Archana Singh · Indrakant K. Singh Editors

Molecular Aspects of Plant-Pathogen Interaction

Molecular Aspects of Plant-Pathogen Interaction

Archana Singh • Indrakant K. Singh Editors

Molecular Aspects of Plant-Pathogen Interaction

Editors Archana Singh Department of Botany Hans Raj College, University of Delhi New Delhi, India

Indrakant K. Singh Molecular Biology Research Laboratory, Department of Zoology Deshbandhu College, University of Delhi New Delhi, India

ISBN 978-981-10-7370-0 ISBN 978-981-10-7371-7 (eBook) https://doi.org/10.1007/978-981-10-7371-7

Library of Congress Control Number: 2018930517

© Springer Nature Singapore Pte Ltd. 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. part of Springer Nature.

The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Pathogen attack has been one of the chief constrains that reduce crop productivity worldwide. Plants have established sophisticated mechanisms to counter and acclimatize over these invading pathogens at physiological, biochemical as well as molecular levels. Due to severe crop losses by pathogen outbreak, it is mandatory to completely understand the resistance/defense mechanisms against pathogen and develop advanced tactics to improve biotic stress tolerance in crop plants.

We present this book with an objective to realize the plant defense against different pathogens better and to document fundamentals as well as recent findings. This book has an amalgamation of basic information about disease resistance along with current insights into plant-pathogen interaction. The book has 15 chapters to disseminate the most updated information and detailed overviews on the present knowledge on molecular aspects of plant responses and adaptation to biotic stresses. This book is an essential reading for researchers and professionals in plant pathology, cell biology, molecular biology and genetics. This is highly recommended for the ones who are involved in plant disease resistance and crop improvement and to all plant scientists and undergraduates.

Depending on their modes of nutrition, phytopathogens have been categorized as necrotrophs, biotrophs and hemibiotrophs. These pathogens can be bacterial and fungal and cause various diseases in plants. In addition, viruses are another important class of pathogens and are causal agents for many common plant diseases. Plants counter to pathogens by activating a cascade of genes, encoding different receptors, signaling and protective molecules. During biotic stress, first of all effector molecules i.e. pathogen-associated molecular patterns (PAMPs) are perceived by plant recognition receptors (PRRs), after which PRRs interact with additional trans-membrane proteins that act as signaling adapters or amplifiers to achieve full functionality and PAMP triggered immunity (PTI). Defense response by receptor-like protein is a complex strategy, characterized by specific interaction between disease resistance (R) genes of plants and corresponding avirulence (avr) genes of pathogen that induce effector-triggered immunity (ETI) through hypersensitive response.

The NBS-LRR genes are important class of resistance gene families and their products recognize factors secreted by pathogens, which activates downstream signaling pathways leading to defense. Mitogen-activated protein kinases (MAPKs), which are cell-signaling enzymes that also show vital functions in transmitting extracellular signals to the nucleus during biotic stress. To achieve defense against

pathogen, transcription factors such as WRKY transcription factors bind to plantspecific *cis*-regulatory elements and activate gene expression thereby inducing transcriptional reprogramming and proteomic alterations to coordinate the perception and activation of pathways specific to the type of pathogen in question. Mainly phytohormones, small RNAs and other factors regulate this change at transcript level and protein level. Amongst all the targets, the induction and accumulation of pathogenesis-related (PR) proteins and biosynthesis of secondary metabolites are an integral component of innate immune responses in plants during pathogen attack.

Overall this volume will convey an overview of plant-pathogen interactions and it is a must read to understand this process for the genetic improvement of crops for disease resistance.

We are obliged to the authors of various chapters of this book for writing their chapters methodically and with great responsibility. We are extremely thankful to Dr. Rama, Principal, Hans Raj College, University of Delhi and Dr. Ajay Arora, Principal, Deshbandhu College, University of Delhi for providing overall support for our research and academic pursuits. We would also like to convey our gratitude to Dr. V. K. Kawatra, Mr. P. K. Singh and Dr. Vijay Rani Rajpal for always motivating us. We appreciate the beautiful ambiance created by our little angels Saumya and Kimaya, which allowed us to work tirelessly and gave us all emotional support. We are grateful to our parents for their constant support and blessings. Last but not the least, our sincere thanks to the handling editors and publisher.

We are optimistic that this book will be effective in broadcasting the latest knowledge about the plant-pathogen interaction.

New Delhi, India

Archana Singh Indrakant K. Singh

Contents

1	Arabidopsis thaliana as a Model Organism to Study Plant-Pathogen Interactions Shachi Agrawal	1
2	Fungal and Bacterial Biotrophy and Necrotrophy Geeta and Reema Mishra	21
3	Plant–Virus Interactions Sunita Yadav and Anju K. Chhibbar	43
4	Pathogen-Associated Molecular Patternsand Their Perception in PlantsJitendra Singh Rathore and Chaitali Ghosh	79
5	Role of NBS-LRR Proteins in Plant Defense Namo Dubey and Kunal Singh	115
6	Recent Advancement on Map Kinase Cascade in Biotic Stress Monika Jaggi	139
7	Role of Phytohormones in Plant Defense: Signaling and Cross Talk Vibha Gulyani Checker, Hemant Ritturaj Kushwaha, Pragati Kumari, and Saurabh Yadav	159
8	Insights into the Role of WRKY Superfamily of Protein Transcription Factor in Defense Response Preeti Singh, Shashi Shekhar, Anjana Rustagi, Vinay Sharma, and Deepak Kumar	185
9	Small Noncoding RNA-Based Regulation of Plant Immunity Om Prakash Gupta, Vanita Pandey, Nand Lal Meena, Suhas G. Karkute, Sagar Banerjee, and Anil Dahuja	203
10	Transcriptomic Studies Revealing Enigma of Plant-Pathogen Interaction Zahoor Ahmed Wani and Nasheeman Ashraf	219

