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Preface

In Volume I of ‘Analysis in Banach spaces’ we presented essential techniques
for the analysis of Banach space-valued functions, from integration theory and
martingale inequalities to the extension of classical singular integral operators,
such as the Hilbert transform and Mihlin Fourier multiplier operators, from
Lp-spaces of scalar-valued functions to Lp-spaces of functions taking values in
UMD Banach spaces.

In the present volume we concentrate on a second, closely related question
central to the theory of evolution equations, namely how to extend various
classical L2-estimates and related Hilbert space techniques to the Banach
space setting, in particular to the Lp-scale.

Already in the mid-1980s, motivated by the square root problem for secto-
rial operators, Alan McIntosh forged the classical theory of square functions
in Fourier Analysis, pioneered by Paley, Marcinkiewicz–Zygmund, and Stein,
into a powerful tool for the study of general sectorial operators on Hilbert
spaces. Just as one can view Harmonic Analysis as the ‘spectral theory of
the Laplacian’ (Strichartz), McIntosh’s square function techniques for secto-
rial operators capture essential singular integral estimates still available in
this more general setting. Extension of these estimates to the Lp-setting re-
quires a substitute for the basic Hilbertian orthogonality techniques on which
they rely. The theory of random sums, in particular Rademacher sums and
Gaussian sums, originally developed in the context of Probability Theory in
Banach spaces and the Geometry of Banach spaces, provides just that. The
fine properties of Banach space-valued random sums are intimately connected
with various probabilistic notions such as type, cotype, and K-convexity which
often take on the role of geometrical properties of the classical Lp-spaces that
are explicit or implicit in the treatment of classical inequalities. The first two
chapters of this volume present those aspects that are relevant to our purpose.
For a fuller treatment of this fascinating topic the reader is referred to the
rich literature on the Geometry of Banach spaces and Probability in Banach
spaces.



viii

Volume I already provided a first glance into the programme outlined above
when we proved an operator-valued version of the Mihlin multiplier theorem
by replacing the uniform boundedness condition on certain operator families
appearing in the conditions of the Mihlin theorem by the stricter requirement
of R-boundedness. This magic wand can be applied to a surprising number
of operator theoretic Hilbert space results. This volume presents a wealth
of analytical methods that allow one to verify the R-boundedness of many
sets of classical operators relevant in applications to Harmonic Analysis and
Stochastic Analysis.

A second tool to extend Hilbert space techniques to a Banach space setting
consists of replacing L2-spaces by generalised square function estimates which,
in an abstract Banach space setting, can be alternatively described in an
operator-theoretic way through the theory of radonifying operators. This class
of operators connects the theory of Banach space-valued Gaussian random
sums to methods from operator theory in a rather direct way, thus paving
the way to substantial applications in vector-valued Harmonic Analysis and
Stochastic Analysis. On an ‘operational level’, they display the same function
space properties (such as versions of Hölder’s inequality, Fatou’s lemma, and
Fubini’s theorem) as their classical counterparts do.

With these tools at hand we present a far reaching extension of the theory
of the H∞-functional calculus on Hilbert spaces to the Lp-setting, including
characterisations of its boundedness in terms of square function estimates,
R-boundedness and dilations. From these flow the results which made the
H∞-functional calculus so useful in the theory of evolution equations in Lp-
spaces: the operator sum method, an operator-valued calculus and a variety of
techniques to verify the boundedness of the H∞-functional calculus for most
differential operators of importance in applications.

The randomisation techniques and their operator theoretic counterparts
worked out in the present book will also set the stage for Volume III. There
we will present vector-valued function spaces, complete our treatment of vec-
tor-valued harmonic analysis and discuss the theory of operator-valued Itô
integrals in UMD Banach spaces and their application to maximal regularity
estimates for stochastic evolution equations with Gaussian noise. It is here
that generalised square functions display their full power as they furnish a
close link between stochastic estimates such as the vector-valued Burkholder–
Davis–Gundy inequalities and harmonic analytic properties of the underlying
partial differential operator, encoded in its H∞-calculus.

*
It is perhaps interesting to notice a change of generation in the contents of
this volume compared to Volume I. With important exceptions mostly on the
scale of subsections, the main body of the material presented in Volume I may
be considered ‘classical’ by now. In fact, the following subjective definition of
‘classical’ has been has proposed by David Cruz-Uribe (private communica-
tion): “Anything that was proved before I started graduate school.” By a
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The main results of the first two chapters on random sums and their con-
nections to Banach space theory are still largely classical in this sense. How-
ever, an important turning point occurs in the beginning of Chapter 8, dedi-
cated to the notion of R-boundedness. Although the deep roots of this theory
are older, its systematic development only begins in the 1990’s and reaches
its full bloom around and after the turn of the millennium; some basic ques-
tions related to the comparison of R-boundedness with related notions were
settled as recently as 2016. Likewise, while the foundations of the theory of
radonifying operators are certainly classical, their interpretation and system-
atic exploitation as generalised square functions in Chapter 9 is a successful
creation of the 2000’s. As for the theory of the H∞-calculus developed in the
last chapter, only the groundwork in a Hilbert space context is classical. Its
extension to Banach spaces is more recent, and especially its fundamental con-
nections with the generalised square functions, a key theme of our treatment,
have only been revealed during this century.

