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Preface

The biological systems and their functions are driven by information stored in the
genetic material, the DNA, and their expression is driven by different factors. The
active units of these DNA sequences are genes, which also interact with each other to
define a condition-specific expression. The soft computing approaches recognize the
different patterns in DNA sequence and assign them biological relevance with
available information. At times these patterns not only help in the classification of
but also predict functionally active domains. These approaches are equally helpful in
predicting protein-protein interaction. To understand any stressed scenario, there is
need to predict gene networks by applying tools which can suggest differential gene
expressions. The issue extends these tools in a wide range of models from bacteria to
human cancers. We wish to present the status of diverse possibilities and our views
and opinions to finally provide mankind with novel, innovative, and long-lasting
strategies, in the book entitled Soft Computing for Biological Systems. The book
provides insights into bioinformatics tools for neural networks, metagenomics data
analysis, genetic barcoding, machine learning, and diagnostic predictions. The well-
illustrated articles written by the experts in the area provide information on thrust
scientific R&D areas and their future perspectives for the prospective researchers and
graduate students – future of the scientific society. This book has reached its
completion primarily due to the sincere efforts of the dedicated academic experts –
to share their vision and wisdom. This collection of chapters has been presented in a
manner which can benefit the curious minds of the society. We are indebted to all the
people, whose invaluable contributions brought this book to fruition.

Delhi, India Vipin Chandra Kalia
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Current Scenario on Application
of Computational Tools in Biological
Systems

1

Hemant J. Purohit, Hitesh Tikariha, and Vipin Chandra Kalia

Abstract

The uncertainties and complexities of biological system challenge analytical

approach and process of understanding. The wet lab experiments supported by

soft algorithms find a way to resolve these scenarios. In the last decade, the

biological analytical approach has found tremendous shift in data generation and

analysis capacities. From sequencing of DNA and RNA to prediction of 3D

structure and function of protein, there are a wide array of soft tools to make the

job of exploring a system lot easier. This development eases our understanding

of gene networks, plasticity and pattern of gene expression at gene to

epigenomic level. In this book, we attempted to document selected areas of

biological system and their advances, which will be frontier areas.

Keywords

Databases · Epigenome · Gene networks · Omic tools · Plasticity · Signatures

1.1 Introduction

The biological research has seen rapid progress through the use of computational

tools for understanding physiological events. However, with the advent of next

generation sequencing, there has been an explosive generation of data at different
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levels of cellular organisation. A deeper understanding of protein expression

profiles further supported this phenomenon. This has brought the data generated

by biological systems into the domain of the big data analysis. The soft computing

and artificial intelligence have become a prerequisite for the field of biological

research to unfold system phenomenon. Bioinformatics tools have now become an

essential hand for every section of biological data not only for handling and

processing but also for validating the wet laboratory experiments. The omics era

actually has now started emerging out of its lag phase. The progress of every

laboratory is based on how intelligently they are harnessing the analytical tools

for shaping the log phase trend of their physiological understanding. Keeping all

these ingredients in the mind, this book opens up the current recipes of biological

data de-codification. It is an attempt to focus on a few key areas and define their

present status. The different areas challenge the readers to exploit a diversity of

tools for applications in biological systems.

1.2 Protein Structure Prediction and Interaction

From the protocol of protein assay to chromatography and finally to NMR, now time

has brought the reliability and rapidity in understanding the same information by in

silico protein structure and function prediction (Tikariha et al. 2016). Even for an

unknown protein, the implementation starts with the determination of its primary

sequence. There has been an intense shift in the simple prediction of the secondary and

tertiary structure of a protein from geometrical-based programming to new machine

learning algorithms. Spencer et al. (2015) have given a vivid detail on ab initio protein

secondary and tertiary prediction with the help of deep learning network. The concept

eliminates the need for large protein structure database with known predicted proteins.

This concept along with the incorporation of dihedral angle, torsion angle, solvent

accessible surface area, positions and interactions of hydrogen bonds data can make

the structure prediction a piece of cake (Heffernan et al. 2015). Even protein sequence

and PDB database are on the rise, which will add to our knowledge on protein folding.

This database can help in training the programs, which can help them in predicting the

folding pattern and hence proposing the structure of an unknown protein. Thus, to get a

vivid insight, one of the chapters gives an idea about the application of machine

learning advancement in protein structure prediction.

