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1

Constructing arbitrary genetic instruction sets is a core technology for biological 
engineering. Biologists and engineers are pursuing even better methods to 
assemble these arbitrary sequences from synthetic oligonucleotides (oligos) [1]. 
These new assembly methods in principle reduce costs, improve access, and 
result in long sequences of error‐free DNA that can be used to construct entire 
microbial genomes [2]. However, an increasing diversity of assembly methods is 
not matched by any obvious corresponding innovation in producing oligos. 
Commercial oligo production employs a very narrow technology base that is 
many decades old. Consequently, there is only minimal price and product dif-
ferentiation among corporations that produce oligos. Prices have stagnated, 
which in turn limits the economic potential of new assembly methods that rely 
on oligos. Improvements may come via recently demonstrated assembly meth-
ods that are capable of using oligos of lower quality and lower cost as feedstocks. 
However, while these new methods may substantially lower the cost of gene‐
length double‐stranded DNA (dsDNA), they also may be economically viable 
only when producing many orders of magnitude with more dsDNA than what is 
now used by the market. The commercial success of these methods, and the 
broader access to dsDNA they enable, may therefore depend on structural 
changes in the market that are yet to emerge.

1.1  Productivity Improvements in Biological 
Technologies

In considering the larger impact of technological monoculture in DNA synthesis, 
it is useful to contrast DNA synthesis and assembly with DNA sequencing. In par-
ticular, it is instructive to compare productivity estimates of commercially avail-
able sequencing and synthesis instruments (Figure 1.1). Reading DNA is as crucial 
as writing DNA to the future of biological engineering. Due to not just commer-
cial competition but also competition between sequencing technologies, both 

Competition and the Future of Reading 
and Writing DNA
Robert Carlson

Biodesic and Bioeconomy Capital, 3417 Evanston Ave N, Ste 329, Seattle, WA 98103, USA



1  Competition and the Future of Reading and Writing DNA4

prices and instrument capabilities are improving rapidly. The technological diver-
sity responsible for these improvements poses challenges in making quantitative 
comparisons. As in previous discussions of these trends, in what follows I rely on 
the metrics of price [$/base] and productivity [bases/person/day].

Figure 1.1 also directly compares the productivity enabled by commercially 
available sequencing and synthesis instruments to Moore’s law, which describes 
the exponential increase in transistor counts in CPUs over time. Readers new to 
this discussion are referred to References 3 and 4 for in‐depth descriptions of the 
development of these metrics and the utility of a comparison with Moore’s law 
[3, 7]. Very briefly, Moore’s law is a proxy for productivity; more transistors ena-
ble greater computational capability, which putatively equates to greater 
productivity.

Visual inspection of Figure 1.1 reveals several interesting features. First, gen-
eral synthesis productivity has not improved for several years because no new 
instruments have been released publicly since about 2008. Productivity estimates 
for instruments developed and run by oligo and gene synthesis service providers 
are not publicly available.1

Productivity in DNA sequencing and synthesis
using commercially available instruments
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Figure 1.1  Estimates of the maximum productivity of DNA synthesis and sequencing enabled 
by commercially available instruments. Productivity of DNA synthesis is shown only for 
column‐based synthesis instruments, as data for sDNA fabricated on commercially available 
DNA arrays is unavailable; exceptions are discussed in the text. Shown for comparison is 
Moore’s law, the number of transistors per chip. (Intel; Carlson, 2010 [3]; Loman et al. 2012 [4]; 
Quail et al. 2012 [5]; Liu, 2012 [6].)

1  It is likely that array‐based DNA synthesis used to supply gene assembly operates at a much 
higher productivity than column‐based synthesis. For example, Agilent reportedly produces and 
ships in excess of 30 billion bases of ssDNA a day, the equivalent of more than 10 human genomes, 
on an undisclosed number of arrays (Darlene Solomon, Personal Communication).
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Second, it is clear that DNA sequencing platforms are improving very rapidly, 
now much faster than Moore’s law.

Moore’s law and its economic and social consequences are often used to 
benchmark our expectations of other technologies. Therefore, developing an 
understanding of this “law” provides a means to compare and contrast it with 
other technological trends.