11	Proteomic Studies Revealing Enigma of Plant–Pathogen Interaction Anjana Rustagi, Garvita Singh, Shachi Agrawal, and Prem Kumar Gupta	239
12	Role of Pathogenesis-Related (PR) Proteins in Plant Defense Mechanism Deepti Jain and Jitendra Paul Khurana	265
13	Antimicrobial Compounds and Their Role in Plant Defense Anupama Razdan Tiku	283
14	Explorations of Plant's Chemodiversity: Role of Nitrogen-Containing Secondary Metabolites in Plant Defense	309
15	Plant Cell Wall: A Simple Physical Barrier or a ComplexDefense Modulator – Exploring Its Dynamic Roleat Plant-Fungus Interface	333

Contributors

Shachi Agrawal Department of Botany, Gargi College, New Delhi, India

Nasheeman Ashraf Plant Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Srinagar, Jammu and Kashmir, India

Academy of Scientific and Innovative Research, CSIR—Indian Institute of Integrative Medicine, Jammu, Tawi, India

Sagar Banerjee Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India

Vibha Gulyani Checker Department of Botany, Kirori Mal College, University of Delhi, New Delhi, India

Anju K. Chhibbar Department of Botany, Deshbandhu College, University of Delhi, New Delhi, India

Anil Dahuja Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India

Namo Dubey Molecular Plant Pathology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India

Geeta Department of Botany, Gargi College, University of Delhi, New Delhi, Delhi, India

Chaitali Ghosh Department of Zoology, Gargi College, University of Delhi, New Delhi, India

Om Prakash Gupta Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India

Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India

Prem Kumar Gupta Ionics Clinical Laboratory, Gurgaon, India

Sumanti Gupta Department of Botany, Rabindra Mahavidyalaya, Tarakeswar, Hooghly, India

Monika Jaggi National Institute of Science Communication and Information Resources (NISCAIR), New Delhi, Delhi, India

Deepti Jain Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, Delhi University-South Campus, New Delhi, Delhi, India

Suhas G. Karkute Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India

Jitendra Paul Khurana Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, Delhi University-South Campus, New Delhi, Delhi, India

Deepak Kumar Department of Botany, Central University of Jammu, Jammu, J&K, India

Pragati Kumari Department of Life Sciences, Singhania University, Rajasthan, India

Indian Agricultural Research Institute (IARI), New Delhi, India

Hemant Ritturaj Kushwaha School of Biotechnology, Jawaharlal Nehru University, New Delhi, India

Nand Lal Meena Plant Biochemistry, ICAR-Indian Institute of Millets Research, Hyderabad, Telangana, India

Reema Mishra Department of Botany, Gargi College, University of Delhi, New Delhi, India

Vanita Pandey Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India

Jitendra Singh Rathore School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India

Amit Roy Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, USA

Present Address: Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Suchdol, Czech Republic

Anjana Rustagi Department of Botany, Gargi College, New Delhi, India

Vinay Sharma Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India

Shashi Shekhar School of Life Sciences, Jawaharlal Nehru University, New Delhi, India

Garvita Singh Department of Botany, Gargi College, New Delhi, India

Kunal Singh Molecular Plant Pathology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India

Preeti Singh School of Life Sciences, Jawaharlal Nehru University, New Delhi, India

Sanjay Kumar Singh Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA

Anupama Razdan Tiku Department of Botany, Ramjas College, University of Delhi, Delhi, India

Zahoor Ahmed Wani Plant Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Srinagar, Jammu and Kashmir, India

Academy of Scientific and Innovative Research, CSIR—Indian Institute of Integrative Medicine, Jammu, Tawi, India

Saurabh Yadav Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, India

Sunita Yadav Department of Botany, HansRaj College, University of Delhi, New Delhi, India

About the Editors

Dr. Archana Singh is a Ph.D. in Plant Molecular Biology from the National Institute for Plant Genome Research (NIPGR). Since 2009, Dr. Archana has been working as an Assistant Professor in the Department of Botany, Hans Raj College, University of Delhi, where she teaches plant biotechnology, bioinformatics, genetics, cell biology and molecular biology. She has been awarded with Young Scientist Under Fast-Track Scheme (2013–2016) by Science and Engineering Research Board (SERB), Ministry of Science of Technology, Government of India. She has also been awarded with a prestigious Raman Post-Doctoral Fellowship by University Grant Commission, Ministry of Human Resources and Development, Government of India. Her quality research is evidenced by her publications in peer-reviewed journals of international repute like Journal of Experimental Botany, Scientific Reports, Journal of Integrated Plant Biology, Journal of Asia-Pacific Entomology, Australasian Plant Pathology, Computational Biology and Chemistry and Plant Gene. She has trained and supervised a few Junior Research Fellows and M.Sc. and B.Tech. students for their research projects. Over the years, she expanded her research interests from functional genomics of biotic stress to bioinformatics and proteomics.

Dr. Indrakant K. Singh is a Ph.D. in Zoology from the University of Delhi (DU). For last ten years, he has been working as an Assistant Professor in the Department of Zoology, Deshbandhu College, University of Delhi, where he teaches genetics, genomics, computation biology and immunology. He has been awarded with Young Scientist Award/Fellowship (2013-2016) by Science and Engineering Research Board (SERB), Ministry of Science of Technology, Government of India. He has also been awarded with a prestigious Raman Post-Doctoral Fellowship (2016–2017) by University Grant Commission, Ministry of Human Resources and Development, Government of India. He has published his quality research in peer-reviewed journals of international repute like Journal of Experimental Botany, Scientific Reports, Journal of Biomedical Research, Journal of Asia-Pacific Entomology, Australasian Plant Pathology, Computational Biology and Chemistry and Plant Gene. Presently, two Ph.D. scholars are working under his supervision. He has trained several B.Sc. and M.Sc. students for their research projects and now they are pursuing their doctoral research abroad. Over the years, he expanded his research interest from molecular basis of insect-plant interaction to functional genomics and proteomics.

