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Chapter 1
Introduction

Let � be a finite positive Borel measure with support on the real line containing
infinitely many points, and all finite power moments

R
xjd� .x/, j D 0; 1; 2; : : : .

We may then define orthonormal polynomials pn .x/ of degree n, n D 0; 1; 2; : : : ,
satisfying

Z
pm .x/ pn .x/ d� .x/ D ımn:

The asymptotic behavior of pn .x/ as n ! 1 has been studied for over a century.
Beginning around 1918 [47, 48] Szegő analyzed orthonormal polynomials for
absolutely continuous measures supported on Œ�1; 1�, or the unit circle, motivated
by connections to Hankel and Toeplitz matrices. Plancherel and Rotach in the
late 1920s [41] considered the Hermite weight �0 .x/ D e�x2 on .�1;1/, in
order to investigate convergence of orthonormal expansions in Hermite polyno-
mials. Plancherel and Rotach applied the method of steepest descent to a contour
integral representation of Hermite polynomials. The very precise asymptotics they
established are now called Plancherel-Rotach type asymptotics, and continue to be
studied for more general measures to this day.

Until the last three decades of the 20th century, there were very few techniques
for investigating orthogonal polynomials for non-compactly supported measures.
If the orthogonal polynomials admit a contour integral representation, or a simple
second order differential equation, or have a generating function as in the case
of Pollaczek polynomials, classical asymptotic methods are applicable. However
even the rudiments of a general theory were lacking. It was Geza Freud and
later Paul Nevai who in the 1970s began to consider general weights e�2Q.x/ on
.�1;1/, using extremal properties and approximation to develop weaker forms of
asymptotics. Nevai and his students, William Bauldry, Stan Bonan, Rong Sheen, and
Shing Whu-Jha, obtained precise asymptotics for weights like exp

��x2m
�
, where
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2 1 Introduction

m is a positive integer, using a mixture of analyzing differential equations and
recurrence relations. Paul Erdős provided valuable insights for the case where �0 .x/
decreases faster than e�jxj˛ for all ˛ > 0. See the still very relevant 1986 survey
paper of Nevai [40].

Potential theory with external fields provided a dramatic breakthrough in the
1980s. In landmark papers, E. A. Rakhmanov [42] and Mhaskar and Saff [36–
38] showed how to analyze orthogonal and extremal polynomials for quite general
weights of the form e�2Q.x/ on the real line. A comprehensive and polished develop-
ment of that theory appears in the celebrated monograph of Saff and Totik [44]. By
combining that potential theory with older methods of orthogonal polynomials, such
as explicit formulae for Bernstein-Szegő weights, many researchers in orthogonal
polynomials were able to analyze asymptotics – including the present authors [25].

An alternative approach to asymptotics for orthogonal polynomials is to place
hypotheses on the coefficients in their three term recurrence relation, rather than
on the underlying measure or weight. Some model examples of this approach for
non-compactly supported measures appear in [14, 15, 55, 57]. Yet another relevant
link is to discrete measures associated with indeterminate moment problems, see for
example [7].

A second revolution for the case of absolutely continuous weights, came
with the Deift-Zhou method in [9, 11, 12]. They developed a steepest descent
method for a matrix Riemann-Hilbert problem whose solution includes orthonormal
polynomials, and which was first observed by Fokas, Its, and Kitaev. The dramatic
ramifications of that method continue to be observed to this day. While it initially
dealt primarily with analytic or piecewise analytic weights, it has been extended by
McLaughlin and Miller using a N@ approximation [34, 35]. A distinguishing feature
of results obtained via Riemann-Hilbert methods is that they hold globally, and are
far more precise than any general results obtained using any other method. Because
they were motivated by problems arising in random matrices, Riemann-Hilbert
researchers usually considered varying rather than fixed measures. That brings us
to the setting of this monograph, which is the varying weights case.