1.2  The Origin of Moore’s Law and Its Implications 
for Biological Technologies

Moore’s law is often mistakenly described as a technological inevitability or is 
assumed to be some sort of physical phenomenon. It is neither; Moore’s law is a 
business plan, and as such it is based on economics and planning. Gordon Moore’s 
somewhat opaque original statement of what became the “law” was a prediction 
concerning economically viable transistor yields [8]. Over time, Moore’s eco-
nomic observation became an operational model based on monopoly pricing, and 
it eventually enabled Intel to outcompete all other manufacturers of general 
CPUs. Two important features distinguish CPUs from other technologies and 
provide insight into the future of trends in biological technologies: the first is the 
cost of production, and the second is the monopoly pricing structure.

Early on Intel recognized the utility of exploiting Moore’s law as a business 
plan. A simple scaling argument reveals the details of the plan. While transistor 
counts increased exponentially, Intel correspondingly reduced the price per 
transistor at a similar rate. In order to maintain revenues, the company needed to 
ship proportionally more transistors every quarter; in fact, the company increased 
its shipping numbers faster than prices fell, enabling consistent revenue to grow 
for several decades. This explains why Intel former CEO Andy Grove reportedly 
constantly pushed for an even greater scale [9].

In this sense, Moore’s law was always about economics and planning in a 
multibillion‐dollar industry. In the year 2000, a new chip fab cost about $1 bil-
lion; in 2009, it cost about $3 billion. Now, according to The Economist, Intel 
estimates that a new chip fab costs about $10 billion [9]. This apparent exponen-
tial increase in the cost of semiconductor processing is known as Rock’s law. It is 
often argued that Moore’s law will eventually expire due to the physical con-
straints of fabricating transistors at small length scales, but it is more likely to 
become difficult to economically justify constructing fabrication facilities at the 
cost of tens to hundreds of billions of dollars. Even through the next several itera-
tions, these construction costs will dictate careful planning that spans many 
years. No business spends $10 billion without a great deal of planning, and, more 
directly, no business finances a manufacturing plant that expensive without 
demonstrating a long‐term plan to repay the financiers. Moreover, Intel must 
coordinate the manufacturing and delivery of very expensive, very complex sem-
iconductor processing instruments made by other companies. Thus Intel’s plan-
ning and finance cycles explicitly extend many years into the future. New 
technology has certainly been required to achieve each planning goal, but this is 
part of the ongoing research, development, and planning process for Intel.
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Moore’s law served a second purpose for Intel and one that is less well recog-
nized but arguably more important; it was a pace selected to enable Intel to win. 
Intel successfully organized an entire industry to move at a pace only it could 
survive. And only Intel did survive. While Intel still has competitors in products 
such as memory or GPUs, companies that produced high volume, general 
CPUs have all succumbed to the pace of Moore’s law. The final component of this 
argument is that, according to Gordon Moore, Intel could have increased 
transistor counts faster than the historical rate.2 In fact, Intel ran on a faster 
internal innovation clock than it admitted publicly, which means that Moore’s law 
was, as one Intel executive put it, a “marketing head fake” [10]. The inescapable 
conclusion of this argument is that the management of Intel made a very careful 
calculation; they evaluated product rollouts to consumers – the rate of new prod-
uct adoption, the rate of semiconductor processing improvements, and the finan-
cial requirements for building the next chip fab line – and then set a pace that 
nobody else could match but that left Intel plenty of headroom for future prod-
ucts. In effect, if not intent, Intel executed a strategy that enabled it to set CPU 
prices and then to reduce those prices at a rate no other company could match.

This long‐term planning, pricing structure, and the resulting lack of competi-
tion contrasts quite strongly with the commercial landscape for biological tech-
nologies. Whereas the exponential pace of doubling of transistor counts was 
controlled by just one company, productivity in DNA sequencing has recently 
improved faster than Moore’s law due to competition not just among companies 
but also among technologies. Conversely, the lack of improvement in synthesis 
productivity suggests that the narrow technology base for writing DNA has 
reached technical and, therefore, economic limits. Nonetheless, while Figure 1.1 
may suggest a temporary slowdown in the rate of improvement for sequencing, 
and in effect shows zero recent improvement for synthesis, new technologies will 
inevitably facilitate continued competition and, therefore, continued productiv-
ity improvement.

