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Coxeter Groups and the Davis Complex

Timothy A. Schroeder

Suggested Prerequisites. Group theory, Graph theory, Combinatorial topology.

1 Introduction

This chapter presents topics in an area of mathematics at the intersection of geome-
try, topology, and algebra called Geometric Group Theory. It is likely that students
have been exposed to geometry and abstract algebra topics as undergraduates. Some
reading this may have also been introduced to topology, as well. In this chapter, we
will be using terms and concepts from each of these areas, the point being to develop
a working knowledge of these terms and concepts that allows us to progress toward
our goal: A reflection group acting on a topological space. We will not spend much
time on topological details (students are certainly encouraged to pursue that subject
formally). Geometric details, referenced throughout, but specifically in Section 3.2,
are suggested as a project in Section 6. That leaves algebra. Perhaps the best, and
most familiar place to begin. We recall the definition of a group G:

Definition 1. A group G is a set G, together with a closed binary operation,
denoted ·, such that the following hold:

• Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).
• Identity: There is an element e in G such that for all x ∈ G, e · x = x · e = x.
• Inverse: For every a ∈ G, there is an element a′ ∈ G such that a · a′ = a′ · a = e.

Such an element a′ is unique, and is denoted a−1.
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Students in an abstract algebra course begin with this definition, and likely
embark on a journey through group theory: element orders, subgroups, cosets,
homomorphisms, isomorphisms, cyclic groups, generators, etc. Eventually, students
may be introduced to group actions, along with their stabilizers and orbits. All the
while, most likely, using the favorite dihedral groups as prototypes.

As useful and correct and edifying as that exposure is, it may strike students
as somewhat sterile. The groups are axiomatically presented, they are thought of
abstractly, and pictures (aside from regular polygons or the occasional Cayley graph
of a finite group) may be few and far between. It is our intention that the groups we
present in this context will have a decidedly constructive, and even geometric, flavor
to them.

In this chapter, we will study finitely presented groups, specifically Coxeter
groups, and we will present a constructive view of a topological space on which
these Coxeter groups act. We begin with an overview of group presentations and
graph theory, then define Coxeter groups and the associated spaces. The reader
should note that many technical terms are italicized, and can be referenced in the
included citations or elsewhere.

2 Group Presentations and Graphs

Let A be a set and define the set A−1 = {a−1 | a ∈ A}. Define WA to be the
collection of all finite length words in A ∪ A−1. A “word” being a finite string of
elements from the set A∪A−1. (We are thinking of the set A as our “alphabet.”) For
example, if A = {a, b}, then a, ab, ba, aba−1, bb−1ab are all elements of the set of
words WA. Perhaps you sense that this list is redundant. That is, you may already be
thinking that two of the words are actually equivalent. You’re right, of course, for
as the notation suggests, elements of the set A−1 are to play the role of inverses. To
make this clear, let’s get a little more formal.

First, to the set WA, we include the word comprised of no elements, the so-called
empty word, denoted by the symbol 1.

Now, to have a group, we must have an associative operation, usually described
and understood as some sort of multiplication. So, on the set WA, we define
multiplication by concatenation. (In other words, “put next to each other.”) In the
example above, to multiply ba and aba−1, we have ba · aba−1 = baaba−1 =
ba2ba−1. You should verify that, in general, concatenation is in fact associative.

Next, we say w2 ∈ WA is obtained from w1 ∈ WA by an elementary reduction
(or expansion) if w2 is obtained from w1 by deleting (or inserting) a sub-word of
the form aa−1 or a−1a, for some element a ∈ A. We say that two words w and
w′ are equivalent if we may pass from w to w′ by a finite sequence of elementary
reductions or expansions (both are allowed), and we write w ∼ w′. (As you may
have guessed, this means that in our list above, ab ∼ bb−1ab.) The relation ∼
defines an equivalence relation on the set WA. (See Exercise 1.)
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Finally, let FA be the collection of equivalence classes of ∼, where for w ∈ WA,
[w] denotes the equivalence class containing w. Concatenation on WA induces a well-
defined operation on FA: For u, v ∈ WA, [u] · [v] = [uv]. (See Exercise 2.) In fact, FA

is a group with identity the equivalence class containing 1. It is called the free group
on A.

