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Preface

Zika virus (ZIKV), a mosquito‐borne flavivirus, is an emerging 
infectious agent associated with numerous neurological diseases. 
Discovered in 1947, the virus was silent for almost 60 years until the 
recent outbreaks in 2003 and 2013 in the Pacific Islands, and in 2015 
in South and Central America. While the virus detected in Africa at 
the time of discovery was only associated with mild fever, rash, and 
pain, recent ZIKV outbreaks were associated with neurological 
disorders such as Guillain‐Barré Syndrome in adults and microceph-
aly in newborns. The dynamic changes in ZIKV‐associated pathology 
over the years has prompted extensive studies aimed at understanding 
the differences among the virus lineages (African vs. Asian/American) 
isolated from different regions with the goal of developing specific 
therapeutic drugs.

This book will describe the ZIKV story since its discovery in 1947 
up to the most updated studies in 2017. We will cover more than 
70  years of ZIKV history with details in the discovery, outbreaks, 
transmission, associated diseases, animal models that have been 
developed, ZIKV and cell/host interactions, the differences among 
ZIKV strains, and drugs that have been tested against ZIKV. This 
book should provide valuable information for both the general public 
and scientists.
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1.1  ZIKV Isolation from Monkeys 
and Mosquitos

Zika virus (ZIKV) was first isolated in April 1947 in a forest named 
“Ziika” near Lake Victoria in Uganda (1, 2). It is interesting to note that 
the term Ziika means “overgrowth” in Luganda (the Bantu language of 
the Baganda people, commonly used in Uganda). The virus was 
isolated by researchers from The National Institute for Medical 
Research in London, United Kingdom (G. W. A. Dick), and The 
Rockefeller Foundation in New York, United States (S. F. Kitchen 
and  A. J. Haddow), as part of collaborative studies with the Yellow 
Fever Research Institute in Entebbe, Uganda (Figure 1.1) (1, 2).

To monitor emerging infections, the investigators commenced stud-
ying the sentinel rhesus monkeys in Bwamba, Uganda, in 1946 
(Figure 1.2) (1). Zika Forest was chosen because it was well‐known that 
monkeys in that area had a high immunity to yellow fever virus (YFV) 
(3–6). Most of the forest was parallel to the Entebbe‐Kampala Road, 
and the monkeys were kept in cages in the canopy of the trees (1, 7–9).

At that time, six monkey rhesus (MR) were monitored daily for any 
variation in their body temperature. One of the monkeys, named 
MR766, presented an increase in temperature on April 18; hence, a 
blood sample was collected on April 20. MR766 was monitored for 
more 30 days but no other symptom was detected. The blood sample 
collected from MR766 was injected subcutaneously (S.C.) into another 
monkey named MR771, and into Swiss albino mice, intracerebrally 
(I.C.) and intraperitoneally (I.P.), for further studies. No sign of 
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infection was observed in either MR771 or the mice injected by I.P. for 
up to 30 days after inoculation. However, the mice injected by I.C. 
became sick 10 days post‐infection (d.p.i.), and the first ZIKV isola-
tion was obtained from these animals. Since this virus was neutralized 
by serum taken from monkeys MR766 (on May 20) and MR771 (at 35 
d.p.i.) but not by sera from these same monkeys before their exposure 
to ZIKV, the researchers proved that the virus isolated from the mice 
was originated from monkey MR766. For this reason, the first ZIKV 
strain isolated was named MR766. A neutralizing antibody is the 
antibody that can protect the cells from an infection by neutralizing 
its biological effect (in this case, infection). In this study, it was used in 
an assay to determine if the virus detected in one animal was the same 
as the one isolated from the previous animal (1).