1.3  Lessons from Other Technologies

Compared with that in other industries, the financial barrier to entry in biological 
technologies is quite low. Unlike chip manufacturing, there is nothing in biology 
with a commercial development price tag of $10 billion. The Boeing 787 report-
edly cost $32 billion to develop as of 2011 and is on top of a century of multibil-
lion‐dollar aviation projects that preceded it [11]. Better Place, an electric car 
company, declared bankruptcy after receiving $850 million in investment [12]. 
Tesla Motors has reported only one profitable quarter since 2003 and continues to 
operate in the red while working to achieve manufacturing scale‐up [13, 14].

There are two kinds of costs that are important to distinguish here. The first is 
the cost of developing and commercializing a particular product. Based on the 

2  Gordon Moore to Danny Hillis, as related by Danny Hillis, Personal Communication.
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money reportedly raised and spent by Illumina, Pacific Biosciences, Oxford 
Nanopore, Life, Ion Torrent, and Complete Genomics (the latter three before 
acquisition), it appears that developing and marketing a second‐generation 
sequencing technology can cost more than $100 million. Substantially more 
money gets spent, and lost, in operations before any of these product lines is 
revenue positive. Nonetheless, relatively low development costs have enabled a 
number of companies to enter the market for DNA sequencing, resulting in a 
healthy competition in a market that is presently modest in size but that is 
expected to grow rapidly over the coming decades.

1.4  Pricing Improvements in Biological Technologies

The second kind of cost to keep in mind is the use of new technologies to produce 
an object or produce data. Figure 1.2 is a plot of commercial prices for column‐
synthesized oligos, gene‐length synthetic DNA (sDNA), and DNA sequencing. 
Prior to 2006, the sequencing market was dominated by Sanger‐based capillary 
instruments produced by Applied Biosystems, in effect another pricing monop-
oly. After 2006, the market saw a rapid proliferation of not just commercial but 
also technological competition with the launch of next‐generation systems from 
454, Illumina, Ion Torrent, Pacific Biosciences, and Oxford Nanopore based on a 
diversity of chemical and physical detection methodologies [15]. Illumina 
presently dominates the market for sequencing instruments but is facing compe-
tition from Oxford Nanopore and various Chinese insurgents. There also remains 
technological diversity between companies, which contributes to competitive 
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pressures. An important consequence of the emergence of technological 
competition in the DNA sequencing market is a rapid price decrease. The NIH 
maintains a version of this plot that compares sequencing prices with cost per 
megabyte for memory, another form of Moore’s law [16]. Both Figure 1.2 and the 
NIH plot show that sequencing costs kept pace with Moore’s law while a pricing 
monopoly was in effect. The emergence of technological competition produced 
both productivity improvements and price changes that outpaced Moore’s law.

In contrast, despite modest commercial competition in the DNA synthesis 
market, the lack of technological competition has limited price decreases in the 
last 5 years. The industry as it exists today is based on chemistry that is several 
decades old, in which oligos are synthesized step by step on an immobilized 
substrate. Using array‐synthesized oligos for gene assembly appears to be lower-
ing the market price, though quality and delivery time are reportedly inconsist-
ent across the industry. Improved error correction and removal technologies 
may further reduce the assembly cost for genes and thereby improve the profit 
margins [17]. My informal conversations with industry insiders suggest that 
oligo producers may no longer include the cost of goods in calculating prices; 
that is, oligo prices are evidently determined largely by the cost of capital rather 
than the cost of raw materials. This suggests that very little pricing improvement 
can be expected for genes produced from standard oligo synthesis.

1.5  Prospects for New Assembly Technologies

Array synthesis has the advantage of a low volume production of oligos with 
high library diversity [18]. Gene assembly based on array synthesis has proved 
difficult to commercialize. At least three companies in this space, Codon 
Devices, Gen9, and Cambrian Genomics, have gone bankrupt or been acquired 
in recent years. Twist, a more recent entrant, now quotes prices in the neighbor-
hood of $10 per base and publicly asserts it will push prices much lower in the 
coming years.