The prediction of protein 3D structure is followed by the challenge of unearthing

its interaction with other molecules, such as DNA and mRNA, or even with another

protein. This part of the study holds immense potential for application in cellular

pharmacology and drug discovery. Majorly there are three methods to study

protein-protein interactions (PPIs) such as (1) residue coupling, (2) prediction of

binding surface patch and (3) assembly prediction (Keskin et al. 2016). Based on

this information, dozens of tools to analyse interfacial changes and calculate

residues physicochemical changes have been developed. The database is also

being constructed where one can look for curated PPIs such as CORUM, HIPPIE,

IntAct, SPIKE, etc. Exploration of an interaction of peptide chain is also on the rise,

and there is a huge market build-up on using peptide as a therapeutic agent (Nevola

2 H. J. Purohit et al.



and Giralt 2015). Research avenues are also being built for modulation of PPI using

small inhibitory molecules (Arkin et al. 2014). Computational tools can modulate

the dynamics of protein structure and its behaviour in a particular solvent system.

Integration of this data with the thermodynamics of molecule interactions and

characteristics of amino acid residues involved in the interactions can simulate

the interactive behaviour of two protein molecules. Protein interactions with

smaller molecules can also assist in deciphering the signalling cascade; and so by

understanding this, one can precisely regulate/modulate the machinery inside a cell.

One can also detect crucial amino acid residue involved in PPI. An evolutionary

biologist can also seek for changes in protein-protein interactions, which can be

responsible for metabolic and phenotypic changes (Bartlett et al. 2016). Seeking

this past trend and huge market potential, this chapter aims to provide a deep insight

on PPIs.

Drug designing strategies are driven by the protein interactions with various

other molecules, in which the target locations are very specific and are with

minimum free energy levels. Data mining and drug discovery have been rising in

the field of pharmacology in recent years (Lavecchia 2015). Machine learning

systems mimic from nature’s own cellular system, where a molecule can play

multiple roles, and now this drives drug designing forward to poly-pharmacology

(Lavecchia and Cerchia 2016). In silico analyses are carried out in designing multi-

target drug relying on a huge database of ligands and protein 3D structure, docking

dynamics and pattern-based designing of the molecule. This not only ensures the

drug design but also its delivery to the site of action that is also a major concern for

its effectiveness. The whole effectiveness of drug relies on the intracellular trans-

porter system (Nigam 2015). Here algorithms on basis of nature of molecule,

transporter protein and interaction between them can predict how well the drug

can find its way into the cell and carry out their action. We have discussed the

potential of drug transporters system in one of the chapters.

1.3 Emerging Areas in Tool Development

With the advent of sequencing technologies, there has been a progressive rise in

computational tools (Kalia 2015; Koul et al. 2015; Yu et al. 2015; Ambardar et al.

2016; Koul and Kalia 2016; Kalia et al. 2017; Kumar et al. 2015, 2017; Meza-Lucas

et al. 2016). From pairing and assembling, the sequence reads to their annotation as

genes with different algorithms are becoming faster and accurate. In this, the

foremost approach is to design a robust multiple sequence alignment (MSA)

program. MSA is a key step for functional annotation, phylogenetic studies and a

necessity for comparative genomics and metagenomics (Pooja et al. 2015). Most of

the MSA tools such as CLUSTAL, MUSCLE, K-align and a lot more are based on

de novo assembly and pairwise alignment by tree construction. These programs are

good at handling a small set of sequences, but they become redundant while

handling thousands of dataset. For overcoming this deficiency, new tools have

been designed such as HAlign, a fast multiple similar DNA/RNA sequence

1 Current Scenario on Application of Computational Tools in Biological Systems 3



alignment (Zou et al. 2015), and PASTA, ultralarge MSA (Mirarab et al. 2015)

which can resolve this issue. Even tools like GUIDANCE2 are introduced to detect

unreliable alignment regions in MSA (Sela et al. 2015). The hardware driver

limitations are also being resolved, which can be seen in the development of

GPU named CUDA ClustalW v1.0, and these will accelerate the computation of

large datasets (Hung et al. 2015). We have dealt in detail the development in the

domain of MSA and its application in the sequence alignment.

Next-generation sequencing has brought the computational biology to a new

level. The databases for DNA, mRNA and proteins are growing geometrically. The

repositories such as NCBI, EMBL, IMG, MG-RAST, SILVA and RCSB PDB are

among the most exhaustively used databases. The Web has a large number of

repositories and analysis pipeline for each separate domain such as CRCDA for

cancer, Cas-Analyzer, Omics Pipe, etc. (Fisch et al. 2015; Thangam and Gopal

2015; Park et al. 2017). With NGS, the cost is going down, and there has been a

tremendous amount of metagenome data generation. It is thus demanding new tools

for accurate and reliable processing of this huge datasets. The attention has now

been laid on the interpretation of this data rather than functional and taxonomical

categorisation. Machine learning techniques, deep neural network generation and

highly sophisticated statistical analysis are being used to understand this data.