In addition to analyzing and collecting samples from the monkeys, 
the researches were collecting mosquitos for the YF studies 
(Figure 1.3). Aedes africanus were among the captured ones in 1948. 
This mosquito was suspected to be involved in the YFV cycle at that 
time. From January 5 to January 20, nine lots of mosquitos were 

Figure 1.1  Alexander J. Haddow in the Zika Forest. The base of the platform used 
to capture mosquitoes and keep the monkeys can be observed. Obtained from 
the University of Glasgow (AJ Haddow and University of Glasgow Archives & 
Special Collections, Papers of AJ Haddow, GB248 DC 068/80/63).
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acquired, and their samples were processed and injected into mice 
by  I.C. with both unfiltered supernatants and Seitz E.K. filtrates. 
The  second isolation of ZIKV (strain E/1), which was also the first 
from mosquitos, was from lot E/1/48, captured on January 11–12, 
with 86 mosquitos (1). All six mice inoculated with the unfiltered 
sample were inactive at 7 d.p.i. For animals that received the 
filtrated sample, one died at 6 d.p.i. while other was sick at 14 d.p.i. 

Figure 1.2  Details of the steel tower used as a platform to collect mosquitos, and 
to keep the caged monkeys in the Zika Forest. The platforms can reach the 
canopy of the trees. Obtained from the University of Glasgow (AJ Haddow and 
University of Glasgow Archives & Special Collections, Papers of AJ Haddow, 
GB248 DC 068/80/62).
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Those inoculates were also injected S.C. into MR758, which showed 
no sign of sickness. Based on the results observed with the sick mice, 
blood samples from MR758 were collected on the 8th, 9th, and 10th d.p.i., 
which were I.C. injected into six mice. From the first injection, one 
mouse died at 10 d.p.i. and another two became sick at 19 and 20 d.p.i. 
From the second group of injection, one died at 13 d.p.i., one was sick 
at 12 d.p.i., and another one developed paralysis, which was identified 

Figure 1.3  Details on the stairs used to access and recover the mosquitoes 
caught. A boy can be observed in the picture, since they were used to help the 
researchers to collect the samples in the high height. Obtained from the 
University of Glasgow (AJ Haddow and University of Glasgow Archives & Special 
Collections, Papers of AJ Haddow, GB248 DC 068/80/49).
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as Theiler’s encephalomyelitis (10, 11). Mice injected with samples 
from the third collection had no symptom. Neutralization tests with 
serum from MR758 proved that these animals had developed 
neutralization antibodies to ZIKV strains E/1 and MR766. It was con-
cluded that ZIKV was identical to neither YFV, Dengue virus (DENV), 
nor Theiler’s mouse encephalomyelitis virus (TMEV) (1).

Dick (1952) observed that the virus isolated from MR766 and mos-
quitos was well adapted after 90 passages in the mouse brain. Data 
from studies analyzing adaption and pathogenesis became more 
reproducible. Among the three ZIKV strains tested (MR766, MR758, 
and E/1), the virus from MR758 caused more cases of mice that 
presented with paralysis in early passage than the virus from MR766. 
With all the strains evaluated, the first sign of infection was roughness 
of the coat. Infection by I.P. injection in mice older than 2 weeks of age 
was not as efficient in those of 7 days old. Using a late‐passage virus, 
no significant difference in the infection was observed between 
unweaned and 5‐ to 6‐week‐old mice (2).

The virus tropism was examined by analyzing infection in different 
organs, including brain, kidney, lung, liver, and spleen. The results of 
the mice inoculated by I.C. indicated that the brain was the main 
target of ZIKV. While other animals including cotton‐rat and guinea 
pigs could also be infected with ZIKV, no symptom was observed. On 
the other hand, rabbits could produce antibodies by 21 d.p.i. Other 
species of monkeys—including rhesus (6 animals), grivet (13 animals), 
and redtails (2 animals)—were also infected and analyzed. Circulating 
antibodies were detected in Grivet 733 and Redtail 1044 after ZIKV 
infection. Interestingly, Grivet 1019 was naturally infected by ZIKV, 
but this monkey was captured in Sese Island, which was not in the 
Zika region. In 1950, among the monkey rhesus used for the YFV 
research, animal MR801 was naturally positive for ZIKV but the only 
symptom was minor pyrexia. MR801 was kept in the same platform 
(number 3) where the strain E/1 was isolated from the captured 
mosquitoes. Platform number 3 was 0.2 miles from platform number 
5 where MR766 was infected (2). Antibodies against ZIKV were not 
detected in small mammals that were trapped in the forest, indicating 
that the infection was restricted to monkeys, mosquitos, and human 
beings at that time (12, 13).

