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Preface

The existence of this volume owes itself to both opportunity, and many hours of coffee
fuelled conversation, the general form of which would run; “have you seen X’s critique
of Y…? Did you see the special issue on X…? Wouldn’t it be great if we could do
something to help improve methods knowledge within psychology?” Given our collec-
tive interest in individual difference psychology, our musings would often be triggered
by a favourite conversation – the inappropriate application of principal components
analysis. We all taught, and continue to teach, research methods and statistics at our
institutions; we all develop and evaluate psychometrics in our research, but the idea
of something larger – a conference, a journal special edition, a book – continued to
surface. There are many excellent papers, books, and courses that cover research meth-
ods relevant for psychometrics but, we thought, not a single resource that brings
cutting-edge knowledge from the journals in our fields together in an accessible
manner.

So, imagine our delight and trepidation when Paul was invited to edit a handbook on
psychometric testing. We could finally put our coffee-shop “wisdom” to the test!
Although, “Who reads books anymore? Surely, it will be a ton of work editing such
a volume? Come to think of it, we’re not knowledgeable enough in half of the areas
we need to cover…Howwill we ensure we get expert authors?”Wehadmany questions
and doubts and committing to producing this book was not a lightly taken decision.
Nevertheless, we returned consistently to one question: how else can we do our small
part in improving the availability of cutting-edge methodological knowledge within the
field of psychometrics? We had decided (or at least Tom and David had, Paul took some
convincing!) that together we would try to produce a book which covered the core
topics in psychometrics, a book that harnessed the work of excellent authors, a book
that we would like to have, a book that, if used, would see methodological awareness
grow, and statistical practice improve.

At the outset of planning and preparing this book, all three of us were at the Univer-
sity of Manchester’s Business School; Tom and David were Ph.D. students, and Paul,
our supervisor, a Reader of Organisational Psychology. At the time of writing this pref-
ace, almost five years later, Ph.Ds are a distant memory, Tom and David have moved on
several times (or moved on and then back to Manchester in David’s case), and Paul is
now a professor. This book, The Handbook, has been a labour of love and frustration
throughout these five years, five years that have not only seen workplace changes but



also a quite remarkable series of injuries and ill-health, several relegations for our relative
football (soccer) teams, oh, and a wedding!
Now, here we are, a complete volume that looks remarkably close to our initial

proposal and we are delighted with it. Our intention, succinctly described in the letters
we sent to authors was to write chapters on key topics in psychometrics and that:

Each chapter should cover the fundamentals. However, we favour a three-tiered approach,
which covers: (1) historical and standard approaches, including all the core material, and
then moves onto (2) a discussion of cutting-edge issues and techniques, together with a
section on (3) how to do it, which should contain a worked example. These chapters should
address real issues faced by both practitioners and researchers.

We hope with the help of our contributors that we have achieved our goal. We hope
that a journey started with coffee-shopmusings and reflections has led to the production
of a useful resource for students, academics, and practitioners alike.
The biggest strength of The Handbook undoubtedly lies in the calibre of the authors

who have contributed. Every chapter (modestly, with the exception of our own!) has
been written by a field expert with specialist knowledge whose work we have admired
and used to inform our own practice. Not only are our authors experts, they are
also diverse with regard to nationality (e.g., Netherlands, U.K., U.S.A.), profession
(e.g., academics, commercial test developers), and field (e.g., psychology, statistics,
education, politics). This diversity was no accident. Approaching the topic of psycho-
metrics from the perspective of one discipline would never showcase the range of
theoretical and statistical advances that we hoped to convey to our readers. We wish
to say a very large thank you to each and every author for sharing their expertise and
for their patience throughout this process.
Beyond our excellent contributors, we would also like to acknowledge the help of our

families, friends, and students, for their willingness to put up with constant references
and sometimes play second fiddle to The Handbook over the last few years. Finally, we
would also like to extend our deep gratitude to all the people at JohnWiley & Sons who
have helped us in this process (and there have been many).
Thank you all, and thank you to you as readers for picking this book up off the shelf.

We hope it is useful.