Abbreviations

12-OPDA	12-oxophytodienoic acid
24-EpiBL	24-epibrassinolide
28-HomoBL	28-homobrassinolide
2D-DIGE	Two dimensional differential gel electrophoresis
2D-PAGE	Two dimensional polyacrylamide gel electrophoresis
5-HPT	5-hydroxytryptophan
AABL1	AB15 like1
ABA	Abscisic acid
ABC	ATP binding cassette
ACC	1-aminocyclopropane-1-carboxylic aid
ACMV	African cassava mosaic virus
ACS6	1-aminocyclopropane-1-carboxylic acid synthase
AGO	Argonaute
ALS	Amyotrophic lateral sclerosis
AMV	Alfaalfa mosaic virus
AP2	Apetala2
APAF	Apoptotic protease activating factor
APX	Ascorbate peroxidase
ARID	A/T rich interaction domain
as-1	Activation sequence 1
At	Agrobacterium tumefaciens
AtAGO1	Arabidopsis AGO1
AtEFR	Arabidiopsis thaliana EF-TU receptor
AtFSL2	Arabidopsis thaliana flagellin sensing 2
ATRM	Arabidopsis transcriptional regulatory map
ATX1	Arabidopsis homolog of trithorax
Aux	Auxin
Avr	Avirulence
BAK1	BRI1 associated receptor kinase 1
BAW	Beet armyworm
Bc	Botrytis cinerea
BECs	Blumeria effector candidates
BHNs	Broad host range necrotrophs
BIA	β-(Isoxazolin-5-on-2yl)-alanine

DIV1	BRI1 associated kinase		
BIK1			
BIN2	Brassinosteroid insensitive 2		
BL	Brassinolide		
BMAA	β-methylamino-L-alanine		
BPH	Brown plant hopper		
BRI1	Brassinosteroid insensitive 1		
BRs	Brassinosteroids		
BWMK1	Blast and wounding activated map KINASE 1		
bZIP	Basic domain leucine zipper		
CaBD	Calmodulin binding domain		
CaM	Calmodulin		
CARD	Caspase recruitment domain		
Cas	CRISPR associated		
CAT	Catalase		
CBB	Coomassie brilliant blue		
CBD	Chitin binding domain		
CC	Coiled coil		
CD	C-terminal common docking		
cDNA	Complementary DNA		
CDPK	Calcium dependent protein kinase		
CEBiP	Chitin elicitor binding protein		
CED4	Cell death protein 4		
CERK1	Chitin elicitor receptor kinase 1		
CESA	Cellulose synthase cataylic subunit		
CGs	Cyogenic glycosides		
ChIP	Chromatin immunoprecipitation		
CHS	Chalcone synthase		
CKs	Cytokinins		
CMV	Cucumber mosaic virus		
CNR	Crinkler & necrosis		
Col	Columbia		
COR	Coronatine		
COX5	Cytochrome oxidase subunit v		
CP	Coat protein		
CRISPR	Clustered regularly interspaced short palindromic repeats		
CSEPs	Candidate secreted effector protein		
CT	P-coumaroyl tyramine		
CWDE	Cell wall degrading enzymes		
D	Aspartate		
DAMPs	Damage associated molecular patterns		
DCL	DICER-like		
DGE	Differential gene expression		
DHAR	Dehydroascorbate reductase		
DMT	DNA methyl transferase		
DORN1	Does not respond to nucleotide 1		
201011	2 ces not respond to nucleotide 1		

DRBs	Double stranded RNA binding proteins		
DRE	Dehydration responsive element		
dsDNA	Double stranded deoxyribonucleic acid		
dsRNA	Double stranded Ribonucleic acid		
DTI	Danger triggered immunity		
eATP	Extracellular ATP		
EBL	Epibrassinolide		
ECC	Erwinia carotovora		
ECM	Extra cellular matrix		
ECS	Endocytosis cell signaling		
EDS 1	Enhanced disease susceptibility 1		
EF	· ·		
	Elongation factor		
EFR	EF-Tu receptor		
EF-Tu	Elongation factor Tu		
EHC	Encasement of the haustorial complex		
EHM	Extra haustorial membrane		
EIX	Ethylene inducing xylanase		
ELISA	Enzyme-linked immunosorbent assay		
eLRR	Extra cytoplasmic leucine rich repeat		
EPD	Eukaryotic promoter domain		
EPSs	Extracellular polysaccharides		
ER	Endoplasmic reticulum		
ERE	Ethylene responsive elements		
EREBP	Ethylene responsive element binding protein		
ERF	Ethylene response factor		
ESI	Electrospray ionization		
ESTs	Expressed sequence tags		
ET	Ethylene		
ETI	Effector triggered immunity		
ETR2	Ethylene resistant 2		
ETS	Effector-triggered susceptibility		
FISH	Fluorescence in-situ hybridization		
FLAK	Phenylalanine, leucine, alanine, lysine		
Flg	Flagellin		
FLS 2	Flagellin sensing 2		
FLS 2 FMs	Functional markers		
FT	Feruloyl tyramine		
GA	Gibberellic acids		
GC-MS	Gas chromatography mass spectrometry		
GE	Glucan elicitor		
GEBP	GE-binding protein		
GM	Genetically modified		
GNA	Galanthus nivalis agglutinin		
GR	Glutathine reductase		
GST	Glutathione s-transferase		

HCN	Hydrogen cynide			
HCRSV				
hc-siRNAs	Hibiscus chlorotic ringspot carmovirus Hetrochromatic small interfering RNAs			
HDA19	•			
	Histone deacetylase 19			
HeMV	Hempane mosaic virus			
HEN1	HUA ENHANCER			
HGA	Homogalactouronam			
HMGR2	3-hydroxy-3-methylglutaryl CoA reductase 2			
HPLC	High performance liquid chromatography			
HR	Hypersensitive response			
hrc	HR and conserved			
hrp	Hypersensitive reaction and pathogenicity			
HSN	Host specific necrotroph			
HSPs	Heat shock proteins			
HSTs	Host specific toxins			
HVMPK4	Hordeum vulgare signaling protein MAP kinase 4			
HYL1	Hyponastic leaves 1			
IAA26	Indole-3-acetic acid transcription factor			
ICAT	Isotope coded affinity tag			
IEF	Isoelectric focusing			
IP-ELISA	Immune virus particle-ELISA			
IPG	Immobilized pH gradient			
IPP	Isopentenyl diphosphate			
IPT	Isopentyl transferase			
ISR	Induced systemic resistance			
ITRAQ	Isobarric tagged for relative and absolute quantitation			
JA	Jasmonic acid			
JARE	Jasmonic acid responsive element			
JS	Justamembrane			
LC	Liquid chromatography			
LC-MS/MS	Liquid chromatography-tandem mass spectrometry			
L-DOPA	L-3,4-dihydoxyphenylalanine			
LEA	Late embrogenesis abundant			
LecRK	Lectin receptor kinase			
Leer	Landsberg erecta			
LGD1	Lagging growth development 1			
LIR	Localised induced responses			
LOS	Lipo-oligosaccharide			
LOS	Lipopolysachharide			
LRK	LRR kinase			
LRR	Leucine rich repeat			
lsiRNAs				
	Long small interfering RNAs			
LTP	Lipid transfer protein			
LYK3	LysM receptor like kinase 3			
LZNBS-LRR	Leucine zipper nucleotide binding site leucine rich repeat			