For n � 1, let �n be a finite positive Borel measure with support suppŒ�n� � R,
containing infinitely many points. Assume also that all power moments

R
xjd�n .x/,

j D 0; 1; 2; : : : , are finite. We may define orthonormal polynomials

pn;m .�n; x/ D �n;m .�n/ xm C � � � ; �n;m .�n/ > 0;

m D 0; 1; 2; : : : , satisfying the orthonormality conditions

Z
pn;k .�n; x/ pn;` .�n; x/ d�n .x/ D ık`:
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The nth reproducing kernel for �n is

Kn .�n; x; y/ D
n�1X

kD0
pn;k .�n; x/ pn;k .�n; y/ : (1.1)

We often abbreviate this as Kn .x; y/. The nth Christoffel function is

�n .�n; x/ D Kn .�n; x; x/
�1 :

The absolutely continuous case, where

�0
n .x/ D e�2nQn.x/ (1.2)

and fQng are given functions, plays an important role in random matrices. In
this case, we often use the notation pn;k

�
e�2nQn ; x

�
, �n

�
e�2nQn ; x

�
, and so on.

The canonical example is Qn .x/ D x2 for n � 1. Szegő style asymptotics of
the associated orthonormal polynomials have been investigated by many authors,
with many of the most spectacular results obtained using the Deift-Zhou steepest
descent method. In particular, in celebrated papers [11, 12], Deift, Kriecherbauer,
McLaughlin, Venakides, and Zhou considered the case where all Qn D Q, and
Q .x/ is real analytic on the real line, and grows faster than log jxj as jxj ! 1.
They established uniform asymptotics for the associated orthonormal polynomials
in all regions of the complex plane, as well as detailed asymptotics for associated
quantities, with applications to universality limits for random matrices. This set the
stage for treating a large array of varying weights, such as varying (and sometimes
fixed) Jacobi or Laguerre weights - some of the references are [3, 18–23, 56].

In all the earlier Riemann-Hilbert papers, Q was required to be analytic in a
neighborhood of the real line, or piecewise analytic. As noted above, using the N@-
method, McLaughlin and Miller [34, 35] relaxed the requirement of analyticity, and
considered the case where Q00 satisfies a Lipschitz condition of order 1, together
with some other conditions. In particular, the latter conditions are satisfied when Q
is strictly convex in the real line. They established asymptotics for pn;n and pn;n�1 in
all regions of the complex plane – including asymptotics inside and at the edge of the
Mhaskar-Rakhmanov-Saff interval (or equivalently, the support of the equilibrium
measure). One of our foci is to further relax their smoothness requirements on Q.

We shall need some concepts from the potential theory for external fields [44], to
which we alluded above. Let˙ be a closed set on the real line, and e�Q be an upper
semi-continuous function on ˙ that is positive on a set of positive linear Lebesgue
measure. If ˙ is unbounded, we assume that

lim
jxj!1;x2˙

.Q .x/ � log jxj/ D 1:
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Associated with ˙ and Q, we may consider the extremal problem

inf
�

�Z Z
log

1

jx � tjd� .x/ d� .t/C 2

Z
Q d�

�

;

where the inf is taken over all positive Borel measures � with support in ˙ and
� .˙/ D 1. The inf is attained by a unique equilibrium measure !Q, with support
supp

�
!Q
�
, characterized by the following conditions: let

V!Q .z/ D
Z

log
1

jz � tjd!Q .t/ (1.3)

denote the logarithmic potential for !Q. Then [44, Thm. I.1.3, p. 27]

V!Q C Q � FQ q.e. on ˙ I (1.4)

V!Q C Q D FQ q.e. in supp
�
!Q
�
: (1.5)

Here the number FQ is a constant, and q.e. stands for quasi everywhere, that is,
except on a set of capacity 0. Notice that we are using !Q for the equilibrium
measure, rather than the more standard �W or �W , to avoid confusion with �n or
�n. We use

�Q .x/ D !0
Q .x/ (1.6)

for the Radon-Nikodym derivative of !Q. Sometimes we denote V!Q by V�Q .
While the Riemann-Hilbert methods yield the strongest results for smooth

weights, techniques based on potential theory and Bernstein-Szegő weights allow
one to treat more general weights. Indeed, this was the traditional approach for
fixed exponential weights adopted in [25, 32, 42, 43, 51, 52]. These methods enabled
one to establish asymptotics of the orthonormal polynomials in the complex plane
away from the interval of orthogonality, but not usually pointwise asymptotics on
the interval. The most general results for varying weights, using these types of tools,
were obtained by V. Totik in his 1994 lecture notes [51, Thm. 14.2, p. 99; Thm. 14.4,
p. 101]:

Theorem A. For n � 1, let e�2nQn be a weight function on Œ�1; 1�, whose
equilibrium measure !Qn has support Œ�1; 1�. Assume that !Qn is absolutely
continuous, and its density �Qn satisfies

1

A

�
1 � t2

�ˇ0 � �Qn .t/ � A
�
1 � t2

�ˇ1
; t 2 .�1; 1/ ;
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where ˇ1 > �1, and A; ˇ0; ˇ1are independent of n. Assume also that f�Qng are
uniformly equicontinuous in every compact subset of .�1; 1/.