David, Tom, and Paul.

xii Preface



Introduction

Aims and Scope

The principal aim of this Handbook was to provide researchers and practitioners from
different academic and applied fields with a single practical resource covering the core
aspects of psychometric testing. Psychometrics can be translated as mental measure-
ment, however, the implication that psychometrics is confined to psychology is highly
misleading. Virtually every conceivable discipline now uses questionnaires, scales, and
tests developed from psychometric principles, and this book is therefore intended for
a multidisciplinary audience. The field of psychometrics is vibrant with new and useful
methods and approaches published frequently. Many of these new developments use
increasingly sophisticated models and software packages that are easy to misunderstand.
We have strived to make the chapters in this Handbook both intellectually stimulating,
and practically useful, through the discussion of historical perspectives, cutting-edge
developments, and providing practical illustrations with example code. Thus, each
chapter provides an accessible account and example of the current state-of-the-art
within the core elements of psychometric testing. We hope that this book is useful
for those who develop, evaluate, and use psychometric tests.

Section and Chapter Structure

In structuring the chapters and sections of this Handbook, we attempted to approxi-
mate the process of test development. In Part I, the chapters cover core topics surround-
ing the foundations of test development. Here, we provide a macro view of the process
of test development (Chapter 1); outline the broad differences in the classical and
modern test theory approaches (Chapter 2); broach topics of the development and
nature of item sets (Chapters 3 and 7); and address fundamental topics in study design
(Chapters 4, 5, and 6). Chapter 1 is probably the most logical place to start, since this
provides a context for most of the other chapters as to their role in test development.

In Part II, we consider the primary psychometric tools for analyzing item pools and
identifying plausible scales. Here, we consider the fundamentals of both the common



factor (Chapters 8, 10, 11, and 12) and item response (15 and 16) approaches.
Chapter 9 sits somewhat at the intersection of the classic and modern test approaches
in discussing estimation of categorical item factor models. Part II also provides introduc-
tory coverage of multidimensional scaling (MDS: Chapter 14), which has been a highly
influential psychometric tool in fields such as political science (see Chapter 28), but is
less commonly used in psychometric evaluations in fields such as psychology. The
remaining chapters in Part II deal with a number of slightly more advanced, but highly
important topics. These chapters address nonnormality (Chapter 13), Bayesian
approaches to scaling (Chapter 17) and the modelling of forced choice item formats
(Chapter 18). Each of these chapters covers something of an “up and coming” area
of psychometrics based upon advancements in computation that now allow us to model
more complex data appropriately (as opposed to forcing data into models which
presuppose unmet assumptions). Chapter 18, which covers forced choice items, is
also particularly valuable for those who test in high-stakes scenarios (i.e., employee
selection).
Part III addresses the topic of test scores and also deals with the process of linking

and equating test scores. The purpose of psychometric tools is more often than not to
understand where someone stands on a given latent trait versus other individuals.
Often, we desire scores to represent this standing. Here then, we deal with funda-
mental topics in score estimation and evaluation, from simple sum scores to
advanced item response estimates (Chapters 19 and 20). But what happens when
we develop a new version of a test? Or we attempt to develop parallel forms? Or
we want to try and relate individuals who have taken different tests? These needs
are very common in both applied and academic analyses in education, business,
and psychology, and all are concerned with the topic of score linking and equating
(Chapters 19 and 21).
Part IV is concerned with the evaluation of scales from a statistical and theoretical

perspective. Chapters 23 and 24 provide state of the art treatments of the classic topics
of reliability and validity, respectively. Chapter 22 concerns the evaluation of the
strength of general and specific factors using bi-factor models. Chapter 25 uses multi-
trait-multimethod analyses to explore the proportion of measured variance attributable
to the construct and the measurement tool.
So, we have developed some items, collected some data, established our best set of

measured constructs, and evaluated the quality of the scales. But does our test operate
in the same way for all groups of people? This question is critically important for reasons
of accuracy and fairness and can be approached through the application of the analytic
methods discussed in Part V. Here, we deal with tools for modelling and understanding
the measurement properties of psychometric tools across groups from a common factor
(Chapter 26) and item response (Chapter 27) perspective.
Finally, in Part VI, we step away from topics related to the immediate development of