*
Two stylistic conventions of Volume I will stay in force in the present volume
as well: Most of the time, we are quite explicit with the constants appearing
in our estimates, and we especially try to keep track of the dependence on the
main parameters involved. Some of these explicit quantitative formulations
appear here for the first time. We also pay more attention than many texts
to the impact of the underlying scalar field (real or complex) on the results
under consideration. A careful distinction between linear and conjugate-linear
duality is particularly critical to the correct formulation of some key results
concerning the generalised square functions, which are among the main char-
acters of the present volume.

*
This project was initiated in Delft and Karlsruhe in 2008. Critical to its
eventual progress was the possibility of intensive joint working periods in
the serenity provided by the Banach Center in Będlewo (2012), Mathematis-
ches Forschungsinstitut Oberwolfach (2013), Stiftsgut Keysermühle in Klin-
genmünster (2014 and 2015), Hotel ’t Paviljoen in Rhenen (2015), and Buiten-
goed de Uylenburg in Delfgauw (2017). All four of us also met three times in
Helsinki (2014, 2016 and 2017), and a number of additional working sessions
were held by subgroups of the author team. One of us (J.v.N.) wishes to thank
Marta Sanz-Solé for her hospitality during a sabbatical leave at the University
of Barcelona in 2013.

Preliminary versions of parts of the material were presented in advanced
courses and lecture series at various international venues and in seminars at
our departments, and we would like to thank the students and colleagues who
attended these events for feedback that shaped and improved the final form
of the text. Special thanks go to Alex Amenta, Markus Antoni, Sonja Cox,

three-quarter majority within the present authorship, this definition would
render all results obtained by mid-1980’s ‘classical’.



Chiara Gallarati, Fabian Hornung, Luca Hornung, Nick Lindemulder, Emiel
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During the writing of this book, we have benefited from external funding
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Symbols and notations
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N = {0, 1, 2, . . .} - non-negative integers
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C - complex numbers
K - scalar field (R or C)
Z = Z ∪ {−∞,∞} - extended integers
R+ = (0,∞) - positive real line
BX - open unit ball
SX - unit sphere
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D - open unit disc
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Σbi
ω = open bisector of angle ω

T = {z ∈ C : |z| = 1} - unit circle

Vector spaces

c0 - space of null sequences
C - space of continuous functions
C0 - space of continuous functions vanishing at infinity
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C p - Schatten class
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Hs,p - Bessel potential space
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Xγ,p
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X∗, Y ∗, . . . - dual Banach spaces
X�, Y �, . . . - strongly continuous semigroup dual spaces
X ⊗ Y - tensor product
[X0, X1]θ - complex interpolation space
(X0, X1)θ,p, (X0, X1)θ,p0,p1 - real interpolation spaces

Measure theory and probability
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dfn = fn − fn−1 - nth martingale difference
εεn - signs in K, i.e., scalars in K of modulus one
εn - Rademacher variables with values in K

E - expectation
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Ff - collection of sets in F on which f is integrable
E(·|·) - conditional expectation

n - Gaussian variables
hI - Haar function
µ - measure
‖µ‖ - variation of a measure
(Ω,A ,P) - probability space
P - probability measure
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(S,A , µ) - measure space
σ(f, g, . . . ) - σ-algebra generated by the functions f, g, . . .
σ(C ) - σ-algebra generated by the collection C
τ - stopping time
wα - Walsh functions

Norms and pairings

| · | - modulus, Euclidean norm
‖ · ‖ = ‖ · ‖X - norm in a Banach space X
‖ · ‖p = ‖ · ‖Lp - Lp-norm
〈·, ·〉 - duality
(·|·) - inner product in a Hilbert space
a · b - inner product of a, b ∈ Rd