Integrated approach has been wired to connect all the analysis pipeline. A program-

ming language such as Pearl, Python, R and Ruby are extensively used for investi-

gation of NGS data. Nowadays, the Python and R have become two hands for

interpretation of complex biological system and aid in connecting new links

between the large and different datasets. The demands put regular pressure on

program developers for updating the algorithms; recently QIIME pipeline was

updated with the incorporation of PhyloToAST, which boosts its species-level

classification and gives more elaborative visual evaluation (Dabdoub et al. 2016).

Transcriptome analysis has even brought the sequencing and analysis of

miRNA, piRNA and IncRNAs possible, which is a big deal for disease diagnostic

especially in the case of cancer. Extraction of secondary data from sequenced and

annotated primary data is now becoming a remarkable strategy. Genome construc-

tion from metagenome is a new technique developed recently employing the

process of binning, coverage, reassembly and curation (Sangwan et al. 2016).

Tools like CheckM are devised to check the quality of reconstructed genomes

(Parks et al. 2015). Apart from the reconstruction of the genome, the scheme is

being designed to understand community-level talks, gene transfer and resistance

development (More et al. 2014; Kapley et al. 2015). Thus to make the reader aware

of this vast area, a chapter has been dedicated to bioinformatics tools for NGS data

analysis.

Genomic tools are not limited to sequence identification or characterisation but

can be implemented as pattern search algorithms to generate signatures, which can

be utilised as biomarkers for diagnostic purposes (Porwal et al. 2009; Bhushan et al.

2015). A genomic biomarker can be used as both prognostic and predictive bio-

marker. Due to its high sensitivity and high specificity, the medical industry is

looking for the discovery of such biomarker for every type of diseases (Kalia and

4 H. J. Purohit et al.



Kumar 2015; Kalia et al. 2015, 2016; Kekre et al. 2015; Kumar et al. 2016; Lee

et al. 2016; Puri et al. 2016). Cancer is one of the deadly diseases and hard to

diagnose at initial stages and opens a wide door for exploration of the genomic

marker. A whole bunch of biomarkers discovered till date for head and neck cancer

have been presented in a recent review (Kang et al. 2015). The promising nature of

biomarker application has provoked us to include a chapter on the use of genomic

biomarker in the case of oral cancer.

1.4 Gene Networks and Plasticity

Cells represent a collection of very well-coordinated and synchronised interactions

and movement of every molecule residing in it. This is due to inherited intelligence

cell carries for regulating expression of genes for every desirable event. Under-

standing this network of genes and how they regulate various machineries of cells

by modulating itself is a challengeable task. Exploration of gene network involves

the study of their expression pattern. The biological phenomenon evolved over a

period of time, with one gene, one expression and identified physiology to a now

collection of genes but even with the most sophisticated tools not completely

understood till date. Gene Expression Atlas, Gene Expression Commons,

CODEX and many more single gene expression databases are being created of

which BloodSpot is the recent one which provides the tree-based relationship

between different gene expression profiles present in the database (Bagger et al.

2016). As genes are differentially expressed in diverse conditions, it provides the

plasticity to the gene networking; the wide range of data need to be generated to

predict even an interaction of a single gene that behaves as a node in a network. A

database on gene plasticity named ImmuSort is already being released, which

provides an electric sorting system for immune cells (Wang et al. 2015). Thus

from different expression profiles of a single gene to linking its connection with the

expression profile of another gene requires a network-based analysis and a mam-

moth database.

Artificial neural networks are a set of models designed to classify and predict the

outcome from a provided data; hence they are widely used algorithms in gene

network prediction. Feedforward neural network, radial basis function network,

modular neural network and physical neural network are the general types of neural

network that are routinely applied in such analyses. Implying the data within a

given set of conditions, the network is designed to calculate the expression

behaviour for a set of genes. We have discussed the beneficial role of above

study in diagnostic prediction by the aid of gene expression profile and artificial

neural network.

