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1.1  Materials: Texture and Order

Today, research laboratories have powerful techniques for establishing the 
chemical nature and structure of pure materials. Our view of chemical  structure 
is formed around the results of x‐ray diffraction, recorded from single crystals 
or from polycrystalline powders. Structures in the liquid phase can be inferred 
from expectations for bond lengths and angles derived from crystallography; 
to do so, information is gathered about the local symmetry, atomic  connectivity, 
and proximity in the material derived from structurally sensitive  spectroscopies, 
particularly nuclear magnetic resonance (NMR) and infrared (IR) and Raman 
vibrational spectroscopies.

But many materials with a function are textured, such as pigments in paint-
ings in the Louvre, a stained glass window in Westminster Abbey, an automo-
tive exhaust catalyst, a dental filling, and others in nature, such as mineral 
inclusions or the shells of mollusks. They possess identifiable local structures 
on the Å scale that form the basis of their capabilities. However, these may be 
randomly spread through their three‐dimensional shape or, alternatively, be 
located in a particular region, such as at a surface. Correlating the structure 
and the function of materials is a key to the design of further development, as 
well as providing its own intrinsic scientific elegance.

X‐ray absorption fine structure (XAFS) spectroscopy has developed to the 
point when it can be applied to probe complex and faceted materials, for exam-
ple, to reveal chromophores in glass and to probe the organic‐inorganic com-
posites in shells. In this book, the aim is to guide the readers to identify whether 
and how the technique might be used to advantage to study the materials that 
interests them within this wide spectrum of samples.

Introduction to X‐Ray Absorption Fine 
Structure (XAFS)
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1.2  Absorption and Emission of X‐Rays

About 100 years ago, with the discovery of x‐ray absorption (XAS) and emis-
sion (XES) spectroscopies, observation of the absorption and emission of 
x‐rays were at the forefront of atomic physics, rather than the basis of materials 
characterization. The observations of the x‐ray absorption edge of elements 
were first made by Maurice de Broglie in 1913 and published in 1916;[1] the 
elements were the silver and bromine in a photographic plate. Moseley[2] 
measured the energies of the emissions of over 40 elements and showed that 
there was a square root relationship with the atomic number of the element; 
tragically, his further contributions were cut short by a sniper at the Battle of 
Gallipoli in 1915. W.H. and W.L. Bragg had also noted that x‐ray emission lines 
were also characteristic of an element.[3] Hence, both the absorption edge and 
the emission lines had been shown to provide a means of elemental speciation 
of sites.

Shortly thereafter the group of Manne Siegbahn at Lund improved the reso-
lution of the crystal spectrometers to 1/10,000 allowing them to establish that 
the absorption edge position was chemically as well as elementally dependent; 
this was initially observed for allotropes of phosphorus, reported by Bergengren 
in 1920. In the next year, Lindh reported a chemical shift of 5.4 eV between Cl2 
and HCl. The use of edge positions for chemical speciation was thus estab-
lished and by the mid‐1920s the energies of emission lines were also shown to 
display a chemical shift.

1.3  XANES and EXAFS

In 1920, Fricke published photographic measurements of K absorption edges of 
elements between magnesium and chromium,[4] and Lindh reported structures 
around the Cl K edges. These reports showed fine structure both before and 
after the absorption edge energy, and XAFS (x‐ray absorption fine structure) had 
been identified. Most photographic plates with the x‐ray spectrum dispersed 
across them showed a bright line, marking the maximum in the x‐ray absorption 
and thus little darkening of the photographic plate. For some samples, for exam-
ple, the Ca K edge in calcite and gypsum, this feature was especially intense and 
by 1926, it was known as the white line.[5] Lindsay and van Dyke also reported 
features up to nearly 50 volts above the first main feature of the edge. Two years 
later, Nuttall[6] reported that the potassium K edges post‐edge features could be 
used to distinguish between different minerals, and that the “fine structure…
extended over a range of about 67 volts.” And in 1930 Kievert and Lindsay[7] 
observed fine structures in metals extending to about 400 eV to higher energy of 
the absorption edge. Hence, by 1930 most of the core characteristics of XAFS 
spectroscopy had been identified, apart from polarization effects.
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An example of an XAFS spectrum is shown in Figure 1.1 for the tungsten L3 
edge of an acetonitrile solution of (NBu4)2[WO4]; the L3 edge is a transition of 
a 2p electron of the absorbing atom, tungsten in this example. The technique 
pinpoints the anion containing the absorbing atom and the solvent and counter 
ion do not interfere. This spectrum shows some of the characteristic compo-
nents that might be observed associated with an absorption edge. The x‐ray 
absorption near‐edge structure (XANES) is dominated in this case by an exam-
ple of a white line, due to an intense (Laporte‐allowed) transition to vacant 5d 
states. The extended x‐ray absorption fine structure (EXAFS) has been 
expanded vertically to become visible at higher energies. Each of these types of 
features contributes to the information than can be derived from the entire 
spectrum.