Operators

A - closed linear operator
A∗ - adjoint operator
A� - part of A∗ in X�
D(A) - domain of A
Dj - pre-decomposition
∆ - Laplace operator
γ(T ) - γ-bound of the operator family T
γp(T ) - γ-bound of T with respect to the Lp-norm
D - dyadic system
∂j = ∂/∂xj - partial derivative with respect to xj
∂α - partial derivative with multi-index α
E(·|·) - conditional expectation
Ff - Fourier transform
F−1f - inverse Fourier transform
H - Hilbert transform
H̃ - periodic Hilbert transform
Js - Bessel potential operator
`2(T ) - `2-bound of the operator family T
L (X,Y ) - space of bounded operators from X to Y
Lso(X,Y ) - idem, endowed with the strong operator topology
N(A) - null space of A
R(T ) - R-bound of the operator family T
Rp(T ) - R-bound of T with respect to the Lp-norm
R(A) - range of A
Rj - jth Riesz transform
S, T , . . . - bounded linear operators
S(t), T (t), . . . - semigroup operators
S∗(t), T ∗(t), . . . - adjoint semigroup operators on the dual space X∗
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S�(t), T�(t), . . . - their parts in the strongly continuous dual X�
T ∗ - adjoint of the operator T
T ? - Hilbert space (hermitian) adjoint of Hilbert space operator T
Tm - Fourier multiplier operator associated with multiplier m
T ⊗ IX - tensor extension of T

Constants and inequalities

αp,X - Pisier contraction property constant
α±p,X - upper and lower Pisier contraction property constant
βp,X - UMD constant
βR
p,X - UMD constant with signs ±1

β±p,X - upper and lower randomised UMD constant
cq,X - cotype q constant
cγq,X - Gaussian cotype q constant
∆p,X - triangular contraction property constant
~p,X - norm of the Hilbert transform on Lp(R;X)
Kp,X - K-convexity constant
Kγ
p,X - Gaussian K-convexity constant

κp,q - Kahane–Khintchine constant
κRp,q - idem, for real Rademacher variables
κγp,q - idem, for Gaussian sums
κp,q,X - idem, for a fixed Banach space X
τp,X - type p constant
τγp,X - Gaussian type p constant
ϕp,X(Rd) - norm of the Fourier transform F : Lp(Rd;X)→ Lp

′
(Rd;X).

Miscellaneous

↪→ - continuous embedding
1A - indicator function
a . b - ∃C such that a 6 Cb
a .p,P b - ∃C, depending on p and P , such that a 6 Cb
C - generic constant
{ - complement
d(x, y) - distance
f? - maximal function
f̃ - reflected function
f̂ - Fourier transform
f̂ - inverse Fourier transform
f ∗ g - convolution
= - imaginary part
Mf - Hardy–Littlewood maximal function
p′ = p/(p− 1) - conjugate exponent
p∗ = max{p, p′}
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< - real part
s ∧ t = min{s, t}
s ∨ t = max{s, t}
x - generic element of X
x∗ - generic element of X∗
x⊗ y - elementary tensor
x+, x−, |x| - positive part, negative part, and modulus of x

xxi



Standing assumptions

Throughout this book, two conventions will be in force.

1. Unless stated otherwise, the scalar field K can be real or complex. Results
which do not explicitly specify the scalar field to be real or complex are
true over both the real and complex scalars.

2. In the context of randomisation, a Rademacher variable is a uniformly
distributed random variable taking values in the set {z ∈ K : |z| = 1}.
Such variables are denoted by the letter ε. Thus, whenever we work over
R it is understood that ε is a real Rademacher variable, i.e.,

P(ε = 1) = P(ε = −1) =
1

2
,

and whenever we work over C it is understood that ε is a complex
Rademacher variable (also called a Steinhaus variable), i.e.,

P(a < arg(ε) < b) =
1

2π
(b− a).

Occasionally we need to use real Rademacher variables when working over
the complex scalars. In those instances we will always denote these with
the letter r. Similar conventions are in force with respect to Gaussian
random variables: a Gaussian random variable is a standard normal real-
valued variable when working over R and a standard normal complex-
valued variable when working over C.
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Random sums

One of the main themes in these volumes is the use of probabilistic techniques
in general, and random sums in particular, in Banach space-valued Analysis.
A first glimpse of their usefulness was already offered by the classical Theorem
2.1.9 of Paley, Marcinkiewicz and Zygmund on the extendability of bounded
operators on Lp(S) to bounded operators on Lp(S;H), the proof of which
involved estimates on Gaussian random sums. On the other hand, Rademacher
random sums played a key role both in the formulation and in the proofs of
the Littlewood–Paley theory in Lp(Rd;X) developed in Chapter 5.

In the chapter at hand, we will make a systematic investigation of the
properties of the mentioned the two aforementioned species of random sums,
Rademacher and Gaussian sums. The first three Sections 6.1, 6.2, and 6.3
are concerned with their basic relations and estimates in the context of finite
sums, whereas Section 6.4 is devoted to two fundamental convergence results,
the Itô–Nisio theorem and the Hoffmann-Jørgensen–Kwapień theorem, for
infinite random series. In the final Section 6.5, we present Pisier’s theorem
on the comparison of Rademacher sums and trigonometric sums. It will be
applied in the further development of the Littlewood–Paley theory, to which
we return in Chapter 8.