Other ZIKV strains were isolated in 1958 from two different catches 
of Aedes africanus, consisting of 206 (strain Lunyo V) and 127 (strain 
Lunyo VI) mosquitoes. The Lunyo V strain caused viral encephalitis, 
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skeletal myositis, and myocarditis in adults and infant mice. The virus 
was passed through the brain and the heart into infant mice via I.C. or 
I.P. injections. Some of the mice injected with Lunyo VI were para-
lyzed. The strains were injected into monkeys MR1059 and MR1063, 
respectively, and no symptoms of infection were observed (14). ZIKV 
was further isolated from Aedes luteocephalus in Nigeria (15).

1.2  ZIKV Infection in Humans

The timing of the first ZIKV infection in humans is controversial (16). 
A paper published by MacNamara in 1954 described its isolation and 
exploited the possible association between ZIKV infection and jaun-
dice (17). Another study, by Bearcroft in 1956, was on a volunteer that 
self‐injected with the virus, who precisely described the symptoms 
following the infection (18). The only problem is that the virus isolated 
in the first study and used in the second one was not ZIKV but a 
Spondweni virus (SPOV) (16). MacNamara’s study evaluated an epi-
demic of jaundice in Nigeria (Afikpo Division, Eastern Nigeria). From 
a study of three patients, the virus was isolated from a 10‐year‐old 
female patient who was not jaundiced but had symptoms of fever and 
headache, and her serological response to ZIKV was low (17).

Bearcroft’s study was done to verify whether there was any associa-
tion between ZIKV and the development of jaundice. A 34‐year‐old 
European male volunteer was exposed to the virus isolated by 
MacNamara (1956). Eighty‐two hours post‐infection (h.p.i.), the only 
symptom was a headache, followed by malaise and pyrexia in the 2nd 
and 3rd d.p.i. In the 5th d.p.i., there was a peak in the corporal tempera-
ture, accompanied by nausea and vertigo, which was diagnosed as his-
tamine reaction. After 7 days, the volunteer had no sign of infection or 
jaundice. Mice infected with virus collected from the volunteer, in dif-
ferent periods, developed encephalitis after receiving sera collected at 
4 and 6 d.p.i., which were around the peak of pyrexia. Meanwhile, the 
volunteer was exposed to Aedes aegypti, but the mosquitos were not 
able to transmit the infection to infant white mice (18).

The first clue that both studies were using SPOV was revealed in a 
study by Simpson (1964), which was also the first one to describe a 
natural infection of ZIKV in humans (19). In this paper he mentioned 
that previous isolations of ZIKV were made in Nigeria (West Africa), 
and Dr. Delphine Clarke had found out that those viruses were closely 
related to SPOV, which was named CHUKU strain. Another study in 
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1968 also pointed out that SPOV virus was isolated in Nigeria, and 
was wrongly identified as ZIKV (20). Simpson was actually the person 
who contracted the infection while working together with his team in 
Uganda. A detailed description of his symptoms following the natural 
infection was recorded. At the 1 d.p.i., he presented a headache, and 
by 2 d.p.i., he developed a red rash diffused throughout his face, neck, 
chest, and arms, without itching, and slight pain in the back and 
thighs. The rash covered all the limbs, including palms and soles. The 
fever started at 2 d.p.i., followed by malaise. At 3 d.p.i., the patient had 
no fever and did not feel sick, and at 5 d.p.i., there was no more rash 
(19). Actually, this was the first study that documented the presence of 
a rash on humans infected by ZIKV, one of the most common symp-
toms of ZIKV infection in today’s patients (21).