2.1 Group Presentations

It could be the case that within a set of words, or within a group, there could be
many ways, besides using elementary reductions or expansions, to represent a given
element. To handle this more complicated situation, we add what are called relators
to our group, and study presentations of groups.

Let A be a set and consider again FA, the free group on A. Let R be a set of words
in the alphabet A ∪ A−1, and define N(R) to be the smallest normal subgroup of FA

containing the equivalence classes of the elements of R. (This normal subgroup is
formed by taking the collection of all finite products of conjugates of elements of R
and their inverses in FA.) We have the following definition.

Definition 2. Let A, R and N(R) be as above. The group defined by the presentation
〈A | R〉 is the quotient group FA/N(R).

That is, a group defined by a presentation is the quotient of a free group by the
normal subgroup generated by the words in some set R. We equate a group with its
presentation, writing FA/N(R) = 〈A | R〉, but note that it is the case that a given
group can have multiple presentations.

If A is a finite set (for it could be the case that A is an infinite set), we say the
corresponding group is finitely generated. If R is also finite, we say that the group is
finitely presented. For reference on group presentations, see [6] or [10].

In practice we often take a slightly more constructive approach to defining
and working with the elements of a finitely presented group. We highlight this
perspective next.

2.1.1 A Constructive Approach
Resetting the table, consider the set WA of words in the alphabet A ∪ A−1, where A
is some finite set, and let R be a finite set of words contained in WA. The elements of
R, again called “relators,” will serve to identify certain words in WA, besides those
identified in the free group FA. Indeed, we say a word w2 in WA is obtained from
w1 ∈ WA by a simple R-reduction (or R-expansion) if w2 is obtained from w1 by
deleting (or inserting) a sub-word r, where r ∈ R. We then say two words w and w′

are R-equivalent, and write w ∼R w′, if there exist a finite sequence of simple R-
reductions, simple R-expansions, elementary reductions, and elementary expansions
leading from w to w′. As before, concatenation induces an operation on the set of
equivalence classes of R-equivalent words of WA, and we have the structure of a
group G with presentation 〈A | R〉. We again equate the group with its presentation
and write G = 〈A | R〉.
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Now, for an element w ∈ WA, we think of w as representing its entire
equivalence class of R-equivalent words and drop the equivalence class notation
(or the associated coset), understanding that other words may be equivalent to w.
That is, we think of the words themselves as elements of the group; but in that set,
there is much redundancy. In particular, we write w = w′ as group elements when
w ∼R w′ as words (or when w and w′ are in the same coset of N(R)). Multiplication
is still represented by concatenation, and the identity element still represented by 1.
This means that the generating set A is considered a subset of the group itself. Also,
R-equivalence means that we are able to insert or delete each r ∈ R into any part of a
word w without changing the group element. This amounts to equating each relator
r with the identity element 1, a perspective often indicated in the presentation as
each r ∈ R will often be equated to 1 in the right hand side of the presentation.
Finally, note that if A = {a1, a2, . . . , an} and R = {r1, r2, . . . , rk}, then we may
write 〈a1, a2, . . . , an | r1, r2, . . . , rk〉 to denote 〈A | R〉.

2.2 Some Basic Graph Theory

In order to fully explore group presentations, and the structures of the resulting
groups, it does us well to review (or introduce) some basic graph theory.

Let V be a set, and let E be a collection of two element subsets of V , where an
individual set can be repeated in the collection, and an individual element can be
repeated to form a two-element subset. Such sets define a graph Γ = (V,E) where
the elements of V are the vertices of the graph and the elements of E the edges. A
set {v,w} ∈ E indicates an edge between vertices v and w, and {v, v} ∈ E defines
an edge in Γ from v to itself, i.e. a loop in Γ . If a subset in E has multiplicity n, then
we include n edges between the associated vertices in Γ . Here, Γ is said to have
multi-edges.