With one exception, the present chapter deals with general aspects of
random sums that remain valid in arbitrary Banach spaces. The rich interplay
between more sophisticated estimates for these sums on the one hand, and the
properties of the underlying Banach spaces on the other hand, will be taken
up in the following Chapter 7. The exception is the Hoffmann-Jørgensen–
Kwapień theorem, which relates the convergence of X-valued random sums
to the containment of c0 as an isomorphic subspace in X. It will play an
important role in Chapter 9, where we extend the present considerations of
random sums over finite or countable sequences xn = f(n) in order to deal
with certain ‘randomised norms’ of functions f on general measure spaces.
This, in turn, provides a powerful tool for the study of the H∞-calculus in
the last chapter.

© Springer International Publishing AG 2017
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2 6 Random sums

6.1 Basic notions and estimates

We begin with a brief discussion of the notion of random variable in the Banach
space-valued context. We refer the reader to Appendix E for an introduction
to some standard notions of probability theory.

Let X be a (real or complex) Banach space.

Definition 6.1.1. An X-valued random variable is an X-valued strongly mea-
surable function ξ defined on some probability space (Ω,F ,P).

The underlying probability space (Ω,F ,P) will always be considered given
and fixed, and when several random variables are considered simultaneously
we will assume them to be defined on the same probability space, unless the
contrary is stated (and there are also cases when this is useful).

The notion of strong measurability has been studied in great detail in
Chapter 1. We recall that a function is said to be strongly measurable if it is
the pointwise limit of a sequence of simple functions. By the Pettis measura-
bility theorem (Theorem 1.1.6) a function ξ is strongly measurable if and only
if it is separably-valued and weakly measurable, where the latter means that
the scalar-valued functions 〈ξ, x∗〉 are measurable in the usual sense for all
functionals x ∈ X∗. Moreover, strongly measurable functions are measurable
(Corollary 1.1.2), i.e., the pre-images of open sets are measurable, and in sep-
arable Banach spaces the notions of strong measurability and measurability
coincide (Corollary 1.1.10). As a consequence of these facts, standard defini-
tions and results for measurable random variables taking values in separable
metric spaces, such as those collected in Appendix E, apply in the present
setting.

Remark 6.1.2 (Strong measurability versus strong P-measurability). A further
subtlety concerns the distinction between strong measurability and strong
µ-measurability (cf. Definitions 1.1.4 and 1.1.14). Recall that a function is
said to be strongly P-measurable if it is P-almost everywhere (in contrast to
everywhere) the pointwise limit of a sequence of simple functions; if we work
over a general measure space it is furthermore required that the approximating
simple functions be supported on sets of finite measure. If ξ is a strongly P-
measurable, then ξ can be redefined on a P-null set to become a strongly
measurable random variable ξ̃ (Proposition 1.1.16). We may then define

P(ξ ∈ B) := P(ξ̃ ∈ B)

for any set B in B(X), the Borel σ-algebra of X. This definition is indepen-
dent of the choice of the pointwise defined representative ξ̃ and allows one
to treat strongly P-measurable functions as random variables. As long as we
are dealing with properties of random variables that only depend on their
(joint) distributions, we may thus use the notions of ‘strongly measurable’
and ‘strongly P-measurable’ interchangeably, and we will indeed do so. Only
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when the risk of confusion arises we will be more precise in this respect, for
instance when dealing with the σ-algebra generated by a random variable or
a family of random variables.

In the same vein, an integrable random variable will always mean a random
variable that is Bochner integrable with respect to P.

The Bochner integral of an integrable X-valued random variable ξ is called
its mean (value) or expectation and is denoted by E(ξ) or just Eξ. Thus,

Eξ :=

ˆ
Ω

ξ dP.

The distribution of ξ is the Borel probability measure µξ on X defined by

µξ(B) := P(ξ ∈ B), ξ ∈ B(X).

As a consequence of the substitution rule (Theorem 1.2.6), the expectation of
an integrable random variable is given in terms of its distribution by

Eξ =

ˆ
X

x dµξ(x).

Simple criteria for random variables to have the same distribution can be
given in terms of the so-called characteristic function, which is discussed in
Section E.1.c.

A family of X-valued random variables (ξi)i∈I is said to be independent
if for all choices of distinct indices i1, . . . , iN ∈ I and all B1, . . . , BN ∈ B(X)
we have

P(ξi1 ∈ B1, . . . , ξiN ∈ BN ) =
N∏
n=1

P(ξin ∈ Bn),

or equivalently (by Dynkin’s lemma, Lemma A.1.3) the distribution of the
XN -valued random variable (ξi1 , . . . , ξiN ) equals the product of the distribu-
tions of the ξin . For further details the reader is referred to Section E.1.b.