The first isolation of ZIKV in Nigeria was reported in 1975 by 
Moore (1975) in a study describing the isolation of 15 arboviruses 
between 1964 and 1970 (22). Isolation of ZIKV in Oyo State, Nigeria, 
was described in 1979. The virus was isolated from two patients, a 
2½‐year‐old boy with a mild fever in 1971, and a 10‐year‐old male in 
1975, who presented with fever, headache, and pain in the body. This 
study suggested that ZIKV might be widespread, even if it had been 
isolated at a low rate. One important point mentioned in this study 
was that ZIKV infection numbers might be underestimated because 
of the mild symptoms or misdiagnosis with other arthropod‐borne 
viral infections (23).

1.3  ZIKV Infection Spread to Other 
Hosts and Regions

Different serological studies were performed around the 1950s and 
1960s and showed that the ZIKV infection had reached other areas in 
Africa and Asia (24, 25). Serological analysis, based on hemagglutina-
tion‐inhibition (HI) tests of other animals, were described in 1977 
with samples from 2,428 small mammals and 1,202 birds captured 
over a five‐year period in Kano Plain, Kenya, close to Lake Victoria. 
The results revealed the prevalence of ZIKV antibodies as follows:

●● In small mammals:
–– 4.0% (58/1,446) in Arvicanthus niloticus
–– 34.0% in (85/250) Arvicanthis niloticus
–– 3.1% (2/63) in Crocidura occidentalis
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●● In reptiles:
–– 40.0% (4/10) in Boaedon fuliginosus
–– 12.5% (1/8) in Varanus niloticus

●● in birds:
–– 4.0% (2/49) in Threskiornis aethiopicus
–– 2.7% (1/37) in Bubulcus ibis and 50.0% (1/2) in Philomachus 
pugnax

●● In other mammals:
–– 0.1% (1/655) in goats
–– 0.7% (2/283) in sheep
–– 0.6% (8/1361) in cattle living close to irrigated areas
–– 0.7% (7/963) in cattle from nonirrigated places (26)

Serological studies with human serum collected for the YFV 
research indicated that humans from some areas were exposed to 
ZIKV. There was no detection of ZIKV antibodies in the Zika and 
Kampala regions, while Bwamba had detection rates of ZIKV antibod-
ies at 28.5% (2/7) in adults and 15.4% (2/13) in children, which were 
higher than the 9.5% (2/21) detection rate of West Nile antibodies in 
adults in this region (2). Dick (1952) was careful in his study and 
suggested that just because there was no evidence of an acute disease 
in humans caused by ZIKV infection, this did not indicate that ZIKV 
was not important or might not cause any problem in humans (2).

The detection of antibodies against ZIKV in South‐East Asia was 
published in 1963, revealing that 75.0% (from 100 samples) of the 
population living in the Federation of Malayan (currently known as 
Peninsula of Malaya) was positive, while the presence of neutraliza-
tion antibodies in the north region such as North Vietnam and 
Thailand (Bangkok and Chiang Mai) was rare (27). In 1965, ZIKV was 
detected in different regions of the Angola trough with 31.0% (40/129) 
and 1.5% (2/129) rates in children in the northwestern region by HI 
and neutralization tests, respectively, and with 57.7% (71/123) and 
21.1% (26/123) rates in adults, respectively, by the same methods. In 
the southwestern region, 32.8% (20/61) and 21.3% (13/61) of the adults 
were positive by HI and neutralization tests, respectively, and for the 
eastern region, 3.5% (2/56) and 1.8% (1/56) of the adults were positive, 
also using HI and neutralization tests, respectively (28). Results from 
Kano Plain, Kenya, showed that ZIKV was endemic in 1973, but it 
was considered at a low level. By analyzing sera from children (ages 
4–15+ years old) from schools distributed close to Lake Victoria, 
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ZIKV was detected by HI test in 7.2% (40/559) of the children grouped 
as 12 years old. Since this was considered a low rate, the other ages 
were not evaluated (29).

In 1974, a serological study to detect different arboviruses analyzed 
1,649 human sera from Portugal and identified four (0.25%) individu-
als that reacted against ZIKV by the HI test, indicating the silent 
spread of the virus across the continents (30). In 1979, a serological 
study analyzed 235 samples from Hong Kong and detected 4.6% 
(11/235) ZIKV‐positive individuals, which also cross‐reacted with 
other flaviviruses. Among those who had gender and age information, 
12.9% (4/31) females and 8.3% (1/12) males between 21 and 40 years 
old were positive, while 7.1% (1/14) males older than 41 years old were 
positive (31).