tests, and we consider the role psychometrics has played, and may play in the future, in
theoretical and practical arenas. In Chapters 28 and 29, we consider the substantial role
psychometric tools and analyses have played in shaping the fields of political science
and personality psychology. Lastly, we introduce recent work concerning the relation-
ship between network and latent variable approaches to understanding behavior
(Chapter 30). Both Chapters 29 and 30 provide critical appraisals of analytic tools
common to the psychometrics world (i.e., factor analysis) and point the way to potential
avenues of progress. Reviewing the contributions of psychometric testing and
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considering how future Handbooks of Psychometric Testing might look felt like a
fitting way to close this volume.

Mathematical and Statistical Foundations

Our aim for this Handbook was tomake the content as accessible as possible for as many
individuals as possible, both practitioners and academics. You do not need to be a math-
ematician or statistician to read this book. Equations are kept to the minimum required
to provide satisfactory explanations of the methods under discussion. Where equations
are presented by authors, they are broken down and described verbally to add clarity.

However, it would be remiss of us as editors to try and claim that this handbook is
going to be an easy read for all who pick it up. The topic under discussion is statistical
and thus there is some technical content. The degree of technical content varies across
chapters inline with the mathematical complexity of the topics discussed.

So, what statistical and mathematical knowledge is required? With regard to statistics,
we have assumed certain background knowledge. Modern psychometrics depends,
amongst other things, on knowledge of structural equation modelling (SEM), and in
particular confirmatory factor analysis (CFA). However, both of these are already cov-
ered by many excellent texts. For example, the early chapters in Little (2013) provide an
excellent introduction to both topics, while Brown (2015) provides arguably one of the
most useful comprehensive treatments of CFA, and Bollen (1989) still represents the
most definitive advanced treatment of both. SEM depends on an understanding of mul-
tiple regression. Probably one of the best and most neglected books on regression is
Pedhazur (1997), which in fact provides a comprehensive coverage of everything
you need to know about the basics of multivariate statistics.

With regards to mathematics knowledge, to understand the methods conceptually
and use the practical examples as guides to analyze your own data, not very much is
required. But to appreciate fully the topics under discussion here, a basic knowledge
of calculus, algebra, and perhaps most importantly, matrix algebra (e.g., Fieller,
2015; Khuri & Searle, 2017) is required. It would also be valuable, as is true for any
statistical topic, for readers to have some grounding in probability and significance test-
ing. A number of chapters also extend into Bayesian statistics where a slightly deeper
appreciation of probability theory may be necessary (DeGroot & Schervish, 2012).
Chapter 17 contains a short introduction to concepts from Bayesian analysis, but this
is intended more as a refresher than as a comprehensive treatment of the fundamental
of Bayes. In terms of a comprehensive and accessible introduction to mathematical
statistics Larsen and Marx (2011) is hard to better.

We have resisted the temptation to provide introductory chapters or appendices on
these core statistical and mathematical topics for two reasons. First, there are a multitude
of high quality introductory texts on these topics (see previously). It is also important to
point out that there are now a huge number of excellent (and free) web resources on these
topics, and the reader who feels they need a refresher is encouraged to explore this route
(no need to spend money unnecessarily) whilst bearing in mind that finding the right
mathematics or statistics text is often a personal thing. Second, theHandbook is intended
to have a diverse target audience whose needs will vary greatly. To cover each of these
topics, for a diverse audience, would have required us to turn what is already a large book,
into a behemoth perfectly suited to act as doorstop for the Black Gate of Mordor.
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Software