1.4  Information Content

It was quickly recognized that x‐ray spectra provided information about atomic 
energy levels, as commented by W.H. Bragg.[3] It was also noted that the posi-
tion and shape of the XANES features at the absorption edge were dependent 
upon the local environment and on the effective charge on the absorbing atom. 
More problematical was a working explanation of the extended structure, 
EXAFS. There were three possibilities proposed:

1) The peaks above the edge were due to additional atomic transitions. 
However, Coster and van der Tuuk[8] showed that this was a minor 
 contribution in their study on argon gas.
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Figure 1.1 The normalized W L3 edge x‐ray absorption spectrum of a solution of 
(NBu4)2[WO4] (10 mM) in acetonitrile (Source: Diamond Light Source, B18; data from 
Richard Ilsley).
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2) The oscillations were due to long‐range periodicity through the sample, as 
described by Kronig in 1931.[9]

3) Instead the oscillations were due to short‐range electron scattering, as 
Hartree, Kronig, and Petersen reported in 1934, thus accounting for EXAFS 
features up to 200 eV above the Ge K edge in molecular GeCl4.[10]

The dichotomy between local‐ and long‐range order explanations for solid‐
state arrays and molecular materials remained for about 40 years. The basis of 
the current understanding emanates from analyses by Stern and his co‐work-
ers, Sayers and Lytle, in 1970 and published in 1974–1975.[11–13] The key 
aspects of this development were the demonstration of the short‐range order 
theory for all materials and the efficacy of Fourier transform methods for dis-
playing the differing oscillations in an EXAFS patterns as distinguishable 
interatomic distances. In Figure 1.1, the EXAFS features are dominated by a 
single damped oscillation, which is due to the scattering between the tungsten 
and oxygen atoms in the anion. Hence the method provides measurement of 
that bond‐length in solution and other disordered media.

1.5  Using X‐Ray Sources as They Were

Viewing that oscillation in Figure  1.1, it is evident that EXAFS features are 
weak and thus a high signal/noise ratio is required to reliably extract the poten-
tial information in a XAS spectrum. Until 1970, all XAS measurements utilized 
laboratory x‐ray tubes. For x‐ray spectroscopy it is the brehmsstrahlung back-
ground that provides the necessary range of x‐ray energies, rather than the 
more intense emission lines used for x‐ray diffraction. The combined charac-
teristics of weak sources and weak signals severely limited the application of 
XAFS. But the breakthrough in understanding provided by Stern added to the 
impetus for finding an experimental solution.

Much higher intensity sources were in prospect from synchrotron accelera-
tors, an effect first demonstrated in 1947.[14] This report, from the General 
Electric Company, described a brilliant white spot emanating from the  tangent 
point of the orbit in a 70 MeV device of radius 29.2 cm. When synchrotrons 
first became available as x‐ray sources in the 1970s, the effect was dramatic. 
For example, the experimental backdrop to the theoretical developments was 
a suite of three x‐ray spectrometers at the Boeing Scientific Research 
Laboratories. Lytle later offered the following observation[15] about an 
 experimental trip to the then new x‐ray spectrometer at Stanford Synchrotron 
Radiation Laboratory (SSRL) in the early 1970s: “In one trip to the synchro-
tron we collected more and better data in three days than in the previous ten 
years. I shut down all three X‐ray spectrometers in the Boeing laboratory. 
A new era had arrived!”
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1.6  Using Light Sources Now and To Be

That new era transformed x‐ray spectroscopy from being a poorly understood 
technique of considerable experimental challenge, to one of wide applicability. 
Stern, Sayers, and Lytle concluded in 1975:[13] “Its greatest usefulness should 
be in unraveling complicated structures with no long‐range order such as 
 biological molecules and commercially practical catalysts.”

Since that statement was made, x‐ray sources display brilliances that have 
increased faster than computing power over the same time period. The advan-
tages envisaged then for studies of macroscopic samples can now be applied 
with great spatial and temporal resolution. Functional materials may be inves-
tigated in their textured nature and their structures tracked during processing. 
Current storage ring light sources have the stability and reliability to make 
these experiments viable.

A new class of x‐ray sources is within the horizon now. Lasing by free electron 
lasers in the x‐ray region was demonstrated in the United States in 2010 and in 
Japan in 2011, and both are available as user facilities now. This type of source will 
be able to interrogate structure with a time resolution that is faster than vibrations 
and thus they offer structural snapshots of molecular dynamics. The last century 
has been a good one for x‐ray science, and the future is extraordinarily bright!

For now though, this is what we hope to probe by XAFS experiments:

 ● The absorption edge jump and fluorescence yield can be used to quantify 
elemental compositions.

 ● The XANES features and observed edge position interrogate the effective 
nuclear charge of the absorbing atom and the local geometry.

 ● The oscillations in the EXAFS region provide information about the types of 
neighboring atom, the number of them, and the interatomic distances.

 ● Spatial resolutions of µm down to 10s of nm provide scope for using the 
spectral features for mapping chemical states though textured materials.

 ● Sub‐second time resolutions allow tracking of structural changes in response 
to a stimulus, thus giving real‐time structure‐function studies.

 ● With specialized laser‐based x‐ray sources, structures can be monitored 
with sub picosecond time resolution.

The events involved can be envisaged with a physical model. In Figure 1.2, an 
energy source (a stone) is exciting a calm lake, creating a core hole and also a 
wave from the impact site.

In XAFS, there are generally neighboring atoms as well as the excitation site, 
so perhaps a better model is provided by a coot (fulica atra). Coots dive like a 
stone to feed and this “excited state” has a central void with an outgoing wave. 
The wave can interact with a nearby coot and the “excited” coot relaxes 
(Figure 1.3). A portion of the outgoing wave can be scattered back from the 
hungry coot back to the one that has just fed.