Interesting results were found at Kainji Lake Basin, Nigeria, in 1980, 
when ZIKV was detected by HI test, with cases concentrated in young 
adults and adults. Infection rate was correlated with increased age. 
Specifically, 9.3% (7/75) of 5‐ to 9‐year‐olds, 22.2% (8/36) of 10‐ to 
14‐year‐olds, 46.1% (6/13) of 15‐ to 19‐year‐olds, 71.8% (61/85) of 20‐ 
to 39‐year‐olds, and 77.3% (68/88) of adults 40 years old and older (32) 
were positive. The continuous ZIKV detection by the HI test through-
out Uganda villages in 1984 indicated that the incidence of ZIKV was 
not common in the region, with infection rates at 3.7% (1/27) in 
Tokora, 15.4% (2/13) in Nadip, 3.5% (2/58) in Namalu, and 20.0% 
(3/15) in other regions (33).

1.4  Cross‐Paths between ZIKV and 
Other Flaviviruses

Analysis of sera collected from two different towns, Ilaro and Ilobi, in 
southwest Nigeria in 1951 and 1955 showed high detection rates of 
ZIKV antibodies in these populations. The distribution of ZIKV infec-
tion by age was as follows: 10.0% (3/29) among 5‐ to 9‐year‐olds, 
22.0% (7/32) among 10‐ to 14‐year‐olds, 52.0% (13/25), among 15‐ to 
19‐year‐olds, 76.0% (19/25) among 20‐ to 29‐year‐olds, 52.0% (16/31) 
among 30‐ to 39‐year‐olds, and 93.0% (28/30) for those adults 40 years 
old and older in Ilobi. In Ilaro, only children samples (4 to 16 years old) 
were collected, which showed a 44.0% positive rate for ZIKV antibodies. 
Besides ZIKV, high infection rates were also detected for DENV, YFV, 
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Uganda S virus (UGSV), and Bwamba fever virus (BWAV). There was 
association of antibodies against ZIKV, DENV, YFV, and UGSV, sug-
gesting an overlapping protection. However, infection by one virus did 
not decrease the chance of being infected by another flavivirus, albeit 
it might reduce the pathogenesis. The most common combinations of 
infections were ZIKV or UGSV with YFV. Hence, a pre‐infection with 
either ZIKV or UGSV might produce neutralization antibodies to 
YFV. ZIKV had a strong association with UGSV, YFV, and DENV. The 
DENV infection rate reached close to 100% in this region. It was sug-
gested that ZIKV and UGSV might suppress YFV in the Forest Belt 
compared to other regions with high incidences of YFV and lower 
infection rates of ZIKV and UGSV (34).

The cyclic periodicity between ZIKV and chikungunya virus 
(CHIKV) was suggested by McCrae (1971) because there was no evi-
dence that both viruses were maintained in the Entebbe region, but 
there were epizootic outbreaks with intervals of 5 to 8 and up to 
10 years. The intervals were similar but not the same, with ZIKV fol-
lowing CHIKV outbreak after 1 to 2 years, which might be the result 
of the dynamic interactions of the viruses within the forest (35). 
In 1982, a study was published to address the possible interaction and 
interference in transmission between ZIKV and YFV. Mosquito’s 
catches resulted in the isolation of 15 ZIKV strains from Aedes 
africanus and Aedes apicoargenteus. Dozens of monkeys were shot 
(after unsuccessful attempts of collecting blood) and captured to pro-
vide evidence of immunity change among the monkeys in the forest. 
Twenty‐two Redtail monkeys were captured in Kisubi Forest while 68 
monkeys (including Redtail, Mona, Colobus, and Mangabeys) were 
caught in Bwamba. After serological analysis, CHIKV was detected at 
high rates among the monkeys followed by ZIKV and YFV with 
similar rates, indicating that ZIKV infection did not prevent the 
circulation of YFV (36).
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