The contributors to the Handbook have made use of a variety of different statistical soft-
ware packages, some freely available, others proprietary. The two most popular tools
across chapters are the R statistical programming language andMPlus. R has a large num-
ber of advantages as a statistical tool, the details of which we will not get into here. How-
ever, perhaps the two most commonly cited and important are that it is free, and it is
highly flexible. However, with this flexibility comes a requirement for some knowledge
of programming and coding languages – with great power comes great responsibility.
In recent years, MPlus has established itself as one of the primary proprietary tools for

conducting general latent variable analyses, quickly incorporating new methodologies,
providing excellent help facilities and abundant online resources. MPlus is again a
flexible tool that is very user-friendly. However, the program does come at a cost, with
a full single user license for University affiliates costing approximately £720 ($895) at
the time of writing.
Popular general-purpose statistical packages such as SPSS, SAS, or STATA, are used,

but less frequently. This is not to say that these packages have no capability with respect
to the types of analysis discussed in this Handbook but often they do lack some of the
nuances needed to conduct state of the art analyses. This is perhaps the reason that
authors have also made use of a variety of additional programs including, MIRT,
flexMIRT, IRTPro, Factor, LISREL, EQS,MATLAB,WinBUGS, andmore.What this
shows is the huge variety and widespread availability of tools for empirical analysis.
So, which software should you use? In making this decision, one of the key things to

consider is which models are best suited to which software. We hope the Handbook
helps in this endeavor in two ways. First, our empirical examples show directly some
of what can be done in certain packages. Second, we hope the level of presentation
of the technical details of analyses will allow the readers to tackle the supporting
documentation of software to gain a deeper understanding of what is going on “under
the hood.”
The available tools vary in a number of other ways, too. For example, the means by

which analyses are conducted varies from coding languages (both program-specific and
general) to graphical user interfaces with and without diagrammatical capabilities.
Whilst drop-down menus are great, we would recommend writing code. Not only does
this clarify understanding but it also allows you to specify all modelling options rather
than resting on software defaults. Perhaps the most pragmatically relevant variation lies
inmonetary cost, andmany readers will likely be limited to proprietary software available
from their institutions or freely available software. Thankfully, for scientific progress,
more tools than ever are now free! Indeed, more than a third of our chapters used free
software and every analysis presented in this handbook could be conducted in this man-
ner, which we will now discuss.

Chapter Code

For a majority of the chapters in this handbook, software code has been made available
for the analyses, and some of the figures, presented in the chapters. In most cases, this is
in the form of a Code Appendix at the end of the chapter. For a smaller subset of chap-
ters, the code has been integrated into the body of the chapter. Chapter dependent, the
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detail of code provided varies, as does the level of annotation but in each case, it directly
links to the practical examples presented.

Some chapters have made use of proprietary software, which if the reader does not
have access to, obviously limits its usability. Here we wish to emphasize once again
the abundance of freely available software for psychometric analyses. With very few
exceptions, the analyses presented in this book can be conducted using a relatively
limited number of R-packages. For those unfamiliar with R, we would strongly
recommend investing some time to learn the basics of the program.

The packages psych (Revelle, 2016), mirt (Chalmers, 2012), OpenMx (Neale, et al.
2016; Pritikin, Hunter, & Boker, 2015; Boker et al., 2017), and lavaan (Rosseel,
2012), can be used to complete a vast majority of the common factor and IRT analyses
presented in this Handbook. Other useful packages include qgrpah (Epskamp, Cramer,
Waldorp, Schittmann, & Borsboom, 2012) for network models and plots, smacof (de
Leeuw, &Mair, 2009) for multidimensional scaling, rjags (Plummer, 2016) for Bayes-
ian analysis, and mice (van Buuren & Groothuis-Oudshoorn, 2011) for missing data
analysis. Collectively, we hope that the code provided and access to the free
R packages noted makes the Handbook a genuinely valuable practical tool.

How to Use the Book

As has been outlined here, this Handbook has been compiled withmultiple audiences in
mind and as such we anticipate the contents to be used in a variety of ways. Coarsely, our
section structure can be seen as representing the process of developing and evaluating a
psychometric test. Read from start to finish the chapters represent a comprehensive
introduction to the process of test development, analysis, and revision. Readers
interested in evaluating an extant scale for which they have collected some data will,
dependent on their focus, find most value in the contents of sections two through four.
Here we suggest that the readers treat the chapters and the associated reference lists as
the start point for in depth consideration of a topic. Whilst we cover historical perspec-
tives, state-of-the-art methods, and provide practical examples and code, the chapters of
this handbook do not contain everything one might need to know.