	March allowers of a
m/z	Mass to charge ratio
MALDI	Matrix assisted laser desorption/ionisation
MAMPs	Microbe associated molecular patterns
MAPK	Mitogen activated protein kinase
MCPs	Methyl accepting chemotaxis proteins
MDP	Muramyl dipeptide
MeJA	Methyl jasmonate
MIMPs	Microbe induced molecular patterns
miRNA	MicroRNA
MKK	MAP kinase kinase
MKS	MPK4 substrate
MLA 10	Mildew resistance locus A10
MoAGOs	M. oryzae genome encoded AGOs
MoDCL1	M. oryzae genome encoded DCL1
MoDCL2	M. oryzae genome encoded DCL2
MPs	Movement proteins
MPSS	Massively parallel signature sequencing
MS	Mass spectrometry
MSUD	Meiotic silencing of unpaired DNA
MTA	5'-methylthyoadenosine
MTI	MAMP triggered immunity
MTI	Microbial associated molecular pattern(MAMP) triggered immunity
MudPIT	Multidimensional protein identification technology
NAG	N-acetylglucosamine
NAM	N-acetyl muramic
NAMP	Nematode associated molecular pattern
NASBA	Nucleic acid sequence based amplification
nat-siRNAs	Natural antisense transcript-derived small interfering RNAs
NBS	Nucleotide binding site
NDPR	Non-pathogen derived resistance
NDR 1	Non race specific disease resistance 1
NEP1	Necrosis and ethylene inducing protein 1
NF	Nodulation factor
NFP	NOD factor perception
NGS	Next generation sequencing
NLPs	Necrosis and ethylene inducing peptide 1 like proteins
NLPs	Nep L like proteins
NLS	Nuclear localization signal
NO	Nitric oxide
NOD	Nucleotide binding oligomerization domain
NPAA	Nonprotein amino acids
NRG1	N-requirement gene
NtMKP1	Tobacco MAP kinase phosphatase 1
nTNL	Non TIR-NBS-LRR
O_2	Oxygen
\mathbf{U}_2	ONJEON

OBF	Octopine synthase element binding factor
Obpv	Obuda pepper virus
OG	Oligogalacturonides
ORCAs	Octadecanoid responsive catharanthus APETALA2 domain proteins
Osa	Oryza sativa
osNramp6	osa-miRNA negative regulation of natural resistance associated
osi (iumpo	macrophage protein 6
PAB	Plant associated bacteria
PAD3	Phytoalexin deficient 3
PAL	Phenylalanine ammonia lyase
PAMPs	Pathogen associated molecular pattern
PCD	Programmed cell death
PCR	Polymerase chain reaction
PD	Plasmodesmata
PDR	Pathogen derived resistance
Pel	Pectate lyase
PEN	Penetration genes
PepMV	Pepino mosaic virus
PEST	Pro-Glu-Ser-Thr
PG	Polygalactouronases
PGIP	Polygalactouronase inhibiting protein
PGN	Peptidoglycan
pI	Isoelectric point
PKs	Protein kinases
PLRV	Potato leafroll virus
PMEs	Pectin methyl esterases
PNPs	Plant natriuretic peptides
Pop	Pseudomonas outer protein
PPO	Poly phenol oxidase
PPP	Pentose phosphate pathway
PPV	Plum pox potyvirus
PR	Pathogenesis related
PR1	Pathogenesis related elements
pre-miRNA	Precursor miRNA
pri-miRNA	Primary-miRNA
PRLs	PR like proteins
PRRs	Pathogen recognition receptors
PRRs	Pattern recognition receptors
PRSV	Papaya ring spot virus
PS I	Photosystem I
PS II	Photosystem II
PSE1	Penetration specific effector 1
PstDC3000	Pathovar tomato strain DC3000
PTA-ELISA	Plate trapped antigen-ELISA
PTGS	Post transcriptional gene silencing

DTCS	Dest translational cons silensing
PTGS	Post translational gene silencing
PTI	PAMP triggered immunity
PTMs	Post translational modification
PVX	Potato virus X
PVY	Potato virus Y
PX	Peroxiredoxins
QAs	Quinolizidine alkaloids
qPCR	Real time quantitative PCR
QS	Quorum sensing
QTL	Quantitative trait loci
R	Resistance
RALF	Rapid alkalisation factor
ra-siRNAs	Repeat associated small interfering RNAs
RdDM	RNA-directedDNAmethylation
RDR	RNA dependent RNA polymerase
RDV	Rice dwarf virus
REL	Reticuloendotheliosis
REn	Replication enhancer
RenSeq	R gene enrichment and sequencing
RGC2	Resistance gene candidate 2
RIP	Repeat induced point
RISC	RNA induced silencing complex
RLCKs	Receptor like cytoplasmic kinases
RLK	Receptor like kinase
RLP	Receptor like protein
RMs	Random markers
RNAi	RNA interference
RNS	Reactive nitrogen species
ROMT	Resveratrol-o-methyltransferase
ROS	Reactive oxygen species
RP	Reverse phase
RPA	Reverse phase protein microarray
RPW8	Resistance to powdery mildew 8
Rsp1	Repetitive secreted protein 1
RSS	RNA silencing suppressors
RTD	Read through domain
RTP	Read through protein
RT-PCR	Reverse transcriptase-PCR
RUBISCO	Ribulose-1,5-biphosphate carboxylase oxygenase
RYMV	Rice yellow mottle virus
SA	Salicylic acid
SAGE	Serial analysis of gene expression
SAM	S-adenosyl methionine
SAR	Systemic acquired resistance
SARE	Salicylic acid responsive elements
SAKE	Sancyne aciu responsive elements