The identity
E(ξ1ξ2) = Eξ1 · Eξ2

for independent scalar-valued integrable random variables ξ1 and ξ2 admits the
following extension to the vector-valued case. For a discussion of independence
of random variables with values in a metric space we refer to Appendix E.

Proposition 6.1.3. Let X1, X2, Y be Banach spaces and β : X1 ×X2 → Y
be a bounded bilinear mapping. If the random variables ξ1 and ξ2 are indepen-
dent and integrable, with values in X1 and X2 respectively, then β(ξ1, ξ2) is
integrable and

Eβ(ξ1, ξ2) = β(Eξ1,Eξ2).
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Proof. The integrability of β(ξ1, ξ2) follows from

E‖β(ξ1, ξ2)‖ 6 ‖β‖E(‖ξ1‖‖ξ2‖) = ‖β‖E‖ξ1‖E‖ξ2‖ <∞,

where ‖β‖ := sup{‖β(x1, x2)‖ : ‖x1‖, ‖x2‖ 6 1} is finite by assumption.
To prove the identity for the expectation we proceed as follows. Let A1 ∈

σ(ξ1) and A2 ∈ σ(ξ2) (we use the notation σ(ξ) to denote the σ-algebra
generated by ξ). Then, by bilinearity,

Eβ(1A1
⊗ x1,1A2

⊗ x2) = E(1A1
1A2

β(x1, x2))

= E1A1
E1A2

β(x1, x2)

= β(E(1A1
⊗ x1),E(1A2

⊗ x2)).

Once again by bilinearity, this proves the identity Eβ(φ1, φ2) = β(Eφ1,Eφ2)
for all simple φk : Ω → Xk that are σ(ξk)-measurable, k = 1, 2. By
dominated convergence, this implies the same identity for arbitrary φk ∈
L1(Ω, σ(ξk);Xk); in particular, this proves the identity for ξ1 and ξ2. �

It is evident how to extend this result to the multilinear case, and to the
sesquilinear case when K = C. The prime examples of interest include duality
and scalar multiplication

β(x, x∗) := 〈x, x∗〉 X1 = X, X2 = X∗, Y = K,
β(λ, x) := λx X1 = K, X2 = Y = X.

In such cases, we will apply Proposition 6.1.3 casually, without an explicit
reference to either the proposition or a particular “bilinear form”.

6.1.a Symmetric random variables and randomisation

A distinguished role in the subsequent developments is played by random
variables with a simple additional property:

Definition 6.1.4 (Symmetric random variables). An X-valued random
variable is called:

(1) symmetric, if ξ and εξ are identically distributed for all ε ∈ K with |ε| = 1;
(2) real-symmetric, if ξ and −ξ are identically distributed.

Clearly, symmetry implies real-symmetry, and in real Banach spaces the two
notions coincide. In complex Banach spaces a random variable ξ is symmetric
if and only if ξ and eiθξ are identically distributed for all θ ∈ [0, 2π]. We will
sometimes refer to the latter property as complex-symmetry.

Symmetric random variables have a useful monotonicity property with
respect to taking Lp-norms:
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Proposition 6.1.5. Let ξ and η be X-valued random variables. If η is real-
symmetric and independent of ξ, then for all 1 6 p 6∞ we have

‖ξ‖Lp(Ω;X) 6 ‖ξ + η‖Lp(Ω;X).

Somewhat informal statements such as this one are to be interpreted in the
obvious way; for instance, here we are saying that ξ + η ∈ Lp(Ω;X) implies
ξ ∈ Lp(Ω;X) along with the stated inequality.

Proof. The real-symmetry of η and the independence of ξ and η imply that
ξ + η and ξ − η are identically distributed, and therefore(

E‖ξ‖p
)1/p

=
1

2

(
E‖(ξ + η) + (ξ − η)‖p

)1/p
6

1

2

(
E‖ξ + η‖p

)1/p
+

1

2

(
E‖ξ − η‖p

)1/p
=
(
E‖ξ + η‖p

)1/p
.

Here we took 1 6 p <∞; the modification needed for p =∞ is obvious. �

As a typical application, suppose (ξn)Nn=1 is a sequence of independent real-
symmetric scalar-valued random variables and (xn)Nn=1 is a sequence in X.
Then, for all I ⊆ {1, . . . , N},

∥∥∥∑
n∈I

ξnxn

∥∥∥
Lp(Ω;X)

6
∥∥∥ N∑
n=1

ξnxn

∥∥∥
Lp(Ω;X)

.