In either case, whether a reader is interested in the start to finish process of scale devel-
opment, or in methods for a specific purpose, the chapter content allows the reader to
focus on either classical (common factor) or modern (IRT) approaches to most ques-
tions. For the reader unsure of which approach they wish to take, we would encourage
them to read Chapter 2, and to consider their research focus in light of the type of infor-
mation each approach has to offer. In some cases, this is overlapping, in others comple-
mentary, and so the choice is not always clear cut. Equally, whilst positioned towards the
end of the book, Chapter 24, might be an interesting place to start because the treat-
ment of “validity” aims to provide a coherent model to organize test development and
evaluation procedures and references out to other chapters wherever relevant.

Practical hands on experience is a valuable part of the learning process. We hope that
the code provided and the information on different software packages will provide a
framework that will allow readers to apply analyses to their own data. The code is
not a tutorial, and some knowledge of the different statistical packages will be needed.

We hope the Handbook is enjoyable and useful. Enjoy.
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Test Development
Paul Irwing and David J. Hughes

The purpose of this chapter is to explain how the psychometric principles outlined in
the remaining chapters of this Handbook can be applied in order to develop a test. We
take a broad definition both of what constitutes a test and what is understood by test
development. This is because the principles of psychometric testing are very broad in
their potential application. Among others, they can apply to attitude, personality,
cognitive ability, interest, and diagnostic measures. For the purposes of this chapter
all such measures will be referred to as tests. Psychometrics is broad in another sense:
It applies to many more fields than psychology; indeed, biomedical science, educa-
tion, economics, communications theory, marketing, sociology, politics, business,
and epidemiology, among other disciplines, not only employ psychometric testing,
but also have made important contributions to the subject. Our definition of a test
is broad in another sense: It encompasses everything from a simple attitude
scale, say to measure job satisfaction, to comprehensive test batteries such as the
Woodcock–Johnson IV battery of cognitive tests (Schrank, Mather, & McGrew,
2014). Of course, not every aspect of test development applies to both, but the
overlap is considerable.

It may be useful to distinguish the different levels of complexity involved in test
development. In the simplest case, the test comprises just one scale, but more usually
a test is comprised of multiple scales (single scale versus test battery). A second
distinction is between tests comprised of similar as opposed mixed types of scales
(scale similarity). For example, the European Social Survey measures multiple
constructs but all are attitude scales. However, some instruments may combine assess-
ments of mixed scale types; for example, cognitive ability, personality, and attitudes.
A third dimension concerns whether the test is intended to sample the entire spectrum
of a domain, or whether it is focused on specific aspects (broad versus narrow spec-
trum). For example, it would not be feasible for a selection test to reliably measure all
facets of either personality or cognitive ability. The point being that some form of sys-
tematic choice procedure is required such as job analysis or meta-analysis (Hughes &
Batey, 2017). Fourth, there is the issue of team size. There is a very big difference
from the situation in which a single investigator takes responsibility for the major
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portion of test development, and the situation in which there is a large team with
diverse skill sets, which would be common when developing commercial tests. The
MAT80 (Irwing, Phillips, & Walters, 2016), which we use later to demonstrate test
development procedures, is a test battery with a mixed scale that combines personality
and ability scales, involved a small test development team, and requires systematic
selection of specific facets.
There are already many publications of relevance to the topic of test development.

Probably the most useful single source is “The Standards for Educational and Psycho-
logical Testing” (American Educational Research Association [AERA], American Psy-
chological Association [APA], National Council on Measurement in Education
[NCME], 2014). However, as its name implies, this tells you what needs to be done,
but not how to do it. There is now a very useful Handbook of Test Development
(Downing & Haladyna, 2006), which largely specializes in the design of educational
and ability tests. Of almost equal use are textbooks on questionnaire and survey design
(Brace, 2005; De Vaus, 2014; Foddy, 1996; Oppenheim, 1992). Perhaps what none of
these books quite do is linkmodern psychometrics to test development, which is the aim
of this chapter and the whole Handbook.
We begin with a comprehensive model of the stages of test development, and then

discuss the major considerations that apply at each stage. We will leave the reader to
decide which of these stages apply to their own situation, depending on the type and
purpose of the test. Table 1.1 outlines a 10-stage model of test development. There
are a number of stage models of test development in existence (e.g., Althouse, n.d.;
Downing, 2006) and, to a degree, suchmodels are arbitrary in the sense that which tasks
are grouped into a stage and the order of stages is probably more for explanatory con-
venience rather than a description of reality. In practice, tasks may actually be grouped
and undertaken inmany different combinations and orders, with many tasks undertaken
iteratively. Nevertheless, a stage model provides a systematic framework in which to dis-
cuss the tasks that must be undertaken, although not all tasks are relevant to all types of
test development.

