Springer Tracts in Mechanical Engineering

Sine Leergaard Wiggers Pauli Pedersen

Structural Stability and Vibration

An Integrated Introduction by Analytical and Numerical Methods

Springer Tracts in Mechanical Engineering

Board of editors

Seung-Bok Choi, Inha University, Incheon, South Korea Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, P.R. China

Yili Fu, Harbin Institute of Technology, Harbin, P.R. China Carlos Guardiola, Universitat Politècnica de València, València, Spain Jian-Qiao Sun, University of California, Merced, USA Springer Tracts in Mechanical Engineering (STME) publishes the latest developments in Mechanical Engineering - quickly, informally and with high quality. The intent is to cover all the main branches of mechanical engineering, both theoretical and applied, including:

- Engineering Design
- Machinery and Machine Elements
- Mechanical structures and stress analysis
- Automotive Engineering
- Engine Technology
- Aerospace Technology and Astronautics
- Nanotechnology and Microengineering
- Control, Robotics, Mechatronics
- MEMS
- Theoretical and Applied Mechanics
- Dynamical Systems, Control
- Fluids mechanics
- Engineering Thermodynamics, Heat and Mass Transfer
- Manufacturing
- Precision engineering, Instrumentation, Measurement
- Materials Engineering
- Tribology and surface technology

Within the scopes of the series are monographs, professional books or graduate textbooks, edited volumes as well as outstanding PhD theses and books purposely devoted to support education in mechanical engineering at graduate and post-graduate levels.

More information about this series at http://www.springer.com/series/11693

Sine Leergaard Wiggers · Pauli Pedersen

Structural Stability and Vibration

An Integrated Introduction by Analytical and Numerical Methods

Sine Leergaard Wiggers
Department of Technology and Innovation
University of Southern Denmark
Odense M
Denmark

Pauli Pedersen
Department of Mechanical Engineering
Technical University of Denmark
Kgs. Lyngby
Denmark

ISSN 2195-9862 ISSN 2195-9870 (electronic) Springer Tracts in Mechanical Engineering ISBN 978-3-319-72720-2 ISBN 978-3-319-72721-9 (eBook) https://doi.org/10.1007/978-3-319-72721-9

Library of Congress Control Number: 2017962289

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part of Springer Nature

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book is based on lecture notes for a postgraduate course at University of Southern Denmark (SDU). For us, the integrated teaching of stability and vibration justifies the efforts needed to join many different subjects in a presentation on the introductory level.

Basic understanding of the content of the course, named Stability and Vibration, can be obtained from the derived formulas and graphical presentations of numerical results that give an overview of parameter dependence. Students may reproduce these graphs with their personal MATLAB programs and obtain further results and a deeper insight. Formulas for instability modes and vibrational modes should be used to write interactive and dynamic programs to get a deeper insight into the subject of the course.

The chosen presentation to a large extent in non-dimensional quantities may at first seem disturbing, but it gives more generality and is hopefully appreciated after some time. It should be added that dimensional check of formulas is still possible.

A number of different notes written in Danish are behind this book. Critics of the present version and suggestions to improve the book are most welcome on email to slp@iti.sdu.dk.

Denmark September 2017 Sine Leergaard Wiggers
Pauli Pedersen

Contents

1	intro	Dauction	J
2	Bean 2.1 2.2 2.3 2.4	m-Column Differential Equation What Is a Beam-Column Differential Equation for Static Equilibrium Differential Equation for Eigenfrequencies Names and Symbols for Boundary Conditions (BC)	5 5 7 8 10
3	Eige	n Solutions for the Euler Cases	13
	3.1	Boundary Conditions	13
	3.2	How to Solve an Eigenvalue Problem	14
	3.3	Instability Modes for the Euler Cases	14
		3.3.1 Instability Mode for the Euler Case I	14
		3.3.2 Instability Modes for the Euler Cases II–IV	15
		3.3.3 Instability Mode for the Euler Case V	16
	3.4	Eigenfrequency Modes for the Euler Cases	17
		3.4.1 Eigenfrequency Modes for the Euler Case I	17
		3.4.2 Eigenfrequency Modes for the Euler Cases II–VI	18
	3.5	Summary	21
4	Bean	m-Columns and Applied Berry Functions	23
	4.1	Model of Beam-Column	23
	4.2	General Moment Loads	26
	4.3	Elastic Support Against End Rotations	28
		4.3.1 A Fixed Support as a Limiting Case	30
5	Shea	r Beam Loads and Cantilever Beam-Columns	33
	5.1	Shear Loads on Beam-Columns	33
		5.1.1 A Fixed Support as a Limiting Case	35
	5.2	Cantilever Beam-Columns	36
		5.2.1 Two Cantilever Cases	38