(I) Then for any fixed integer k,

pn;nCk
�
e�2nQn ; x

�
e�nQn.x/

�
r
2

�

1
4

p
1 � x2

cos

��

k C 1

2

�

arccos x C n�
Z 1

x
�Qn � �

4

	

(1.7)

tends to 0 in L2 Œ�1; 1� as n ! 1.
(II) Uniformly for z in compact subsets of NCn Œ�1; 1�,

pn;nCk .z/ D 1C o .1/p
2�



z C

p
z2 � 1

�kC 1
2 �

z2 � 1��1=4

� exp

�

nFQn � n
Z

log
1

z � t
�Qn .t/ dt

�

: (1.8)

Here FQn is the constant in (1.4) for Q D Qn.
We note that this is not the most general form of Totik’s result, and both

asymptotics above can be formulated in terms of Szegő functions and their
arguments. Indeed, (1.7) is formulated in a different way in [51]. Moreover, for
Qn .x/ D jxj˛ , ˛ > 1, all the constants and densities can be given explicit forms.
It is also significant that the weights

˚
e�nQn

�
are assumed to be supported on

Œ�1; 1�. There are extra difficulties in establishing asymptotics when, for example,
the interval of orthogonality is unbounded. Then one has to use restricted range
inequalities, and often this requires extra hypotheses.

Another important asymptotic is that for Christoffel functions. One of Totik’s
celebrated results for asymptotics of Christoffel functions for varying weights is
[52]:

Theorem B. Let e�Q be a continuous nonnegative function on the set ˙ , which is
assumed to consist of finitely many intervals. If ˙ is unbounded, we assume also

lim
jxj!1;x2˙

Q .x/ = log jxj D 1:

Let J be a closed interval lying in the interior of supp
�
!Q
�
, where !Q denotes

the equilibrium measure for Q. Assume that !Q is absolutely continuous in a
neighborhood of J, and that �Q is continuous in that neighborhood. Then uniformly
for x 2 J,

lim
n!1

1

n
�n
�
e�2nQ; x

�
e2nQ.x/ D �Q .x/ : (1.9)
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In particular, when Q0 satisfies a Lipschitz condition of some positive order in a
neighborhood of J, then [44, p. 209] �Q is continuous there, and hence we obtain
asymptotics of Christoffel functions there. Note too that when Q is convex in ˙ , or
xQ0 .x/ is increasing there, then the support of !Q consists of at most finitely many
intervals, with at most one interval per component of ˙ [44, p. 199, Thm. 1.10(c)].
We used Totik’s result to establish universality results for varying weights in [27,
p. 747, Thm. 1.1].

Our aim in this paper is especially to establish locally uniform versions of (1.7) in
compact subsets of the Mhaskar-Rakhmanov-Saff interval, as well as global bounds
on the orthonormal polynomials. We now define the class of weights that we shall
use throughout this book:

Definition 1.1. For n � 1, let In D .cn; dn/, where �1 � cn < dn � 1. Assume
that for some r� > 1, Œ�r�; r�� � In, for all n � 1. Assume that

�0
n .x/ D e�2nQn.x/; x 2 In; (1.10)

where (i) Qn .x/ = log .2C jxj/ has limit 1 at cnC and dn�.
(ii) Q0

n is strictly increasing and continuous in In.
(iii) There exists ˛ 2 .0; 1/, C > 0 such that for n � 1 and x; y 2 Œ�r�; r��,

ˇ
ˇQ0

n .x/ � Q0
n .y/

ˇ
ˇ � C jx � yj˛ : (1.11)

(iv) There exists ˛1 2 �
1
2
; 1
�
, C1 > 0, and an open neighborhood I0 of 1 and �1,

such that for n � 1 and x; y 2 In \ I0,

ˇ
ˇQ0

n .x/ � Q0
n .y/

ˇ
ˇ � C1 jx � yj˛1 : (1.12)

(v) Œ�1; 1� is the support of the equilibrium distribution !Qn for Qn.
Then we write fQng 2 Q.