Table 1.1 Stages of test development.

Stages and substages

1 Construct definition, specification of test need, test structure.
2 Overall planning.
3 Item development.

a. Construct definition.
b. Item generation: theory versus sampling.
c. Item review.
d. Piloting of items.

4 Scale construction – factor analysis and Item Response Theory (IRT).
5 Reliability.
6 Validation.
7 Test scoring and norming.
8 Test specification.
9 Implementation and testing.
10 Technical Manual.
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Construct Definition, Specification of Test Need, and Structure

The motivation for test development often stems from a practical concern: can we help
children learn, can we identify effective managers, can we identify those at risk of mental
distress? However, while motivation may provide impetus, it is not the formal starting
point of test development. The formal starting point for all test development is to
generate a construct definition, which broadly is a definition of what is to be measured.
An initial construct definition should be as clear as possible but will often be somewhat
broad. For example, one might decide that a measure of cognitive ability, or leader
potential, or anxiety is required (perhaps in order to address our previous practical
concerns). From this point, one can define these constructs (using extant work or a
newly generated definition as appropriate) and conduct a systematic literature review
to identify existing tests and find out more about the nature of the target construct.
This review should help the developer to refine their construct definition. For example,
if you were interested in measuring cognitive ability an initial definition might be
incomplete or very high level (e.g., ability to acquire and use knowledge or the speed
and accuracy of information processing). However, based on a literature review, one
could choose to devise sufficient tests to provide coverage of all second-order factors
of cognitive ability contained within the Cattell–Horn–Carroll model (McGrew,
2009). This was broadly the strategy used in the development of the Woodcock–
Johnson IV (McGrew, 2009).

However, relying solely on extant models might not always be the most useful strat-
egy for at least two reasons, which we will explore using the Five FactorModel (FFM) of
personality (Costa & McCrae, 1995). First, because the FFM is so widely accepted,
there already exist a large number of tests based on this model and the question then
arises as to what is the need for another identical test. Second, although the FFM is
widely accepted, it seems unlikely that it is the final word on personality. Some argue
that there are facets of personality out with the sphere of the FFM (Paunonen & Jack-
son, 2000), including some aspects of abnormal personality (Mathieu, Hare, Jones,
Babiak, & Neumann, 2013). Of course, the NEO-PIR was not designed to measure
abnormal personality, but there are strong arguments that broad-spectrum measures
of personality should cover both the normal and abnormal (Markon, Krueger, &
Watson, 2005). This may seem like a disadvantage but of course, from the point of view
of a test developer, it is an opportunity. There is muchmore value in a new test that does
something that an old test does not.

There may of course be many reasons for developing a test. There may be a need for
research on a topic, but no extant measure suitable to carry out the research. For
example, knowledge is a very important aspect of human behavior, but until about
the year 2000 there were no standardized tests of knowledge (Irwing, Cammock, &
Lynn, 2001; Rolfhus & Ackermann, 1999). Outside of research: diagnosis, assessment,
and development, employee selection, market research, licensing and credentialing
(e.g., the examinations that qualify one to practice as an accountant or lawyer) represent
other broad categories of test needs. Broadly, there is a need for a test if your systematic
literature review reveals that a test does not currently exist, current tests are judged to be
inadequate, or there are tests, but not ones suitable for the particular population or use
to which the test is to be put. Certainly, many instances of copycat tests exist, but I am
not aware that this strategy has generally proven to be a recipe for a successful test.
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Generally, successful tests are developed due to some combination of three
circumstances:

1 Theoretical advances (NEO PI-R: Costa & McCrae, 1995; 16 PF: Conn & Rieke,
1994; VPI: Holland, Blakeney, Matteson, & Schnitzen, 1974; WAIS:
Wechsler, 1981);