The array of the genetic circuit in the cells can be grouped into various categories

and modules specialised to carry out a specific task. Carving out this module of

gene network could render the task easier for decoding the process associated with

it. We are mostly interested in a specific set of the gene network, which we can

modulate in a way that achieves a specific task such as understanding the response

1 Current Scenario on Application of Computational Tools in Biological Systems 5



of a signal cascade when osmotic stress is faced by the cell. Exploration of each

module can give an idea of complete genetic web collectively working in the cell.

Realising the core importance of this idea, we have added a chapter on soft

computing approaches to extract biologically significant gene network modules

that presents how through computational convergence one can study such network

module and function carried out by each module separately.

Not only understanding of gene network is essential but we should also know

how we can create a network. Mapping of a network relies on data used for its

creation which in our case would be gene expression profiles. This requires a series

of expression data of every single gene than stacking them upon one another in time

series or imposed variant conditions and in the last layering and connecting the

links between each gene involved in the network. Either the supervised or unsuper-

vised model can be used for creating a network. In a recent paper, authors describe

the use of both the approaches for the creation of gene regulatory network (Huynh-

Thu and Sanguinetti 2015). Single cell network synthesis toolkit has been used to

identify an interconnected network of 20 transcription factors in human blood cell

(Moignard et al. 2015). So to get acquainted about such emerging topic, we have

incorporated a chapter which deals with the construction of gene network.

1.5 Epigenome: Emerging Area

All the current techniques target the pattern of the four nucleotides, thereby

predicting its functions, but in the case of eukaryotes, this scenario changes. The

methylation pattern under the epigenetic tag governs which gene will get expressed

and which does not. Epigenomic research targets such molecule which can alter the

expression pattern of the genes in a chromosome. The epigenetic study has two core

areas – DNA methylation and histone modification. Methylation of DNA is usually

on CpG islands and follows a particular pattern used to deduce the expression

profile of gene under study. Techniques like methylation array detect DNA meth-

ylation, whereas ChIP sequencing determines a modification in histone. Both the

tools have helped in generating an epigenetic map of the human chromosome. The

epigenomic study is particularly interesting as it delivers the regulatory expression

channel of gene thereby influencing the phenotypic expression. The cross-links

through which epigenetic action is controlled by environmental factors are also a

great issue of interest. Lots of epigenome-wide-associated studies have linked diets,

smoking, stress, etc. to changes in genotypic and phenotypic variation in human

(Lee et al. 2015; Provençal and Binder 2015). Realising such rising trend in the area

of epigenomic, we have included a chapter on Module-Based Knowledge Discov-

ery for Multiple-Cytosine-Variant Methylation Profile.
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1.6 Expanding the Domain of Computational Statistical
Analysis

With the expansion of biological data, lots of statistical tools have been developed

to sort, group, analyse and predict the outcome from the data. Statistic combined

with appropriate programming language results in more analytical approach and

visually enhanced result. Along with the application of computational tools, various

modelling techniques are also being integrated to understand the pest population

dynamics (Whish et al. 2015; Gilioli et al. 2016). With so much focus on the

application of computational statistic in the field of biotechnology, we introduce

our reader to the domain of agriculture with such analysis. This chapter describes

the role of various computing tools and techniques based on background statistical

analysis for studying pest population dynamics.

1.7 Pattern Recognition/Barcoding/Diagnostics

Identification of species and determining its role in an environment are crucial step

in ecological discernment. DNA barcoding is one of the emerging genomic tools to

tackle this problem. Based on consensus pattern of a sequence, it aids in the

identification of species (Kalia and Kumar 2015; Kalia et al. 2015, 2016; Kekre

et al. 2015; Kumar et al. 2016; Lee and Rho 2016). DNA barcoding applies to all

domain of life for their classification. A great deal of DNA barcode application till

date has been broadly reviewed recently (Kress et al. 2015). Barcoding also allows

revealing the diversity pattern of flora and fauna thereby producing a species map

for niche/habitat (More and Purohit 2016; More et al. 2016).

The great nature of DNA barcoding is that it is applicable to every organism with

minor modification. The initial step in barcoding is deducing the signature sequence

in the species. After the identification, it can be used to tag every other species

which have an exact signature (Porwal et al. 2009; Kalia et al. 2011; Bhushan et al.

2013). Thus the nature and location of code vary from species to species and

organism to organism. The DNA barcode has a great role in conservative biology

as it can help in tracking the species of interest. To open up the reader more about

the application of DNA barcoding, we have discussed thoroughly the fish DNA

barcoding as a model. This chapter also covers up the various bioinformatics tools

and techniques deployed in generating a DNA barcode for a given species.