With prices potentially soon falling by orders of magnitude, one must ask 
about the subsequent impact on the market for synthetic genes. New firms enter-
ing the market are implicitly working on the hypothesis that supply‐side price 
reductions will drive increased demand. The most obvious source of that demand 
would be forward design of genetic circuits based on rational models. Yet the 
most sophisticated synthetic genetic circuits being constructed in industrial set-
tings are designed largely using heuristic models rather than quantitative design 
tools [19]. Moreover, these circuits contain only a handful of components, which 
stand as a substantial bottleneck for demand. Alternatively, customers may 
employ less up‐front predictive design and instead rely on high‐throughput 
screening of pathway variants; screening libraries of pathways has the potential 
to create substantial demand for synthetic genes [20].

Considering the interplay between market size and price reveals challenges for 
companies entering the gene synthesis industry. Recalling the lessons of Moore’s 
law, a relatively simple scaling argument will reveal the performance constraints 
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of the gene synthesis industry. Intel knew that it could grow financially in the 
context of exponentially falling transistor costs by shipping exponentially more 
transistors every quarter – that is, the business model of Moore’s law. But that 
was in the context of an effective pricing monopoly, and Intel’s success required 
a market that grew exponentially for decades. The question for synthetic gene 
companies is whether the market will grow fast enough to provide adequate rev-
enues when prices fall. For every order of magnitude drop in the price of syn-
thetic genes, the industry will have to ship an order of magnitude of more DNA 
just to maintain constant revenues. More broadly, in order for the industry to 
grow, synthesis companies must find a way to expand their market at a rate faster 
than when prices fall. Unfortunately, as best as I can tell, despite falling prices and 
putative increases in demand, the global gene synthesis industry generated only 
about $150 million in 2015 [21]. The total size of the industry appears to have 
been static, or even to have decreased, over the prior decade.

Ultimately, for a new wave of gene synthesis companies to be successful, they 
have to provide their customers with something of value. Academic customers 
are likely to become more plentiful as it becomes even more obvious that order-
ing genes is cheaper than cloning genes, even with graduate student labor costs. 
Gene synthesis pioneer John Mulligan used to cite NIH expenditures on 
cloning – approximately $3 billion annually – as a potential market size for gene 
synthesis [22]. This is certainly an attractive potential market. However, with the 
price per base potentially falling dramatically in the near term, the comparison to 
cloning must focus on the total number of cloned bases replaced by synthesis 
and at what exact price.

For commercial customers, it is less obvious that lower prices will equate to sub-
stantial increases in demand. The cost of sDNA is always going to be a small cost 
of developing a product, and it is not obvious that making a small cost even smaller 
will affect the operations of an average corporate lab. In general, research only 
accounts for 1–10% of the cost of the final product [23]. The vast majority of devel-
opment costs are in scaling up production and in polishing the product into some-
thing customers will actually buy. For the sake of argument, assume that the total 
metabolic engineering development costs for a new product are in the neighbor-
hood of $50–100 million, a reasonable estimate given the amounts that companies 
such as Gevo and Amyris have reportedly spent. In that context, reducing the cost 
of sDNA from $50 000 to $500 may be useful, but the corporate scientist‐customer 
will be more concerned about reducing the $50 million overall costs by a factor of 
two, or even an order of magnitude, a decrease that would drive the cost of sDNA 
into the noise. Thus, in order to increase demand adequately, the production of 
radically cheaper sDNA must be coupled with innovations that reduce the overall 
the product development costs. As suggested above, forward design of complex 
circuits is unlikely to provide adequate innovation anytime soon. An alternative 
may be high‐throughput screening operations that enable testing many variant 
pathways simultaneously. But note that this is not just another hypothesis about 
how the immediate future of engineering biology will change but also another gen-
erally unacknowledged hypothesis. It might turn out to be wrong, and elucidating 
one final difference between transistors and DNA may explain why.
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The global market for transistors has grown consistently for decades, driven by 
an insatiable demand for more computational power and digital storage. Every 
new product must contain more transistors than the model it replaces. In con-
trast, while the demand for biological products is also growing, every new bio-
logical product is made using, in principle, just one DNA sequence. In practice, 
while many different DNA sequences may be constructed and tested in develop-
ing a new product, these many sequences are still winnowed down to only one 
sequence that defines a microbial, plant, or mammalian production strain. 
Nevertheless, this fundamental difference in use between transistors and DNA 
reveals the gene synthesis industry as the provider of engineering prototypes 
rather than as a large volume manufacturer of consumer goods. Consequently, 
while high‐throughput synthetic biology companies such as Amyris, Ginkgo 
Bioworks, and Zymergen may place relatively large orders for sDNA, the price 
and volume of that sDNA will never have much impact on the final products 
produced by those companies.