By a limiting argument, a similar inequality holds for convergent random
series. A more general inequality, the Kahane contraction principle, will be
discussed in the next section.

Of special interest are Rademacher and Gaussian random variables.

Definition 6.1.6 (Rademacher variables and sequences). A Radem-
acher variable is a random variable ε uniformly distributed over {z ∈ K : |z| =
1}. A Rademacher sequence consists of independent Rademacher variables εn.

In the real case, a Rademacher variable ε takes the values ±1 with equal
probability 1

2 , i.e.,

P(ε = 1) = P(ε = −1) =
1

2
.

In the complex case, a Rademacher variable is a random variable with uni-
form distribution on the unit circle in the complex plane. Classically, such
variables are sometimes called Steinhaus random variables. If we wish to use
real Rademachers in a complex setting, this will be explicitly mentioned and
the notation r will be used instead of ε.

The notion of a Gaussian random variable is discussed at length in Ap-
pendix E.2, and we will not repeat it here. We only point out that this notion
is adapted to the scalar field in the same way as the notion of symmetry
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and that of a Rademacher variable. If we wish to use real Gaussian variables
when working over the complex scalars, we will always mention this explic-
itly. In this situation we will use the notation g for real Gaussians and reserve
the notation γ for complex Gaussians. Whereas Rademacher variables are
intimately connected with unconditionality and provide the tool for randomi-
sation techniques, the main virtue of Gaussians is their invariance under the
orthogonal group. This is the basis of the principle of covariance domination,
the consequences of which will be explored in later chapters.

Definition 6.1.7 (Gaussian sequences). A Gaussian sequence consists of
independent standard Gaussian variables γn.

The reader should keep in mind that both the definition of symmetry and that
of Rademacher and Gaussian variables depends on the choice of the under-
lying scalar field. Although this convention is perhaps not entirely standard
in the Probability literature, it is analogous to the standard convention in
Functional Analysis that a linear map is a real-linear map in the real case and
a complex-linear map in the complex case. We wish to emphasise that this is
not an accidental observation but a key point: our definition of symmetry is
consistent with the scalar multiplication of the underlying Banach space X.
The advantages of this approach will become clear along the way.

The Rademacher variables are often hiding in the background, even when
their presence is not immediately obvious, thanks to the following basic
lemma, which may be regarded as a toy model of the randomisation tech-
nique discussed below.

Lemma 6.1.8 (Polar decomposition). Let ξ be a symmetric X-valued
random variable, and ε an independent Rademacher variable. Then ξ and εξ
are identically distributed.

If X = K, they are also identically distributed with ε|ξ|.

Proof. Preserving the joint distributions, we may assume that the independent
random variables are defined on different probability spaces Ωξ and Ωε. We
denote the corresponding probabilities and expectations by obvious subscripts.
Then

P(εξ ∈ B) = E1{εξ∈B} = EεEξ1{εξ∈B}
(∗)
= EεEξ1{ξ∈B} = P(ξ ∈ B),

where the critical step (∗) used the fact that, for each fixed ω ∈ Ωε, the
random variables ε(ω)ξ and ξ on Ωξ have equal distribution by the assumed
symmetry of ξ.

If X = K we can make a similar computation

P(εξ ∈ B) = EξEε1{εξ∈B}
(∗)
= EξEε1{ε|ξ|∈B} = P(ε|ξ| ∈ B).

In (∗) we used the fact that, for each fixed ω ∈ Ωξ, the random variables
ξ(ω)/|ξ(ω)| · ε and ε, and therefore also ξ(ω)ε and |ξ(ω)|ε, have equal distri-
bution by the assumed symmetry of ε. �
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Randomisation

We will now present an extremely useful result that permits one to change
the signs of the coefficients in a sum of independent symmetric variables in a
deterministic or random way. For its formulation we need a definition.

Definition 6.1.9. Let I and J be index sets.

• Two families of random variables (ξi)i∈I and (ηi)i∈I are called identi-
cally distributed if for all indices i1, . . . , iN ∈ I the random variables
(ξi1 , . . . , ξiN ) and (ηi1 , . . . , ηiN ) are identically distributed.

• Two families of random variables (ξi)i∈I and (ηj)j∈J are called indepen-
dent if for all indices i1, . . . , iN ∈ I and j1, . . . , jM ∈ J the random vari-
ables (ξi1 , . . . , ξiN ) and (ηj1 , . . . , ηjM ) are independent.

By Dynkin’s lemma (Lemma A.1.3), the random variables (ξi1 , . . . , ξiN ) and
(ηi1 , . . . , ηiN ) are identically distributed if and only if

P(ξi1 ∈ B1, . . . , ξiN ∈ BN ) = P(ηi1 ∈ B1, . . . , ηiN ∈ BN )

for all Borel sets B1, . . . , BN . In particular, two families of independent random
variables are identically distributed if and only if for every i ∈ I the random
variables ξi and ηi are identically distributed.