Earlier when DNA barcode was introduced, it was limited to eukaryotic

organisms due to high mutation rate in prokaryotes and absence of mitochondrial

or plastid DNA, which have rich consensus region. But now this scenario is

changing, and bacterial DNA barcode is being introduced in recent years along

with the introduction of meta-barcoding. Recent publications on marine benthic

meta-barcoding have already laid down this trend (Leray and Knowlton 2015). In

upcoming years we can expect the rise of meta-barcoding along with the

metagenomics. For providing a complete package of tools and software used in

bacteria DNA barcoding and analysis, reader can refer to a later chapter.
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Pattern- and network-based computational analyses are not only limited to the

microorganism or medical biology, but it has an expanded horizon in plant biology

too. Earlier it was concentrated to the regime of plant classical genetics and

breeding but gradually arose with plant genomics. The surge in plant genomics

can be seen with the recent introduction of PLAZA 3.0 which is a server assisting in

comparative plant genomics (Proost et al. 2015). Genomic analysis has already

been extended to the study of metabolite-based quantitative trait loci. Identification

of metabolites is one of the highlighted areas in plant metabolomics. Luo in 2015

discussed the genome-wide association studies based on metabolite. Not only

genetic trait but analysis of phenotypic trait in plant biology is a keen area. The

various repositories have been created to store phenotypic data for a selected plant

species, e.g. MaizeGDB, Ephesis databases, etc. This has laid down the

incorporation of microarray, metabolomics, sequencing and proteomics data in a

single platform for understanding the link between phenotypic expression, genetic

makeup and environmental factors. This has arisen the need for handling ample

amount of data synchronising it with metadata (Krajewski et al. 2015). Modelling

framework is also being applied in plant biology for better resolution of its cellular

event (Boudon et al. 2015). Observing a high trend in the application of computa-

tional tools in the subject of plant biology, a vivid description of the integration of

computational approach in plant biology and also its field application has been

discussed in this book.

With metadata, biological systems are challenging the scientific community with

its complexity. Covering different emerging disciplines in biology where computa-

tional approach is essential or playing an essential role has been discussed in this

book, which will surely give the reader a new paradigm in their analytical

processes.
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Abstract

Recent advances in scientific research point out that diagnostic prediction

represents a novel paradigm because of the decreased expense and the expanded

productivity of multi-omics technologies such as gene expression profiling. In

order to evaluate a mammoth amount of biomarkers produced by high-

throughput technologies, machine learning and predictive approaches such as

artificial neural network (ANN) algorithms have widely been utilized to assess

disease mechanisms and intervention outcomes. In this chapter, we first

illustrated ANN algorithms for establishing biomarkers in diagnostic prediction

studies. We then surveyed a variety of diagnostic prediction applications for

numerous diseases and treatments with consideration of ANN algorithms and

gene expression profiling. Finally, we outlined their limitations and future

directions. Future work in diagnostic prediction studies promises to lead to

innovative ideas related to disease prevention and drug responsiveness in light

of multi-omics technologies as well as machine learning and predictive

algorithms.
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2.1 Introduction

In this chapter, we briefly describe some key emerging diagnostic prediction studies

for various diseases and treatments of significance for public health with consider-

ation of gene expression profiles and machine learning algorithms such as artificial

neural network (ANN) models (Lin and Tsai 2011). This review is not intended as a

comprehensive survey of all possible diagnostics applications studied in the

literature.

First, we described machine learning and predictive algorithms such as ANN

models that have been widely used in the research community for pinpointing

biomarkers as well as for associating with diseases and drug responses in the

diagnostic prediction studies. Furthermore, we surveyed some potential biomarkers

that were investigated in the diagnostic prediction studies using gene expression

profiles and ANN algorithms and were reported to be linked with disease status or

drug efficacy. Moreover, we highlighted the limitations and future outlook regard-

ing the diagnostic prediction studies in terms of gene expression profiles as well as

machine learning and predictive algorithms. In future work, replication studies with

extensive and independent cohorts will be indispensable in order to establish the

characteristics of the potential biomarkers identified in the diagnostic prediction

studies in disease diagnosis as well as treatment response (Lin 2012; Lin and

Tsai 2012).