SARE	SA-responsive element
SCF	SKP1-cullin-f-box protein
SCX	Strong cation exchange
SDS-PAGE	SDS- polyacrylamide gel electrophoresis
SE	Sieve element
See1	Seedling efficient effector 1
SEL	Size exclusion limit
SERK3	Somatic embryo receptor kinase 3
SIB1	Sigma factor binding protein 1
SIPK	Salicylic acid protein kinase
SIS	Sex induced silencing
SMV	Soybean mosaic virus
SNARE	Soluble N-Ethylmaleimide-sensitive factor attachment protein
	receptor
SNPs	Single-nucleotide polymorphisms
SOD	Superoxide dismutase
sRNAs	Small RNAs
ssDNA	Single stranded deoxyribonucleic acid
SSEM	Serologically specific electron microscopy
SSH	Suppression subtractive hybridization
SSITL	Sclerotinia sclerotiorum integrin like
SSPs	Small secretory proteins
SSR	Simple sequence tags
ssRNA	Single stranded ribonucleic acid
SSRs	Simple sequence repeats
STAND	Signal transduction ATPases with numerous domains
STB	Septoria tritici blotch
STS	Stilbone synthase gene
SYMRK	Symbiosis receptor kinase
ta-siRNAs	Trans-acting small interfering RNAs
TBP	TATA-box -binding protein
TCNL	TIR-CC-NBS-LRR
TCV	Turnip crinkle virus
TFs	Transcription factors
TGB	Triple gene block
TGS	Transcriptional gene silencing
THI2.1	Thionin 2.1
TIPK	Trichoderma induced MAPK
TIR	Toll interleukin 1 receptor
TLR 4	Toll like receptor 4
TMV	Tobacco mosaic virus
TNL	TIR-NBS-LRR
TOF-MS	Time of flight mass spectrometry
TrD	Transmembrane domain
tRNA	Transfer RNA

TSWV	Tomato spotted wilt virus
TTSS	Type three secretion system
TuMP	Turnip mosaic virus
TVMV	Tobacco vein molting virus
TYLCD	Tomato yellow leaf curl disease
VIP1	VirE2 interacting protein 1
VOCs	Volatile organic compounds
VRC	Viral replication complex
vRNP	Viral ribonucleoprotein complex
W	Tryptophan
WAK1	Wall associated kinase 1
WIPK	Wound induced protein kinase
Xop	Xanthomonas outer protein

1

Arabidopsis thaliana as a Model Organism to Study Plant-Pathogen Interactions

Shachi Agrawal

Abstract

Arabidopsis thaliana (a crucifer) provides a model system in every discipline of plant sciences including plant pathology with a varied array of molecular and genetic resources and biological information. Members of crucifer are widely distributed geographically and are well adapted to various plant pathogens such as fungi, bacteria, viruses, and nematodes. Besides small plant size, short life cycle, small genome size, availability of whole genome sequence, and easy genetic and mutational analysis, its response to the pathogen attack in a similar fashion as other higher plant species and an extensive collection of mutants available to determine defense pathway are the characteristics, which identify this plant as an indispensable research model in plant-pathogen interaction studies. This chapter mainly focuses on various existing model pathosystems of *Arabidopsis* with viral, bacterial, and fungal pathogens including an outlook on how this knowledge can be translated from *Arabidopsis*-pathogen model system to other crop plants. A general and brief overview of plant-pathogen interactions and how *A. thaliana* recognize and respond to pathogens is also portrayed.

Keywords

 $\label{eq:effector} \begin{array}{l} \mbox{Effector molecules} \cdot \mbox{Hypersensitive response} \ (HR) \cdot \mbox{Plant defense} \cdot \mbox{Plant defense} \cdot \mbox{Plant defense} \cdot \mbox{Plant defense} \cdot \mbox{Systemic acquired resistance} \ (SAR) \end{array}$

S. Agrawal (🖂)

Department of Botany, Gargi College, New Delhi, India e-mail: gupta_shachi@yahoo.co.in

[©] Springer Nature Singapore Pte Ltd. 2018

A. Singh, I. K. Singh (eds.), *Molecular Aspects of Plant-Pathogen Interaction*, https://doi.org/10.1007/978-981-10-7371-7_1

1.1 Introduction

When a pathogen attacks a plant, either a pathogen can proliferate and can cause development of disease or the plant can resist the pathogen by means of active or passive form of resistance. During resistance, plants recognize a race-specific avirulence determinant produced by the pathogen (Keen 1990; Scofield et al. 1996; Tang et al. 1996); defense mechanisms are activated leading to hypersensitive response (HR) (Matthews 1991). At the same time, expressions of pathogenesis-related (PR) proteins as well as plant defensins are induced due to gene-for-gene interactions and rapid localized cell death (Narasimhan et al. 2001; Asano et al. 2012). Signaling molecules, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and reactive oxygen species (ROS) are directly involved in plant defense against pathogens (Clarke et al. 2000; Kunkel and Brooks 2002; Hossain et al. 2007; Asano et al. 2012). There is rich information on plant-pathogen interaction on many species. Advanced molecular tools are also accessible that can be used to study the function and evolution of genes that are important for plant defense such as those that control responses to wide range of pathogens. However, studies in molecular plant pathology require large initial investments in molecular technologies. It is cost-effective since these investments are shared among multiple laboratories by means of publications, bioinformatic tools, and databases such as TAIR. Moreover, researchers gain in-depth biological understanding when they compare and match previous studies from a research community that shares the tools and resources of model organisms. Although, it is imperative to study individual plant-pathogen interactions at species level to gain better knowledge. But, at the same time, A. thaliana serves as a model system to answer many basic questions related to plant-pathogen interaction due to availability of complete genome sequence and having a small genome size together with the extensive collection of new mutants and germplasm as well as the presence of specialized transformation techniques, its rapid growth, can be handled easily in the laboratory conditions, mutagenesis can also be done easily and the possibility of using microarrays for gene expression analysis. Arabidopsis is susceptible to only a limited number of pathogens including viruses, bacteria, fungi, nematodes, and insect pests, and it responds to the pathogen attack in a similar fashion to those of other higher plant species.