2 Empirical advances (MMPI: Butcher, Dahlstrom, Graham, Tellegen, &
Kaemmer, 1989);

3 A practical (market) need (SAT: Coyle & Pillow, 2008; GMAT: Oh, Schmidt,
Shaffer, & Le, 2008).

If the developer does not make a test based on theoretical advance, empirical advance,
or a gap in the market and instead duplicates a test, or more realistically produces a test
that shares a name with another but has subtle differences in content, then the result is
construct proliferation and the well-documented problems commonly referred to as the
Jingle-Jangle fallacy (Hughes, Chapter 24; Shaffer, DeGeest, & Li, 2016).

Theoretical and empirical advances

Theoretical advancements (often driven by prior empirical discoveries) undoubtedly
provide the reason for the development of many tests. Briefly, the test developer must
develop a theoretical framework, which is in some respect new and sounder than pre-
vious frameworks, or utilize existing theoretical frameworks that current tests have not
exploited. A full discussion of the nature of theoretical advances is well beyond the prac-
tical bounds of this chapter because it will be unique for every construct. That said, the
history of the development of the FFM is highly instructive as to the process whereby
theory evolves from an interaction between theoretical and empirical developments
(Block, 1995; John, & Srivastava, 1999, see later). Also, pivotal to test development
is the evolution of tight construct definitions, which also emerges from the interaction
between theory and empirical work.

Systematic domain mapping

Perhaps the most obvious example of an interaction between theoretical and empirical
advance comes in the form of systematic domain mapping. Very simply, a systematic
domain map consists of all construct-relevant content (e.g., every aspect of the domain
of personality) mapped onto a theoretically supported structure. This serves as a precur-
sor to developing a systematic taxonomy of the domain that ideally identifies all primary
level and higher-level constructs and provides the basic material from which test items
can be constructed.
The history of testing suggests ways in which this can be achieved. Although all

attempts to map a domain suffer from practical and statistical limitations. For example,
the total number of possible personality items is sizable and collecting data on so many
items is difficult as is subsequent analysis. For instance, factor analysis cannot handle the
size of data matrix that would be required, meaning that in practice the total domain
needs to be divided into manageable chunks based on a subjective grouping (see
Booth & Murray, Chapter 29). The process of grouping items inevitably means that
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some constructs which span the subjective groupings or sit at the interface between two
are not sufficiently captured. Nevertheless, the development of the FFM, for example, is
instructive both as to how domain mapping can be achieved and also the potential flaws
in this process. Actually, the history of the development of the FFM is complex (Block,
1995; John, Angleiter, &Ostendorf, 1988), but a simplified account of the principles of
its development will suffice for our purposes. Arguably, the development of the FFM
stems from the lexical hypothesis, which is comprised of two major postulates. The first
states that those personality characteristics that are most important in peoples’ lives will
eventually become a part of their language. The second follows from the first, stating
that more important personality characteristics are more likely to be encoded into lan-
guage as a single word (John et al., 1988). If true, then in principle, if all words that
describe personality were incorporated into a questionnaire, and a large population were
rated as to the extent these words apply to them, then a factor analysis of this data would
provide the facet and higher-order structure of personality. In practice, despite claims to
the contrary, for various practical reasons this has never been done, but something like it
has (e.g., Ashton, Lee, & Goldberg, 2004). Personality research is now at a stage at
which there are many respected measures of personality and the next step might be
to administer all known measures of personality to a large population and, guided by
theoretical developments, factor analyze the resultant data set in order to provide a
new and more comprehensive taxonomy of personality (Booth, 2011; Woods &
Anderson, 2016).

What this example illustrates is that successful test development often requires some
form of systematic domain mapping, which is in at least some respects novel.