Likewise, the random variables (ξi1 , . . . , ξiN ) and (ηj1 , . . . , ηjM ) are inde-
pendent if and only if

P(ξi1 ∈ B1, . . . , ξiN ∈ BN , ηj1 ∈ C1, . . . , ηjM ∈ CM )

= P(ξi1 ∈ B1, . . . , ξiN ∈ BN )P(ηj1 ∈ C1, . . . , ηjM ∈ CM )

for all Borel sets B1, . . . , BN and C1, . . . , CM . It is not true, however, that two
families of independent random variables (ξi)i∈I and (ηi)i∈I are independent
if for all i, i′ ∈ I the random variables ξi and ηi′ are independent.

Example 6.1.10. Let ε1 and ε2 be independent Rademacher variables and let
η := ε1ε2. Then clearly {ε1, ε2} and {η} are not independent; however, η is
independent of both ε1 and ε2. In fact, assuming without loss of generality
that ε1 and ε2 are defined on different probability spaces Ω1, Ω2, we have

P(ε1 ∈ A, η ∈ B) = E1E2(1{ε1∈A}1{ε1ε2∈B}) = E1(1{ε1∈A}E21{ε1ε2∈B})

= E1(1{ε1∈A}E21{ε2∈B}) = E1(1{ε1∈A})E2(1{ε2∈B}),

where E1(1{ε1∈A}) = P(ε1 ∈ A) and

E2(1{ε2∈B}) = E1E2(1{ε2∈B}) = E1E2(1{ε1ε2∈B}) = P(η ∈ B).

Proposition 6.1.11 (Randomisation). Let (ξn)n>1 be a sequence of inde-
pendent and symmetric X-valued random variables, let (εn)n>1 be a sequence
in {z ∈ K : |z| = 1}, and let (εn)n>1 be a Rademacher sequence which is
independent of (ξn)n>1.
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(1) The sequences (ξn)n>1, (εnξn)n>1, and (εnξn)n>1 are identically dis-
tributed.

(2) If the random variables ξn are scalar-valued, then the sequences (ξn)n>1

and (εn|ξ|n)n>1 are identically distributed.

The same result holds if one replaces {symmetric, K, Rademacher} by {real-
symmetric, C, real Rademacher}.

Proof. (1): By independence, we may assume that each ξn and εn is defined
on a different probability space, say ξn on Ωn and εn on Ω′n. From this it is
clear that the sequence (εnξn)n>1 since the random variables are defined on
the different probability spaces Ωn ×Ω′n.

Thus it suffices to show that for each fixed n > 1, the random variables
ξn, εnξn, and εnξn are identically distributed. For ξn and εnξn this is the
definition of symmetry. For ξn and εnξn, this is Lemma 6.1.8.

(2): As above, it suffices to prove that ξn and εn|ξn| are identically dis-
tributed. This follows from Lemma 6.1.8. �

A first application of these ideas is the following simple maximal estimate.

Proposition 6.1.12 (Lévy’s inequality). Let ξ1, . . . , ξn be independent
real-symmetric X-valued random variables, and put Sk :=

∑k
j=1 ξj for k =

1, . . . , n. Then for all r > 0 we have

P
(

max
16k6n

‖Sk‖ > r
)
6 2P(‖Sn‖ > r).

Proof. Put

A :=
{

max
16k6n

‖Sk‖ > r
}
,

Ak := {‖S1‖ 6 r, . . . , ‖Sk−1‖ 6 r, ‖Sk‖ > r}; k = 1, . . . , n.

The sets A1, . . . , An are disjoint and
⋃n
k=1Ak = A.

The identity Sk = 1
2 (Sn + (2Sk − Sn)) implies that

{‖Sk‖ > r} ⊆ {‖Sn‖ > r} ∪ {‖2Sk − Sn‖ > r}.

By Proposition 6.1.11, (ξ1, . . . , ξn) and (ξ1, . . . , ξk,−ξk+1, . . . ,−ξn) are iden-
tically distributed, which, in view of the identities

Sn = Sk + ξk+1 + · · ·+ ξn, 2Sk − Sn = Sk − ξk+1 − · · · − ξn,

implies that (ξ1, . . . , ξk, Sn) and (ξ1, . . . , ξk, 2Sk − Sn) are identically dis-
tributed. Hence,

P(Ak) 6 P(Ak ∩ {‖Sn‖ > r}) + P(Ak ∩ {‖2Sk − Sn‖ > r})
= 2P(Ak ∩ {‖Sn‖ > r}).
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Summing over k, we obtain

P(A) =

n∑
k=1

P(Ak) 6 2

n∑
k=1

P(Ak ∩ {‖Sn‖ > r}) = 2P(‖Sn‖ > r).