A. thaliana (L.) Heynh. is an annual flowering plant that belongs to mustard family (Cruciferae or Brassicaceae). It is a native of Eurasia, which has a broad natural distribution throughout Europe, Asia, and North America. Of late it has been introduced and naturalized worldwide. It is speculated that its spread was facilitated by the expansion of agriculture (Francois et al. 2008). *A. thaliana* is considered as a weed as it grows in open or recently disturbed habitats. *Arabidopsis* shows extensive natural variation for different developmental, abiotic, and biotic stress resistance traits (Koornneef et al. 2004; Alonso-Blanco et al. 2009; Atwell et al. 2010). Till date, over 750 different ecotypes (accessions) of *A. thaliana* have been collected from natural populations that are available for experimental analyses. The most commonly used ecotypes of *Arabidopsis* for genetic and molecular studies are Columbia (Col) and Landsberg erecta (Ler). The entire life cycle of *A. thaliana* is completed in 6 weeks, which includes seed germination, rosette formation, bolting,

Fig. 1.1 An *Arabidopsis* plant grown under laboratory condition

flowering, and maturation of seeds. The plant is a small-sized herb with overall length of around 15–20 cm; leaves are 1.5–5 cm long and 2–10 mm broad. Flowers (2 mm length and 3 mm diameter) undergo self-pollination but can be crossed manually. The fruit is called a silique (5–20 mm long) that contains 20–30 seeds. On germination, the seed develops into a rosette plant (2–10 cm diameter), wherein the whorls of leaves are covered with trichomes (Fig. 1.1). Under laboratory conditions *Arabidopsis* can be grown easily in petri plates, pots, or hydroponics, either under fluorescent lights or in a greenhouse. Inflorescence is a corymb that appears as a result of bolting after 3 weeks of planting. Several hundred siliques are produced per plant, which account for more than 5000 total seeds. The plant has a single primary root that grows vertically downward and produces smaller lateral roots that are easy to study in culture.

1.2 Plant-Pathogen Interactions

An array of pathogens including fungi, bacteria, and viruses attack the plant kingdom. Different strategies have been devised by different pathogens to invade, feed on, and reproduce in the host plants. Pathogens can be broadly classified as biotrophs and necrotrophs based upon the strategy used by them to invade and infect a plant (Oliver and Ipcho 2004). Biotrophic pathogens are those that require a living host tissue for its growth and reproduction. In some cases wherein the tissue dies in the later stages of the infection, the pathogens are classified as hemibiotrophs. On the contrary, necrotrophic pathogens kill the host tissue as soon as they infect it and then grow and feed on the dead tissue. Viruses are classified as biotrophic pathogens, whereas bacteria and fungi follow both biotrophic as well as necrotrophic strategies of invasion. Plants respond to different kinds of pathogens differently. Pathogens can further be classified as those with different primary target tissues encountering different environmental conditions. Those pathogens that target the green, photosynthesizing, and assimilate-producing source tissues like leaves will encounter different kinds of defense responses in comparison to pathogens infecting the assimilateimporting tissue such as roots, flowers, and sink leaves (Berger et al. 2007).

Plant defense mechanism against pathogens can be either preformed (primary) or induced (secondary). The first and foremost step required for the activation of defense response is to recognize the presence of microorganisms. Elicitors are molecules that at very low concentrations induce plant defense response (Thakur and Sohal 2013). Recognition of microorganism-derived elicitors initiates the basal resistance in plants. This defense response involves activation of ion fluxes, phosphorylation/dephosphorylation of proteins by protein kinases and phosphatases, and production of signaling molecules such as adapter proteins, salicylic acid, jasmonic acid, ethylene, reactive oxygen species, and nitric oxide. These steps further initiate an array of signaling that leads to the regulation of expression of defense-related genes and the induction of phytoalexins and pathogenesis-related (PR) proteins, and localized programmed cell death (PCD) (McDowell and Dangl 2000; Dangl and Jones 2001; Garcia-Brugger et al. 2006).

Plants also possess an innate immune system that perceives the presence of pathogens by recognition of molecules known as microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs, respectively) or by sensing effector proteins secreted by the host during plant-pathogen interactions. Early interactions between PAMPs/MAMPs and cell surface receptors (pathogen recognition receptors or PRRs) lead to appropriate defenses by activating multicomponent and multilayered responses. The establishment of defense is triggered by several pathways that can involve Ca²⁺ influx, generation of reactive oxygen and nitrogen species (ROS and RNS, respectively), and synthesis of phytohormones such as jasmonic acid (JA), salicylic acid (SA), and ethylene (ET), which act as signal molecules (Pieterse et al. 2009). Plant immunity may be described at two levels (Jones and Dangl 2006). The first one involves cell surface pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and initiate PAMPtriggered immunity (PTI). The second involves nucleotide-binding leucine-rich repeat (NB-LRR) proteins, encoded by resistance (R) genes, which sense pathogen effectors and elicit a potent immune response called effector-triggered immunity (ETI). ETI is faster, longer, and stronger than PTI and usually leads to a local cell death, the hypersensitive response (HR), which stops the spread of the pathogen (Jones and Dangl 2006). In some cases, pathogens can evade such recognitions also and suppress host immunity with effectors, causing effector-triggered susceptibility

(ETS). R proteins recognize some effectors that enable the pathogen to overcome PTI, and the effectors are thus termed an avirulence (Avr) protein (Jones and Dangl 2006).