2.2 Machine Learning and Artificial Neural Networks

Machine learning and predictive methods contain computer algorithms which are

able to naturally perceive complicated patterns based on empirical data

(Kononenko 2001; Lane et al. 2012; Lin and Tsai 2016c). The objective of machine

learning and predictive algorithms is to facilitate computer algorithms to gain from

data of the past or present and then make decisions or predictions for unrecognized

forthcoming circumstances by utilizing that knowledge (Landset et al. 2015; Lin

and Tsai 2016c). In the general terms, the workflow (as shown in Fig. 2.1) for a

machine learning and predictive algorithm incorporates three phases including

construct the model from pattern inputs, appraise and refine the model, and then

establish the model into construction in prediction-making (Landset et al. 2015). In

other words, machine learning and predictive algorithms for classification

Data
Source

Training 
Set

Test Set

Model New
Data

Validate

Prediction

TuneTrain

Apply

Fig. 2.1 Machine learning workflow
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applications such as medical diagnosis or diagnostic prediction are procedures for

adopting the best assumption from a set of alternatives that are qualified for a set of

observations (Witten and Frank 2005). The strengths of machine learning and

predictive algorithms for classification, including nonlinearity, fault tolerance,

and real-time operation, make them suitable for complicated applications (Lane

et al. 2012).

ANN models, such as multilayer feedforward neural networks, can be frequently

utilized to solve complicated applications in classification and predictive modeling

due to the fact that ANN algorithms possess the benefits of fault tolerance, nonlin-

earity, integrality, and real-time operations (Lin et al. 2006; Kung and Hwang

1998). A multilayer feedforward neural network is one category of ANN algorithms

where networks between entities construct no directed cycles (Bishop 1995). In

other words, a loop or cycle does not exist in the network because the data only

relays in an onward order from the input entities, by means of the hidden entities

(if any), and then to the output entities.

Moreover, from an algorithmic point of view, the primary operation of this ANN

is separated into the learning and retrieving stages (Kung and Hwang 1998). In the

learning stage of this ANN, the back-propagation algorithm (Rumelhart et al. 1996)

is adopted for the learning scheme. Furthermore, in the retrieving stage, this ANN

repeats through all the panels to achieve the retrieval response at the output panel in

keeping with the inputs of test patterns. On the other hand, from a structural point of

view, this ANN is an iterative and spatial neural network that possesses numerous

panels of hidden neuron groups among the input and output neuron panels (Kung

and Hwang 1998).

The ANN models can be executed using favored machine learning tools such as

R (the R Project for Statistical Computing; http://www.r-project.org/) or the

Waikato Environment for Knowledge Analysis (WEKA) software (Witten and

Frank 2005). However, popular open-source machine learning tools including R

and WEKA are not originally constructed and implemented for large-scale data

(Landset et al. 2015). To effortlessly design and adopt for big data, there are

assorted machine learning tools, such as Mahout (http://mahout.apache.org/),

MLlib (https://spark.apache.org/mllib/), H2O (http://h2o.ai/), and SAMOA

(https://github.com/samoa-moa/samoa-moa), available to run in a distributed envi-

ronment (Lin and Tsai 2016c).

2.3 Gene Expression Profile

Noncoding RNAs, such as long noncoding RNAs and small noncoding RNAs, are

distinct from their complement messenger RNAs (mRNAs) because the sequence

of nucleotides in noncoding RNAs encodes no proteins (Nagano and Fraser 2011;

Lin and Tsai 2016a). While long noncoding RNAs represent transcripts with more

than 200 nucleotides in length, small noncoding RNAs, such as the microRNAs, are

smaller than 200 nucleotides in length.
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The microRNAs govern gene expression by regulating mRNA translation,

stability, and degradation (Dwivedi 2014; Lin and Tsai 2016a). The characteristics

of mRNAs, microRNAs, and long noncoding RNAs in examining disease patho-

genesis and in keeping track of response to treatment for human disease are

developing rapidly. Future work will be conducted to assess whether gene expres-

sion profiling including mRNAs, microRNAs, and long noncoding RNAs may be

established as potential biomarkers with respect to human disease and therapeutic

responses (Lin and Tsai 2016a).

2.4 Gene Expression Profile Studies with ANN

Table 2.1 summarizes the relevant diagnostic prediction studies by using gene

expression profile and ANN models. This is by no means a comprehensive survey

of all probable diagnostic prediction studies discovered so far. Nonetheless, a

growing body of studies has been investigated when scientists remain to pay

much attention to diagnostic prediction research.