�

6.1.b Kahane’s contraction principle

One of the most useful tools for estimating random sums is the following
contraction principle due to Kahane, which asserts that scalar sequences act
as multipliers with respect to the Lp-norm. The randomisation technique gives
us this immediate extension from a version already covered in Proposition
3.2.10.

Theorem 6.1.13 (Kahane’s contraction principle). Let 1 6 p 6∞ and
let (ξn)Nn=1 be a sequence of independent random variables in Lp(Ω;X).

(i) If all ξn are K-symmetric, then for all sequences (an)Nn=1 in K we have

∥∥∥ N∑
n=1

anξn

∥∥∥
Lp(Ω;X)

6 max
16n6N

|an|
∥∥∥ N∑
n=1

ξn

∥∥∥
Lp(Ω;X)

.

(ii) If all ξn are R-symmetric, then for all sequences (an)Nn=1 in C we have

∥∥∥ N∑
n=1

anξn

∥∥∥
Lp(Ω;X)

6
π

2
max

16n6N
|an|

∥∥∥ N∑
n=1

ξn

∥∥∥
Lp(Ω;X)

.

The constants in these inequalities are sharp.

Proof. The special case that ξn = εnxn in (i) or ξn = rnxn in (ii) has already
been treated in Proposition 3.2.10. We will use randomisation to reduce the
general statement to this special case.

Indeed, letting (εn)Nn=1 be an independent Rademacher sequence on an-
other probability space Ω′, we have

∥∥∥ N∑
n=1

anξn

∥∥∥
Lp(Ω;X)

=
∥∥∥ N∑
n=1

anεnξn

∥∥∥
Lp(Ω;Lp(Ω′;X))

6 max
16n6N

|an|
∥∥∥ N∑
n=1

εnξn

∥∥∥
Lp(Ω;Lp(Ω′;X))

= max
16n6N

|an|
∥∥∥ N∑
n=1

ξn

∥∥∥
Lp(Ω;X)



10 6 Random sums

in case (i), and (ii) is proved similarly with obvious modifications. Both equal-
ities above are based on randomisation, and the inequality is the special case
of the theorem proved in Proposition 3.2.10, with εnxn in place of ξn. The
sharpness has already been observed in this special case.

While the above chain of identities and estimates above is meaningful for
all p ∈ [1,∞], one can also derive the case p =∞ simply as the limit p→∞
of finite exponents, using ‖f‖L∞(Ω) = limp→∞ ‖f‖Lp(Ω). �

Remark 6.1.14. The symmetry assumption may be dropped from one of the
variables ξm, say ξ1, in Theorem 6.1.13. Namely, suppose that ξ1, . . . , ξN are
independent and ξ2, . . . , ξN are K-symmetric, and consider a random variable
ε uniformly distributed over {z ∈ K : |z| = 1} and independent of all
ξ1, . . . , ξN . Then (ξ1, εξ2, . . . , εξN ) is equidistributed with (ξ1, ξ2, . . . , ξN ), and

∥∥∥ N∑
n=1

anξn

∥∥∥
Lp(Ω;X)

=
∥∥∥a1ξ1+

N∑
n=2

anεξn

∥∥∥
Lp(Ω;X)

=
∥∥∥a1ε̄ξ1+

N∑
n=2

anξn

∥∥∥
Lp(Ω;X)

,

where ε̄ξ1 is a K-symmetric random variable. In particular, it follows that

∥∥∥a1ε̄ξ1 +

N∑
n=2

anξn

∥∥∥
Lp(Ω;X)

6 ‖a‖∞
∥∥∥ N∑
n=1

ξn

∥∥∥
Lp(Ω;X)

.

This formulation includes Proposition 6.1.5 as a special case.

6.1.c Norm comparison of different random sums

In this subsection we prove several basic Lp-norm comparisons between the
different types of random sums discussed so far.

Rademacher sums versus other symmetric random sums

We begin with the comparison of Rademacher sums against random sums
involving general symmetric random coefficients.

Proposition 6.1.15 (Comparison). Let 1 6 p 6 ∞ and let (ξn)Nn=1 be a
sequence of independent symmetric random variables in Lp and let (εn)n>1

denote a Rademacher sequence. Then for all x1, . . . , xN ∈ X we have

∥∥∥ N∑
n=1

εnxn

∥∥∥
Lp(Ω;X)

6 max
16n6N

1

E|ξn|

∥∥∥ N∑
n=1

ξnxn

∥∥∥
Lp(Ω;X)

.

Note that in the case ξn is real/complex symmetric, the Rademacher sequence
in the above result should be real/complex as well.