Remarks. (a) The convexity and smoothness assumptions can be replaced by
implicit assumptions involving bounds and smoothness of the equilibrium distri-
butions such as bounds and smoothness.
(b) The support condition (v) is equivalent to the Mhaskar-Rakhmanov-Saff equa-
tions

1

�

Z 1

�1
xQ0

n .x/p
1 � x2

dx D 1I (1.13)

1

�

Z 1

�1
Q0

n .x/p
1 � x2

dx D 0: (1.14)

(c) It may seem strange that we impose a stronger smoothness condition near ˙1
than elsewhere. This is needed to bound the equilibrium density near the endpoints
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of the Mhaskar-Rakhmanov-Saff interval, as we shall see in Chapter 3. We also show
there that something like this is needed to ensure uniform convergence of integrals
that arise there, such as

Z 1

0

ˇ
ˇQ0

n .t/ � Q0
n .1/

ˇ
ˇ

.1 � t/3=2
dt:

(d) The Lipschitz condition of order ˛1 > 1
2

in (iv) can be weakened to

ˇ
ˇQ0

n .x/ � Q0
n .y/

ˇ
ˇ � C1˝ .jx � yj/ ; x; y 2 In \ I0;

where

Z 1

0

˝ .t/

t3=2
dt < 1:

Under this weaker condition, we can still prove all the results of the next chapter,
but with weaker error terms, no longer with O .n�	 /, some 	 > 0.
(e) For notational convenience, we shall often assume that

˛ � ˛1 � 1

2
: (1.15)

(f) The hypotheses force for some C > 0 independent of n,

Q0
n .�1/ � �C and Q0

n .1/ � C;

see Lemma 3.2 below. Then for some tn 2 .�1; 1/,

Q0
n .tn/ D 0 (1.16)

and then the uniform Lipschitz condition gives

sup
n�1

sup
t2Œ�r�;r��

ˇ
ˇQ0

n .t/
ˇ
ˇ < 1: (1.17)

We can then divide each �0
n D e�2nQn by a normalizing constant, and assume that

also

Qn .tn/ D 0; (1.18)

and hence

sup
n�1

sup
t2Œ�r�;r��

jQn .t/j < 1: (1.19)
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(g) The hypotheses of Definition 1.1 are satisfied if, for example, for n � 1, Qn .x/ D
cn jxjˇn with all fˇng lying in a fixed compact subset of .1;1/, and fcng are chosen
so that the equilibrium measures have support Œ�1; 1�.

Throughout C;C1;C2; : : : denote constants independent of n; x; t and perhaps
other specified parameters. The same symbol does not necessarily indicate the
same constant in different occurrences. For sequences fxng and fyng of nonzero real
numbers, we write xn 	 yn if there exists C > 1 such that for n � 1,

C�1 � xn=yn � C:

We shall state some of our main results in the next chapter. The proofs of these will
be distributed over Chapters 3 to 15. We shall discuss the organization in more detail
in the next chapter.



Chapter 2
Statement of Main Results

We first state our uniform bounds on the orthonormal polynomials and related
quantities:

Theorem 2.1. Assume that fQng 2 Q and that for n;m � 1, pn;m is the orthonormal
polynomial of degree m for the weight e�2nQn on In.
(a) Let A > 0. For n � 1, and

jn � mj � An1=3; (2.1)

we have

sup
x2In

jpn;mj .x/ e�nQn.x/
�j1 � jxjj C n�2=3�1=4 	 1: (2.2)

Moreover, uniformly in such m; n,

sup
x2In

jpn;mj .x/ e�nQn.x/ 	 n1=6: (2.3)

(b) Let A > 0. Uniformly for n � 1, m satisfying (2.1), and x 2 In satisfying
jxj � 1C An�2=3, we have

�m
�
e�2nQn ; x

�
e2nQn.x/ 	 1

n
maxfj1 � jxjj ; n�2=3g�1=2: (2.4)

Moreover, uniformly for n � 1;m satisfying (2.1), and x 2 In,

�m
�
e�2nQn ; x

�
e2nQn.x/ � C

1

n
maxfj1 � jxjj ; n�2=3g�1=2: (2.5)
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10 2 Statement of Main Results

(c) Let
˚
xjn
�

denote the zeros of pn;n, ordered as

xnn < xn�1;n < � � � < x1n:

Uniformly for n � 1 and 1 � j � n � 1,

xjn � xjC1;n 	 1

n
maxfˇˇ1 � ˇ

ˇxjn

ˇ
ˇ
ˇ
ˇ ; n�2=3g�1=2: (2.6)

Moreover,

1 � C1
n2=3

� x1n � 1C C2
n
; (2.7)

with a similar inequality for xnn.