As per our current understanding, virulence of the virulent pathogenesis is contributed by the production of effector molecules which thereby suppress plant defense, and thus the compatible interactions allow the spread of the pathogen in the susceptible plant (Jones and Dangl 2006). Herein the pathogen proliferates at a rate in which the plant defense could not keep pace with that subsequently leads to the development of disease and necrosis. On the other hand, in resistant plants, the specific resistance is governed by the recognition of the activity of pathogen effector molecules (race-specific avirulence determinant) by plant receptor proteins (Keen 1990; Scofield et al. 1996; Tang et al. 1996; Berger et al. 2007). Hence, these incompatible interactions prevent the pathogen from spreading and impart resistance to the plant. The disease resistance "R" genes encode the microbe recognizing plant receptors. Those pathogens that cannot establish themselves in the host plant are called as avirulent strains of plant pathogens, and their early recognition combined with fast activation of plant defense mechanisms results in the inducible defense system (Jones and Dangl 2006). Moreover, the recognition of the avirulent strain determinant activates a hypersensitive response (HR) that is characterized by localized PCD resulting in small necrotic lesions that efficiently restrict the spread of biotrophic pathogens (Heath 2000; Narasimhan et al. 2001). In addition, plant defensins (PDF1.1, PDF1.2) mRNAs are expressed in response to gene for gene interaction (Narasimhan et al. 2001). As discussed earlier, various signaling molecules like jasmonic acid, salicylic acid, ethylene, and reactive oxygen species (ROS) are directly involved in such inducible defense systems (Clarke et al. 2000; Kunkel and Brooks 2002; Hossain et al. 2007). The jasmonate/ethylene signaling pathway seems to be the most important mechanism in defending against necrotrophic pathogens. On the other hand, in order to combat against the biotrophic pathogens, plants recruit the salicylic acid-dependent responses (Thomma et al. 2001).

1.3 How *Arabidopsis thaliana* Recognize and Respond to Pathogens?

In nature, plants are exposed to a large number of pathogens, but somehow they are susceptible to only a few of them. This may be due to the presence of different defense mechanisms exhibited by the plants (Nimchuk et al. 2003; Jones and Takemoto 2004). The disease resistance (R) genes that are involved in pathogen recognition show excessive polymorphism. This polymorphism has been speculated as a cause for plant resistance. In monoculture, loss of R gene polymorphism results in reduced resistance and increased susceptibility (Stahl and Bishop 2000). *Arabidopsis* is prone to infection by pathogens that includes viruses, bacteria, fungi, nematodes, and insects. As the mode of response to the pathogen attack is highly

conserved in higher plant species, study of *Arabidopsis*-pathogen interactions have greatly helped the scientists to understand the molecular and cellular basis of host-pathogen interactions, disease resistance, and pathogen virulence (Andargie and Li 2016).

As stated earlier, R genes are important for parasite recognition and initiation of defense mechanism. A total of 150 different R genes have been identified in *Arabidopsis* genome that are located unevenly on chromosomes with 49, 2, 16, 28, and 55 R gene loci on chromosome number 1, 2, 3, 4, and 5, respectively (*Arabidopsis*-Genome-Initiative 2000). These R genes encode for proteins that contain nucleotide-binding (NB) domain(s) that binds to ATP or GTP along with a carboxy-terminal leucine-rich repeat (LRR) domain (S) that facilitate protein-protein interactions and ligand binding. They are further classified as those that contain toll interleukin 1 receptor domain (TIR) or coiled-coil (CC) domain at their amino terminal. Thus, broadly they can be classified as TIR-NB-LRR and CC-NB-LRR. *Arabidopsis* genome contains 85 TIR-NB-LRR resistance genes at 64 loci and 36 CC-NB-LRR resistance genes at 30 loci (*Arabidopsis*-Genome-Initiative 2000). Some of these R genes carry additional domains also, like WRKY transcription factor domain and protein kinase domain that have also been implicated in plant defense.

Studies were carried out to compare the defense mechanisms in plants and animals. Nitric oxide production seems to be a common response in both plants and mammals in conditions of biotic stress. But distinct homologue of nitric oxide synthase gene was not found in Arabidopsis. REL (reticuloendotheliosis) domain transcription factors or similar proteins that are involved in innate immunity in both Drosophila and mammals or their homologs were not detected in Arabidopsis thaliana. Moreover, no homologues were detected for genes like classical caspases, bcl2/ced9, and baculovirus p35 that are involved in apoptosis regulation in animal cells; however, eight homologues of metacaspase family protein and 36 cysteine proteases were found in Arabidopsis (Arabidopsis-Genome-Initiative 2000; Uren et al. 2000). The production of reactive oxygen intermediates is a primary response that is common to both plant and animal during pathogen recognition. This process involves transfer of electrons across the plasma membrane in mitochondria to make superoxide by a specialized respiratory burst oxidase. In mammals, gp91 is the subunit of NADH oxidase that catalyzes the final step of electron transfer to molecular oxygen (O_2), resulting in the generation of superoxide ion (O_2^{-}) (Yu et al. 1998). The Arabidopsis genome has eight functional homologues of gp91. These homologues are called Atrboh genes and have been implicated in plant defense response (Torres et al. 2002). In mammals, gp91 activity requires the action of Rac proteins, but no Rac or Ras proteins are found in Arabidopsis; however, a large family of rop genes that are related to G-proteins are present and may carry the same function. The various pathogens of Arabidopsis thaliana, gene associated with natural variation of response to those pathogens and their molecular functions, are summarized in Table 1.1.

Table 1.1 Various pathogens of *Arabidopsis thaliana* along with gene associated with natural variation of response to pathogen interactions and their molecular functions (Roux and Bergelson 2016)

	Associated gene	
Pathogens of Arabidopsis	locus	Class of the associated gene
Viruses		
Turnip crinkle virus (TCV)	HRT	CC-NBS-LRR protein
Cucumber mosaic virus (CMV)	RCY1	CC-NBS-LRR protein
Tobacco ringspot virus (TRSV)	TTR1	TIR-NBS-LRR protein
Tobacco etch virus (TEV)	RTM1	Jacalin-like lectin protein
	RTM2	Small heat shock-like protein
	RTM3	MATH domain-containing protein
Plum pox virus (PPV)	RTM1	Jacalin-like lectin protein
	RTM2	Small heat shock-like protein
	RTM3, rwm1/	MATH domain-containing protein
	rpv1	Nucleus-encoded chloroplast
		phosphoglycerate kinase
Lettuce mosaic virus (LMV)	RTM1	Jacalin-like lectin protein
	RTM2	Small heat shock-like protein
	RTM3	MATH domain-containing protein
Plantago asiatica mosaic virus (PAMV)	JAX1	Jacalin-like lectin protein
Watermelon mosaic virus	rwm1/rpv1	Nucleus-encoded chloroplast
(WMV)		phosphoglycerate kinase
Bacteria		
Pseudomonas syringae	RPM1/RPS3	CC-NBS-LRR protein
	RPS2	CC-NBS-LRR protein
	RPS5	CC-NBS-LRR protein
	RPS4	TIR-NBS-LRR protein
	RRS1	TIR-NBS-LRR WRKY protein
	ACD6	Ankyrin-repeat transmembrane protein
Xanthomonas campestris	RPS4	TIR-NBS-LRR protein
	RRS1	TIR-NBS-LRR WRKY protein
	RKS1	A typical kinase
	AT5G22540	Protein of unknown function
Ralstonia solanacearum	RPS4	TIR-NBS-LRR protein
	RRS1	TIR-NBS-LRR WRKY protein
	ERECTA	LRR receptor-like kinase
Fungi		
Elicitor from <i>Sclerotinia</i> sclerotiorum	RLP30	Receptor-like protein
Botrytis cinerea	RLP30	Receptor-like protein
	EGM1	Receptor-like kinase
	EGM2	Receptor-like kinase
	RLM3	TIR-NB protein