x Contents

6	Beam	n-Column Eigenfrequencies	41		
	6.1	Mathmatical Model for Different Physical Problems	41		
	6.2	Solution of DE (6.1) with BC (6.2)	42		
	6.3	Eigenfrequency as a Function of Conservative Axial Load	44		
	6.4	Rotational Spring Supports	45		
		6.4.1 Euler Cases as Limiting Cases	46		
7	Buck	ling with Spring Supported BC	47		
	7.1	Mathematical Definition and Physical Experiments	47		
	7.2	Different Instability Formulations	48		
	7.3	Buckling with End Rotations	49		
	7.4	Buckling with End Translations	51		
	7.5	Buckling with Winkler Support	53		
		7.5.1 Eigenfrequencies with Winkler Support	57		
8	Eiger	nfrequencies of Beam-Columns with Spring			
	Supp	orted BC	59		
	8.1	Eigenvalue Problems with Analytical Solution	59		
	8.2	Solving the Transcendental Equations	62		
	8.3	Explicit Solutions by Inverse Approach	63		
		8.3.1 Lowest Eigenfrequency as a Function of Support			
		Stiffnesses, Assumed No Column Force	64		
	8.4	Alternative Function Expressions	64		
	8.5	Specific Graphically Presented Results, Obtained			
		by the Newton-Raphson Method	66		
		8.5.1 Lowest Eigenfrequency as a Function of Column			
		Force, with Support Stiffnesses as Parameters	68		
		8.5.2 Lowest Eigenfrequency as a Function of Column			
		Force, Further BC Parameters	68		
	8.6	Lowest Eigenfrequency as a Function of Non-conservative			
		"follower" Column Force	70		
9	Dyna	mic Stability Formulation	73		
	9.1	One and Two Degrees of Freedom	73		
	9.2	An Elementary Beam-Column Case	74		
	9.3	Column with a Point Mass	77		
	9.4	An Improved Dynamic Column Model	80		
	9.5	Non-conservative Column Load	82		
10	Stabi	lity of 2D Frames	85		
	10.1	Frames	85		
	10.2	Only One Beam-Column in the Frame	85		
	10.3	Several Beam-Columns in the Frame	87		
	10.4	Solution Procedure ("cookbook")	89		
	10.5	Post-Critical Imperfection Analysis	91		

Contents xi

11	Buck	ling Stresses, Material Nonlinearity,	
		Beam Modeling	95
	11.1	Various Concepts	95
	11.2	Maximum Stress in Beam-Columns	96
	11.3	Material Nonlinearity	99
		11.3.1 Different Suggested Formulas	99
			100
		11.3.3 Design Formulas Used in Truss Optimization	101
	11.4		102
			103
			104
12	Larg	e Displacements, Pre-buckling Strains,	
		-	105
	12.1		105
	12.2		108
		12.2.1 A Build Up Column	109
		12.2.2 Notes on Global and Local Buckling	
		and Vibrational Modes	111
	12.3	Linear Elastic Snap-Through	112
13	Dynamics of Discretized Linear Systems		
	13.1		115
	13.2		116
	13.3		117
		13.3.1 Real, Positive Eigenfrequencies	117
		13.3.2 Orthogonal Eigenmodes	118
	13.4	Expansion for More General Linear Systems	119
	13.5	Vibrations with Single dof	120
		1 6	120
		13.5.2 Damped Single dof Vibrations	121
14	Discr	retized Stability Analysis	123
	14.1	Different Stiffness Matrices	123
	14.2	6 6	124
		14.2.1 Finite Element Equilibrium and the Secant	
		Stiffness Matrix	125
		1	126
			126
		14.2.4 The Tangent Stiffness Matrix for a Tetrahedron	
			127
	14.3	ϵ	128
		14.3.1 Nonlinear Obtained Reference State	120