2.4.1 Cancer

There were a variety of diagnostic prediction studies for cancer research using ANN

models and gene expression profiling. First, Pass et al. (2004) trained a three-layer

ANN model based on the expression value of differentially regulated genes and

derived a set of 27 genes that distinguishes good-risk and poor-risk surgically

Table 2.1 Diagnostic prediction studies of gene expression profiling for various diseases and

treatments of significance using artificial neural networks

Disease/treatment Results References

Malignant pleural

mesothelioma

Achieved 76% accuracy Pass et al. (2004)

Neuroblastoma Achieved 88% accuracy Wei et al. (2004)

Astrocytic brain tumors Identified an optimum set of

37 genes

Petalidis et al. (2008)

Breast cancer Reduced a 70-gene signature to

nine genes

Lancashire et al.

(2010)

Schizophrenia Achieved 87.9% accuracy Takahashi et al.

(2010)

Diffuse large B-cell lymphoma Achieved 93% accuracy Mehridehnavi and

Ziaei (2013)

Luminal A-like breast cancer Revealed ten microRNAs for

further analysis

McDermott et al.

(2014)

Childhood sarcomas Showed strong connection links on

certain genes

Tong et al. (2014)

Chemotherapy in non-small

cell lung cancer

Achieved 65.71% accuracy Chen et al. (2015)
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treated patients with malignant pleural mesothelioma. A rare and aggressive cancer

called malignant pleural mesothelioma usually evolves in the thin row of tissue

neighboring the lungs known as the pleura. Of the 27 genes revealed to be signifi-

cant, 18 have been intensely investigated in the literature, and few have been linked

with malignant pleural mesothelioma (Pass et al. 2004).

Secondly, Wei et al. (2004) utilized gene expression profiles from cDNA

microarrays to forecast the outcome and extract a minimal gene set in patients with

neuroblastoma by using ANN models. Neuroblastoma is the most common cancer in

childhood and in infancy. They suggested that the top 24 ANN-ranked clones, which

represented 19 unique genes as aminimal gene set, resulted in theminimal classification

error. Wei et al. (2004) also indicated that ANN models can predict additional patients

according to their survival status based on either all genes or in particular the 19 genes.

Thirdly, Petalidis et al. (2008) assessed whether molecular signatures can define

survival prognostic subclasses of astrocytic tumors by using gene expression data

from 65 highly annotated tumors and a simple ANN model in the form of a single-

layer perceptron. Astrocytic tumors are the most common type of cancer in the

brain. They analyzed the ANN model to optimize leave-one-out cross-validation

runs, which resulted in an optimum set of 37 genes. Petalidis et al. (2008) selected

two genes of special interest, PEA15 and ADM, for further analysis in their study.

In addition, Lancashire et al. (2010) leveraged a previously published dataset of

breast cancer and applied an ANN approach to identify an optimal gene expression

signature for predicting the outcome of patients with breast cancer. Lancashire et al.

(2010) found that only nine genes were needed to forecast metastatic spread with

sensitivity of 98% by utilizing an ANN algorithm implemented especially for the

optimal biomarker subgroups in gene expression data.

Moreover, Mehridehnavi and Ziaei (2013) utilized ANN models to find the most

significant genes and classify patients with diffuse large B-cell lymphoma, which is a

cancer of B cells, on the basis of their gene expression profiles. Diffuse large B-cell

lymphoma is a form of white blood cell responsible for generating antibodies.

Mehridehnavi and Ziaei (2013) used the signal-to-noise ratio as a major approach

to reduce the number of genes from 4026 to 2 most significant genes. By using two

most significant genes to train the ANN model, their results showed that the training

and testing errors were 0% and 7%, respectively (Mehridehnavi and Ziaei 2013).

Furthermore, based on a cDNA microarray dataset, Tong et al. (2014) utilized

ANN models to find the potential gene-gene interactions among previously deter-

mined biomarkers in children sarcomas, which are a rare kind of cancer arising

from transformed cells of mesenchymal origin. Their analysis revealed that seven

key genes including FCGRT, FNDC5, GATA2, HLA-DPB1, MT1L, OLFM1, and
TNNT1 had significant associations (Tong et al. 2014).

Finally, McDermott et al. (2014) employed ANN models and microarray

profiling to pinpoint circulating microRNAs that were expressed in a differential

manner among individuals with luminal A-like breast cancer in comparison to those

without luminal A-like breast cancer. They found 76 microRNAs with differential

expression in subjects with luminal A-like breast cancer and also identified

10 microRNAs for further analysis using ANN models (McDermott et al. 2014).
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2.4.2 Chemotherapy

The use of genetic information and other biomarkers has played a major role in

better predicting patients’ responses to targeted therapy. For example, adjuvant

chemotherapy for non-small cell lung cancer can be used after surgery to put an end

to recurrence or metastases. Unfortunately, not every patient is suitable for treat-

ment. Chen et al. (2015) aimed to construct prediction models to recognize who was

suitable for adjuvant chemotherapy in subjects with non-small cell lung cancer.