1.6  Beyond Programming Genetic Instruction Sets

At present, the cost of purifying oligos and short dsDNA can exceed the cost of 
the DNA itself by as much a factor of three. The availability of lower cost, high 
quality dsDNA may therefore enable applications that are presently not econom-
ically viable at large scale. Beyond its utility in programming biological systems, 
dsDNA can be used as nanoscale structural or functional components [24]. The 
future of these applications is difficult to predict but could include circuitry 
assembled from DNA that is modified using proteins and chemistry to create 
conductive and semiconductive regions useful for computation [25]. It is unclear 
what sDNA market size these applications may support. Recent progress sug-
gests that new demand might emerge from the use of DNA as a digital informa-
tion storage medium [26]. Even a single, modestly size data center would consume 
many orders of magnitude of more sDNA than any prospective use of sDNA in 
biological contexts [27].

1.7  Future Prospects

Regardless of the particular course of companies entering the gene synthesis mar-
ket, it appears that prices are likely to fall, potentially fueling an increase in demand. 
That demand may come in part from customers who fall outside the usual aca-
demic and corporate classifications; start‐up companies, community labs, and 
individual, independent entrepreneurs and scientists are likely to use sDNA in new 
and interesting ways. The standing biosecurity strategy of the United States is to 
explicitly engage and encourage this innovation, including in contexts such as 
“garages and basements” [28]. This strategy recognizes the important role of entre-
preneurs in innovation and job creation and also recognizes the difficulty of pre-
venting access to biological technologies through regulations or restrictions. 
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Complementing the engagement strategy is an effort to prevent accidentally 
synthesizing and shipping potentially hazardous sequences. Most gene synthesis 
companies have voluntarily signed onto international agreements to screen orders 
against lists of pathogens and toxins such as the Harmonized Screening Protocol of 
the International Gene Synthesis Consortium (IGSC) [29].

The technical potential of new sDNA production methods may provide an 
opportunity to build and test far more genetic circuit designs than what is now 
feasible. The economic demand for biological production is enormous and is 
growing rapidly [30, 31]. Whether newly emerging sDNA companies survive 
economically depends in large part on their ability to increase total market 
demand sufficiently to offset falling prices. The size of that market, in turn, 
largely depends on whether less expensive dsDNA enables customers to reduce 
research and development costs and to create more products. The fundamental 
problem for the synthesis industry is that, however valuable sDNA is substan-
tively to biological engineering in practice, the monetary value of that DNA is 
small compared with total development costs and has been falling, at times very 
rapidly, for decades. Falling prices limit both the maximum profit margin and the 
incentive to invest in new technology. Any new technology that does enter the 
market will inevitably drive competition, further depressing prices and margins. 
Going forward, productivity and prices are likely to display step changes result-
ing from the emergence of new technology and competition rather than display 
smooth long‐term changes. Finally, given the relatively low barriers to entry for 
biological technologies and the consequent inevitable competition, it is worth 
asking whether centralized production is the future of the industry. As with 
printing documents, it may be that the economics of printing and using DNA 
favor distributed production, perhaps even a desktop model. There is no funda-
mental barrier to integrating any demonstrated synthesis and assembly technol-
ogies into a desktop gene printer. Ultimately, over the long term, a globally 
expanding customer base will ultimately determine how sDNA is produced and 
used. Regardless of how current technology specifically impacts supply and 
prices, that customer base is increasing, and it is likely that the trends displayed 
in Figures 1.1 and 1.2 will continue for many years to come.
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