xii Contents

	14.4	Nonlinear Implicit Procedure or Nonlinear Explicit	120
	14.5	Procedure	129 131
15	Rout	h–Hurwitz-Liénard–Chipart Criteria	133
	15.1	Relation to Dynamic Stability	133
	15.2	Necessary Criterion	134
	15.3	Necessary and Sufficient Criteria	135
	15.4	Criteria Expressed by Polynomial Coefficients	136
	15.5	Polynomials with Complex Coefficients	138
	15.6	Example with Complex Coefficients	139
16	Num	erical Tools	141
	16.1	Newton-Raphson Iterations for Solving Nonlinear	
		Problems	141
	16.2	Numerical Tools for Linear Problems	142
	16.3	Gauss Factorization	142
	16.4	Linear Solutions by Forward and Backward	
		Substitutions	144
	16.5	Superelement Technique	145
	16.6	Power Method and Inverse Iteration	146
		16.6.1 Rate of Convergence	148
		16.6.2 Orthogonalization and Shift	149
	16.7	Subspace Iteration	151
Ref	erence	s	153
Ind	ex		155

Acronyms

Traditional notations are normally preferred. For non-dimensional quantities, the use of the Greek letters is preferred, but with exceptions as for non-dimensional boundary stiffnesses. For dimensional quantities, the use of the Latin letters is preferred. Matrix notation is used for linear algebra with $[\]$ for rectangular and quadratic matrices, $\{\}$ for column matrices and $\{\}^T$ for row vectors, i.e., T as upper index for transpose.

Notations

 \boldsymbol{A}

 $f, f_{i,j}$

Latin notations, mainly dimensional quantities

A_{min}	Minimum allowable cross-sectional area
$B,ar{B}, ilde{B}$	Berry functions
C	Lower index for critical quantity
C, C_1, C_2, C_3, C_4	Constants in a solution
c	Cross-sectional position for largest axial stress in
	(11.5)
D	Determinant and characteristic function
$D_1, D_2, D_3, D_4, D_5, D_6, D_7$	Sub-functions of <i>D</i>
D,d	Diameters of a circular cross section
E, E_t, E_s, E_r	Moduli of elasticity, specifically, Young's, tangent,
	secant, and reduced
e	Eccentricity length
F	Function for differentiation of finite integral in (2.4)

Flexibility components

Cross-sectional area

xiv Acronyms

C	Cl 1 1 C . 1 C . 2 . C
G	Shear modulus of elasticity
8_	Acceleration of gravity
g, \bar{g}	Parameters defined by (8.12)
h	Height
I,i	Cross-sectional moments of inertia
i	Imaginary unit = $\sqrt{-1}$
K	Stiffness for translational spring at boundary
k, k_C	Non-dimensional <i>K</i> and critical value of this
L, l	Lengths of a beam
$ ilde{L}$	Deformed length of a bar
l_e	Effective length in buckling or in vibration
M	Moment, internal or external load
M_0, M_1	Moments at the boundary of a beam-column
M_A, M_{AB}	Moment at a point A specifically of beam-column
	between A, B
m	Distributed moment per length
N	Axial column force, positive in tension
N_C	critical axial column force
N_{AB}	Axial column force in beam-column between A, B
n	Number, say 0, 1, 2,
n_C	Number of buckles in critical state
P, P_C	Axial column compressive force, and critical value of this
P_p	Compressive force resulting in compressive stress σ_p
p^{r}	Volume force
$P(z), \tilde{P}(z)$	Complex polynomial and its conjugated, see (15.18)
Q(z)	Real coefficient part of a complex polynomial
$\widetilde{R}(z)$	Imaginary coefficient part of a complex polynomial
Q	Beam external force in transverse direction
\overline{q}	Distributed beam external force in transverse direction
•	per length
r	Stiffness per length
S_0, S_1	Stiffness for rotational springs at boundary ends 0, 1
s_0, s_1	Non-dimensional S_0, S_1
$S, S_{i,j}$	Stiffness components
$(s_0)_C$	Critical non-dimensional stiffness at 0
s	Length position at a curved beam-column
T	Internal shear force for a beam-column
$T_0.T_1$	Shear forces at boundary ends 0 and 1

