (SenComp) as well as how these computing paradigms relate to urban sustainability, sustainability science, urbanization, and urban design and planning; and big data analytics and context-aware computing and the associated core enabling technologies, namely sensor technologies, data processing platforms, cloud and fog computing infrastructures, middleware architectures, and wireless communication networks.

Bibri has a genuine interest in interdisciplinary and transdisciplinary research. In light of his multidisciplinary academic background, his research interests include the following areas:

- ICT of pervasive computing
- Big data analytics and context-aware computing for sustainability
- Sustainable urban planning and development
- Sustainable city models (eco-city, compact city, green urbanism, new urbanism, etc.)
- Smart city approaches (ambient city, ubiquitous city, sentient city, real-time city, etc.)
- · Sustainability transitions and socio-technical shifts
- · Green innovation and knowledge-intensive entrepreneurship
- · Philosophy and sociology of scientific knowledge
- · Social construction and shaping of science-based technology
- Technological and national innovation systems
- Sustainable business model innovation
- Technology, innovation, and environment policy.

Bibri is the author of two recently published books in the field of pervasive computing, in addition to a forthcoming book in the area of smart sustainable urban planning and development. Also, he has occasionally been working on his fourth book in parallel with his doctoral studies. The titles of these books are as follows:

- 1. The Human Face of Ambient Intelligence: Cognitive, Emotional, Affective, Behavioral and Conversational Aspects (523 pages), Springer, 07/2015.
- 2. The Shaping of Ambient Intelligence and the Internet of Things: Historico-epistemic, Sociocultural, Politico-institutional and Eco-environmental Dimensions (301 pages), Springer, 11/2015.

- 3. Smart Sustainable Cities of the Future: The Untapped Potential of Big Data Analytics and Context-Aware Computing for Advancing Sustainability (650 pages), Springer, 2018.
- 4. Unprecedented Shifts in the Philosophy and Sociology of Sustainability Science in the Exabyte Age: The Unique Potential and Power of the Big Data Deluge (350 pages).