(continued)

	Associated gene	
Pathogens of Arabidopsis	locus	Class of the associated gene
Fusarium oxysporum	RFO1	Wall-associated receptor-like kinase
	RFO2	Receptor-like protein
	RFO3	Receptor-like kinase
Alternaria brassicicola	RLM3	TIR-NB protein
Alternaria brassicae	RLM3	TIR-NB protein
Colletotrichum higginsianum	RPS4	TIR-NBS-LRR protein
	RRS1	TIR-NBS-LRR WRKY protein
Oomycetes	-	
Albugos candida	RAC1	TIR-NBS-LRR protein

Table 1.1 (continued)

1.4 Arabidopsis thaliana: An Important Model Host for Studying Plant-Pathogen Interactions

A. thaliana is an important model host for studying plant-pathogen interactions due to several reasons as described earlier. Arabidopsis is susceptible to only a limited number of pathogens including viruses, bacteria, fungi, nematodes, and insect pests. Diseases resulting from these pathogens have been reported in the wild (Holub et al. 1994, 1995; Tsuji and Somerville 1992) suggesting both the pathogen and the host share an ecological niche, and when the appropriate environmental conditions are present, disease can occur. Diseases have also been observed in a laboratory setting where the host is deliberately exposed to the pathogen. Regardless of the setting, nature, or the laboratory, Arabidopsis responds to the pathogen attack in a similar fashion as other higher plant species when exposed to viral, prokaryotic, or eukaryotic pathogens (Andargie and Li 2016). Since the 1990s till today, several plants have been recognized as model systems for plant-pathogen interactions such as tobacco, tomato, etc., but A. thaliana has been used extensively as a model plant to have an overview of the plant-pathogen interactions with a wide variety of pathogens. The A. thaliana genetic system is significantly more tractable than those of the other plant species, which were hampered by long generation times and large, polyploid, or repetitive genomes. Agriculturally important crucifers such as Brassica napus, Brassica rapa (oilseed rape, canola), B. oleracea, Brassica spp., European cabbage, cauliflower, Chinese cabbage, and radish (Raphanus spp.) are the closest relatives of Arabidopsis, so all the informations available can be useful for studying plant-pathogen interactions in these related spp. that are economically important crops. But molecular studies can be more complex in these spp. since they are mostly polyploids.

Besides, *A. thaliana* exhibits all of the major kinds of defense responses described in other plants. Furthermore, a large number of virulent and avirulent bacterial, fungal, and viral pathogens of *A. thaliana* have been deciphered (Glazebrook et al. 1997). Mutants defective in almost every aspect of plant growth and development have been identified and studied by the various research groups over the world. Novel insights into events subsequent to pathogen recognition in *A. thaliana* have

been obtained from mutants altered in defense (Buell 1998). Several mutant groups in *A. thaliana* exist today: lesion mimic mutants, phytoalexin mutants, as well as enhanced susceptibility and resistance mutants. With the variety of mutants available, it is possible to determine which defense pathways are activated during pathogen attack and what leads to the subsequent resistance or susceptibility. As research progresses, the different mutants will be linked to specific genes finally leading to a better understanding of the various genes involved in plant response pathways (Glazebrook et al. 1997).

1.5 A. thaliana-Pathogen Interactions

Arabidopsis has been reported as a susceptible host to a range of pathogens and resistant to other pathogens. The findings related to defense mechanism in *Arabidopsis* have been successfully implemented in many model systems, which have been developed to better understand interactions between plants and pathogens. The primary response of *Arabidopsis* includes the perception of pathogens by cell surface pattern recognition receptors (PRRs) and is referred to as PAMP-triggered immunity (PTI). Activation of FLS2 and EFR triggers MAPK signaling pathway that activates defense genes for synthesis of antimicrobial compounds. *Arabidopsis* possess specific intracellular surveillance proteins (R proteins) to monitor the presence of pathogen virulence proteins. This ETI occurs with localized programmed cell death to arrest pathogen growth, resulting in cultivar-specific disease resistance.

1.5.1 Arabidopsis-Virus Interactions

Viral infections and their spread throughout a plant require numerous interactions between the host and the virus. Systemic viral infections in plants are complex processes that require compatible virus-host interactions in multiple tissues. These interactions include viral genome replication in the cytoplasm of the initially infected cells, cell-to-cell movement toward neighboring tissues, long-distance movement through the vascular tissue, phloem unloading, and cell-to-cell movement in non-inoculated systemic tissues (Carrington et al. 1996). Incompatibilities between virus and host factors at any of these stages could therefore lead to restrictions and delay establishment of a systemic infection. The utility of *Arabidopsis* as a model system has not gone unnoticed, and several viruses previously found to be pathogenic on crucifers have also been found to infect *Arabidopsis*. This model organism has proven to be useful to understand the relationship between the host plant and the virus replication and movement processes (Kunkel 1996; Yoshii et al. 1998). Susceptible interactions between plants and viruses can result in a variety of visible symptoms ranging from mild stunting to overall necrosis.

Although plant viruses are among the least genetically complex pathogens, they use a variety of strategies to suppress or bypass host defense and infect susceptible