Time parameter

beam-column

Position parameter in the length direction of a

t

х

Acronyms xv

y Displacement in the transverse direction, see Fig. 2.1,

i.e., y = y(x)

z Polynomial complex parameter

Greek notations, mainly non-dimensional quantities

α	Stability parameter in the exponential time function $e^{(\alpha+i\omega)t}$
α	Factor in trigonometric functions
α	Value of angle in the Elastica
α	Parameter defined by (6.7)
β	Parameter defined by (6.7)
Γ	Slenderness ratio
γ	Parameter for non-conservative load
γ	Shear strain
Δ	Small but finite incrementation prefix
δ	Virtual prefix
δ	Displacement at a specific point
∂	Partial prefix
$arepsilon_{i,j}$	Strain component
$\varepsilon, \varepsilon_C$	Axial strain and critical value of this
ζ	Factor in (9.21) for mass moment of inertia
η	Non-dimensional position parameter for load
$\eta_{i,j}$	Green-Lagrange strain component
θ	Angle of cross-sectional rotation (radians positive anticlockwise)
θ_0, θ_1	Angles for end rotation at 0 and 1
κ	Curvature of a beam
Λ	Modified eigenvalue in (11.25)
$\lambda, \bar{\lambda}, \lambda_C$	Non-dimensional column loads and critical value
μ	Cross-sectional parameter for maximum shear stress
μ_E	Factor of safety in the Euler range
v	Poisson's ratio
$\xi, \overline{\xi}$	Non-dimensional position parameter $\xi = x/L$ and specifically integration
	parameter
ho	Density parameter
ho	Non-dimensional inertia radius
$\sigma_{i,j}$	Stress component
σ, σ_C	Axial stress and critical value of this
σ_p	Compressive stress at proportionality limit
σ_{y}	Compressive yield stress
τ	Shear stress
ϕ,ϕ_C	Non-dimensional squared eigenfrequency and its critical value

xvi Acronyms

 $\begin{array}{ll} \phi & \text{Non-dimensional for magnetic attraction or for Winkler support} \\ \phi, \psi & \text{Angles in frame examples} \\ \omega^2, \omega_C^2 & \text{Squared eigenfrequency and its critical value} \end{array}$

Matrix notations, mainly for numerical formulations

$\{A\},\{ ilde{A}\}$	Static and dynamic load vector
$[B_t]$	Strain-displacement relation
[C]	Damping matrix, with damping coefficients $c_{i,j}$
$\{D\},\{ ilde{D}\}$	Static and dynamic displacement vector
$\{\Delta_r\}$	Eigen vector for mode r
[F]	Flexibility matrix, with flexibility coefficients $f_{i,j}$
$[L_s]$	Constitutive secant matrix, with coefficients $(l_{i,j})$, s
$[L_t]$	Constitutive tangent matrix, with coefficients $(l_{i,j}), t$
[M]	Mass matrix, with mass coefficients $m_{i,j}$
$\{0\}$	Null vector, where all component are zero
$\{R\}$	Residual vector, for Newton-Raphson iterations
[S]	Stiffness matrix, with stiffness coefficients $s_{i,j}$
$[S_0]$	Initial stiffness matrix for linear elasticity
$[S_s]$	Secant stiffness matrix
$[S_{\gamma}]$	Displacement gradient stiffness matrix
$[S_{\sigma}]$	Stress stiffness matrix
$[S_t]$	Tangent stiffness matrix $[S_{\gamma}] + [S_{\sigma}]$