Practical (market) need

Of course, measures derived from a taxonomy or theory do not necessarily correspond
to a practical need (beyond the need for measurement). Indeed, one difficulty with
omnibus measures (such as the Woodcock–Johnson IV and the NEO PI-R) is that they
rarely correspond to a direct market need. In the most part, this is because omnibus
measures are often long and time-consuming to complete, resulting in equally long
and detailed reports. Exhaustive reports concerned with all aspects of personality or cog-
nitive ability can be difficult for laypersons to understand and use. Usually, the tests
adopted by consumers are shorter and considered more user friendly. For example,
despite being technically deficient (Hughes & Batey, 2017), the MBTI is among the
most commonly used personality tests because it is relatively short, the results are easily
communicated and understood, and therefore it can readily be used in a practical
context. Probably therefore, marketable tests may be based on a systematic taxonomy
but the actual constitution of the test will depend on additional considerations. In short,
for a test to address a market need it should be both technically sound (in terms of
theoretical grounding and psychometric properties) and practically useful.

The area of selection can help illustrate what some of these additional practical con-
siderations might be. One starting point might be to identify the market for a selection
test based on systematic market research. Let us imagine that the results of this research
reveal there to be a large market for the recruitment of managers, not least because a
large number of managers are employed, and secondly because their characteristics
are often considered crucial to the success or failure of companies. How then could
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we devise a test for managers? Traditionally, most test developers for a selection instru-
ment would begin with a job analysis (Smith & Smith, 2005). This is still an essential
step in the development of selection tests, however, since the late 1970s psychometric
meta-analysis has become an important source of information to guide the development
of selection instruments.

Meta-analysis

Themain purpose of psychometric meta-analysis is to obtain parameter estimates, which
are unbiased and corrected for measurement artifacts. Hunter and Schmidt (2004) is
probably the most useful introduction to meta-analysis, although some more recent
developments are contained in Borenstein, Hedges, Higgins, and Rothstein (2009).
Meta-analysis has many potential applications to test development. For example, with
regard to the construction of test batteries for employee selection, findings of meta-
analyses identify which constructs predict future job performance and, therefore, which
should be included (e.g., Judge, Rodell, Kliner, Simon, & Crawford, 2013; Schmidt,
Shaffer, & Oh, 2008).
Psychometric meta-analysis averages the value of an effect size across studies in order

to obtain a reliable summary estimate. The most important effect size in a selection
context is the predictive validity, which is measured by the correlation between the score
on the selection measure and some measure of job performance. The biggest problem
with most estimates of predictive validity from single studies arises from sampling error,
which is more considerable than is generally imagined. As sample size tends to infinity,
so sampling error tends to zero and thus by amalgamating findings across studies, large
meta-analyses effectively reduce sampling error to miniscule proportions. Standardly,
psychometric meta-analysis also corrects for artifacts due to error of measurement, range
restriction, imperfect construct validity (e.g., different measures of purportedly the same
personality construct typically correlate at 0.4–0.6, see Pace & Brannick, 2010), use of
categorical measurement, study quality, and publication bias. However, once these
corrections are made, the confidence interval around the effect size estimate may still
be large. This may indicate that the effect size is dependent on a third variable, usually
referred to as a moderator. For example, cognitive ability predicts more strongly for
complex jobs (Schmidt & Hunter, 1998) and in the case of personality, traits predict
more strongly when they are relevant (e.g., Extraversion and sales; Hughes &
Batey, 2017).
The findings of meta-analysis with regard to which cognitive abilities and FFM

personality factors predict job performance are, within limits, fairly definitive
(Schmidt & Hunter, 1998, 1998; Schmidt, Shaffer, & Oh, 2008). Virtually every
meta-analysis that has investigated the issue has concluded that, for most jobs, general
cognitive ability is the best predictor and the level of prediction increases in proportion
to the cognitive demands of the job (Schmidt & Hunter, 1998). Moreover, it is
generally contended that second-order factors of cognitive ability such as spatial, verbal,
and memory add little incremental prediction (e.g., Carretta & Ree, 2000; Ree,
Earles, & Teachout, 1994). Although it is a hotly contested issue, meta-analyses of
the predictive validity of personality show virtually the opposite; that is, that personality
largely does not offer blanket prediction of job performance across roles. Some have
argued from this data that personality tests should not be used in selection
(Morgeson et al., 2007), but many have also argued otherwise (e.g., Ones, Dilchert,

8 Paul Irwing and David J. Hughes