Proof. (a) See Theorems 7.1 and 14.2(d).
(b) See Theorem 5.1.
(c) See Theorems 6.1 and 14.2(c). ut
Remarks. We believe that for the uniform bound (2.2) to hold, one really does need
Q0

n to satisfy a Lipschitz condition of order at least 1
2

near ˙1.
Next, we turn to asymptotics on the interval of orthogonality.

Theorem 2.2. Assume that fQng 2 Q. Let " 2 �0; 1
3

�
. For n � 1, let �Qn denote the

density of the equilibrium measure for Qn on Œ�1; 1�. There exists 	 > 0 such that
uniformly for n � 1 and jxj � 1 � n�	 , 
 D arccos x, and for

jm � nj � n1=3�"; (2.8)

we have (a)

r
�

2
pn;m .x/ e�nQn.x/

�
1 � x2

�1=4

D cos

�

.m � n/ 
 C n�
Z 1

x
�Qn .t/ dt C 


2
� �

4

�

C O .n�	 / : (2.9)

(b)

1

n

r
�

2
p0

n;m .x/ e�nQn.x/
�
1 � x2

�1=4

D ��Qn .x/ sin

�

.m � n/ 
 C n�
Z 1

x
�Qn .t/ dt C 


2
� �

4

�

C Q0
n .x/ cos

�

.m � n/ 
 C n�
Z 1

x
�Qn .t/ dt C 


2
� �

4

�

C O .n�	 / :

(2.10)
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(c)

1

n
��1

n

�
e�2nQn ; x

�
e�2nQn.x/ D �Qn .x/C O .n�	 / : (2.11)

(d) Uniformly for j with
ˇ
ˇxjn

ˇ
ˇ � 1 � n�	 ,

n�Qn

�
xjn
� �

xjn � xjC1;n
� D 1C O .n�	 / : (2.12)

Proof. (a), (b) See Theorem 13.2(a), (b).
(c) See Theorem 13.3.
(d) See Theorem 13.5(b). ut
Remarks. (a) We expect that one can prove the asymptotic (2.11) for the Christoffel
function without assuming the extra Lipschitz condition (1.12) near ˙1.

(b) We also expect that one can prove the asymptotic (2.9) assuming less
smoothness on fQng: instead of (1.11), assume equicontinuity of f�Qng in Œ�1; 1�
(which is true if

˚
Q0

n

�
satisfy a uniform Dini condition). In addition, replace (1.12)

by the conditions in the remarks (d) after Definition 1.1. However, one then loses the
O .n�	1 / error term, and the asymptotic would hold in compact subsets of .�1; 1/.

Finally, we turn to asymptotics for orthonormal polynomials in the plane, and for
leading coefficients. We need more notations. Let

�.z/ D z C
p

z2 � 1 (2.13)

denote the conformal map of the exterior of Œ�1; 1� onto the exterior of the unit ball.
For n � 1, let

Fn .
/ D e�2nQn.cos 
/ jsin 
 j : (2.14)

Define the associated Szegő function

D.FnI z/ D exp

�
1

4�

Z �

��
eit C z

eit � z
log Fn .t/ dt

�

; jzj < 1: (2.15)

Theorem 2.3. Assume that fQng 2 Q. Let " 2 �0; 1
3

�
. There exists 	 > 0 such that

uniformly for n � 1 and m satisfying (2.8),
(a) For dist .z; Œ�1; 1�/ � n�	 ,

ˇ
ˇ
ˇ
ˇpn;m .z/ =


1p
2�
� .z/m D�1 
FnI� .z/�1

��

� 1
ˇ
ˇ
ˇ
ˇ � Cn�	 : (2.16)