Special symbols and abbreviations

BC	Boundary Condition(s)
DE	Differential Equation(s)
dof	Degree of freedom
FE	Finite Element (method)
d	Prefix for differential
1	Partial differentiation with respect to non-dimensional position coordinate
•	Partial differentiation with respect to time
	Determinant or norm value
:=	By definition

Indicate dynamic dependence or alternative quantity

Chapter 1 Introduction

This small book covers the subjects of stability, of vibration, and of dynamic stability, in the first chapters restricted to 2D beam problems. The book is written for a course named stability and vibration, and the intention is to communicate the similarities and interactions of the three subjects that are more traditionally treated separately.

Another non-traditional aspect is the focus on spring supports with graphical results to clearly understand the importance of support modeling. Initial analysis of continuous models is performed by a solution of differential equations, but with finite element (FE) analysis, the generality is rather unlimited.

Why this book?

A larger number of books are written on stability, and an even larger number are written on vibration. References to such books are listed in the list of references at the end of the present book. The two practical important subjects of stability and vibration are seldom treated as an integrated subject, although closely related. The book by Ziegler (1968) is well suited for teaching advanced subjects and contains a clear classification of our different physical problems. The book by Panovko and Gubanova (1964) supports the good tradition of studying very simplified models of physical problems, in order to focus on the behavior in question. A recent book on advanced vibrations and stability theory is by Thomsen (2003). This book focuses on nonlinear theory with chaos theory and special high-frequency effects.

Equal focus on stability and vibration

To integrate stability and vibration on the introductory level is a primary goal of the present book. A second goal of the book is to focus also on non-classical boundary cases for beam problems, i.e., to extend the cases termed Euler cases. Linear elastic rotational springs as well as translational springs are modeled from an analytical point of view by extended use of well-known functions, and the support spring stiffnesses are treated as parameters. From this analysis, a number of functional relations are obtained:

2 1 Introduction

Extension to linear elastic supports

- Stability as a function of boundary conditions (BC)
- Eigenfrequency as a function of BC.
- Eigenfrequency as a function of column force.

Graphical result display

The intention is to graphical display such results, often obtained by explicit expressions. The book is not an alternative to the many written books, but should be seen as a supplement to these.

It is the intention, generally to let these graphical displays dominate, not for reading specific numerical values from the graph but to illustrate the principal relations between stability (column force), eigenfrequency (with focus on the lowest one), and the parameters of the boundary conditions (BC). Computer tools make this possible and influence the final look of the book, hopefully liked by the readers.

Chosen notations and sign

Traditional notations are normally preferred, as seen in the list of symbols. For non-dimensional quantities, the use of the Greek letters is preferred, but with exceptions as for non-dimensional boundary stiffnesses. For dimensional quantities, the use of the Latin letters is preferred. Matrix notation is used for linear algebra with $[\]$ for rectangular and quadratic matrices, $\{\ \}$ for column matrices and $\{\}^T$ for row vectors, i.e., T as upper index for transpose.

Sign decision is in the direction of the axes of a Cartesian coordinate system, for moments (rotations) as well as for forces (displacements). The book is for the continuous models mainly limited to 2D problems and thus moment (rotation) is chosen anticlockwise.

2D-beam-columns

The initial part of the book is analytical oriented with a focus on beam-columns. Later, the general formulation is related to finite element (FE) models, and the structural or continuum models are then generalized.

Finite element models

A structure/continuum may be described by system matrices like mass matrix [M], stiffness matrix [S], and stress stiffness matrix $[S_{\sigma}]$. Then, in addition to analysis also synthesis aspects can be involved, such as design for vibration and stability. This includes sensitivity analysis that is determination of response gradients as a function of design parameters.

Design for stability/vibration

Additional insight into the subject of stability as well as that of vibration is hopefully obtained by the integrated treatment. It is the intention that each formula should to a large extent be derived to convince the students and other readers.