Their analysis showed that the best ANN model achieved 65.71% accuracy with

two genes such as DUSP6 and LCK.

2.4.3 Schizophrenia

Schizophrenia is a chronic and severe mental disorder that affects social behavior,

beliefs, and thinking for a person (Liou et al. 2012; Lin and Tsai 2016b). Takahashi

et al. (2010) used an ANN algorithm to assess whether the gene expression

signature in whole blood consists of sufficient information to segregate patients

with schizophrenia. They singled out 14 probes as predictors for differential

diagnosis of schizophrenia with the quality filtering and stepwise forward selection

methods. The ANN model was then constructed with the selected probes, and it

carried out 91.2% accuracy in the training data and 87.9% accuracy in the testing

data (Takahashi et al. 2010).

2.5 Perspectives

Several limitations exist with respect to the aforementioned diagnostic prediction

studies. Firstly, studies with limited sample size did not warrant well-defined results

(Lin and Lane 2015). Secondly, researchers often investigate all of the available

algorithms because the only sure way to find the very best algorithm is to try all of

them (Lin and Tsai 2016c; Lin and Lane 2017).

Besides ANNmodels, there are a variety of machine learning tools we can use to

analyze gene expression profiling data in diagnostic prediction studies. Some of the

best-known machine learning and predictive algorithms encompass naive Bayes

(Domingos and Pazzani 1997), C4.5 decision tree (Quinlan 1993), ANNs (Lin et al.

2006; Kung and Hwang 1998; Bishop 1995; Rumelhart et al. 1996), support vector

machine (SVM) (Vapnik 1995), k-means (Lloyd 1982), k-nearest neighbors (kNN)

(Altman 1992), and regression (Friedman et al. 2010; Zou and Hastie 2005). These

classifiers are usually adopted for comparison owing to the fact that these methods

possess a diversity of capacities with distinctively representational models, such as

probabilistic models for naive Bayes, decision tree models for the C4.5 algorithm,

and regression models for SVM (Hewett and Kijsanayothin 2008).

For instance, Table 2.2 summarizes the relevant diagnostic prediction studies by

using gene expression profile and a variety of machine learning models. In order to
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predict breast cancer recurrence, Chou et al. (2013) employed gene expression

profiling of breast cancer survivability and three methods including logistic regres-

sion, decision tree, and ANN models. Their analysis indicated 21 genes closely

relevant to breast cancer recurrence (Chou et al. 2013). In addition, in order to

screen for the variations in gene expression between colorectal tumors and normal

mucosa tissues, Chu et al. (2014) employed four methods, including ANN, predic-

tion analysis of microarray, classification and regression trees (CART), and C5.0

algorithms. Colorectal cancer is a cancer that starts in the colon or rectum. Chu et al.

(2014) adopted a two-tier genetic screen to reduce the number of candidate signifi-

cant genes, and the ANN model achieved the best classification performance, with

an average 99% test accuracy. Moreover, based on gene expression data, Hu et al.

(2015) classified colon cancer subjects treated with elective standard oncological

resection into two groups such as relapse and no relapse by using ANN, Kohonen

neural network, and SVMmodels. The Kohonen neural network model achieved the

best classification performance, with an average 91% test accuracy (Hu et al. 2015).

In future work, a bioinformatics pipeline can be used to provide a thorough

evaluation and validate whether the findings are replicated in diagnostic prediction

studies. Figure 2.2 shows a bioinformatics pipeline for analyzing and visualizing

gene expression profiling data in diagnostic prediction studies. Additionally, we

could investigate potential biomarkers by using a custom data mining pipeline so

that genetic networks would be illustrated at the genome level.

Table 2.2 Diagnostic prediction studies of gene expression profiling for various diseases and

treatments of significance using a variety of machine learning algorithms

Disease/treatment Results References

Breast cancer Identified 21 most-associated genes Chou et al. (2013)

Colorectal tumors Achieved 99% accuracy Chu et al. (2014)

Colon cancer Achieved 91% accuracy Hu et al. (2015)

Classification

Bioinformatics
Analysis

Visualization Modeling

Data 
Annotation 

Clustering

Fig. 2.2 Bioinformatics tools for analyzing and visualizing the relationship between gene

expression data and human diseases
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