We define a directed graph by taking E ⊆ V × V where the ordered pair (v,w)
indicates a directed edge between the vertices v and w. We indicate this pictorially
by placing an arrow on the associated edge. Of course, this sort of structure can
indicate an orientation to the edges in the graph, where traversing the associated
edge in different directions has different implications. For our purposes, it is possible
to have a graph with both directed edges and undirected edges. In this case, the
edge set E will denote undirected edges by two element sets, and directed edges by
ordered pairs.

A graph or directed graph Γ = (V,E) is said to be labeled, or weighted, if there
is a function from the set of edges E to a set of labels.

A graph Γ is said to be finite if both V and E are finite sets. Γ is said to be simple
if Γ includes no loops nor multi-edges.

Two graphs Γ1 − (V1,E1) and Γ2 = (V2,E2) are isomorphic if there exists
a bijection f : V1 → V2 such that if {u, v} ∈ E1, then {f (u), f (v)} ∈ E2. A
similar definition exists for directed edges, that is if (u, v) ∈ E1, then (f (u), f (v)) ∈
E2. If the bijection f maps V1 to itself, and E1 = E2, then the map f defines an
automorphism of the graph Γ1(V1,E1).
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Example 1. Let V = {a, b, c, d, e, f}, and consider edge sets

E1 = {{a, b}, {b, c}, {c, d}, {d, e}, {e, f}, {f , g}} , and

E2 = {(a, b), (b, c), (c, a), (d, e), (e, f ), (f , d), {a, d}, {c, e}, {b, f}} .

The corresponding graphs Γ1 = (V,E1) and Γ2 = (V,E2) are shown Figure 1.

Example 2. Let V = Z, and E = {{n, n + 1} | n ∈ Z}. Then Γ = (V,E) can be
understood as the real line, with vertices at every integer.

2.3 Cayley Graphs for Finitely Presented Groups

We now present the contruction of the Cayley graph associated to a finitely
presented group. The Cayley graph is a very useful graph, endowed with some of the
additional structure discussed above. Let G = 〈A | R〉, we create the corresponding
labeled Cayley graph Γ as follows:

• V = G; that is, we include one vertex for every element of G.
• E: Given any v ∈ G and a ∈ A, then there is a directed edge (v, va) from v to the

element va ∈ G. We label this edge by the generator a.

This means that in Γ , each vertex has one edge emanating from it for each element
of A, and it will also have one edge entering for each element of A. It should be
noted that we view the vertices of the graph as elements of the group, that is, we
view G ⊆ Γ . So, from a given vertex v, traversing an edge labeled a with the
orientation corresponds to multiplying v on the right by a, and traversing an edge
labeled a against the orientation corresponds to multiplying v on the right by a−1.

Example 3. Let G =
〈
a | a6

〉
. Then the Cayley graph of G can be viewed as the

graph Γ1 in Figure 1, but replace the edges there with directed edges all oriented to
flow counter-clockwise around the hexagon, and with a = a, b = a2, c = a3, . . . etc.

Fig. 1 Γ1 and Γ2.

b

af

e

d c
bc

a

fe

d



6 T.A. Schroeder

Fig. 2 The directed Cayley
graph for G in Example 4.

c2c

1

c

c c

cbc2b

b

c

c c

b

b

b

b

b

b

Example 4. Let G =
〈
b, c | b2, c3, bcb−1c

〉
. G has Cayley graph shown in Figure 2.

In Example 4, due to the generator b having order 2 (we have b2 = 1 in G),
the description of the Cayley graph given above prescribes multi-edges. For at any
g ∈ G, since gb2 = g, there is an edge labeled b emanating from g to gb, and an edge
entering g from gb. To avoid these multi-edges, and to reflect the fact that b−1 = b,
it is our convention that when a generator b has order 2 we will identify incoming
and outgoing edges corresponding to b; and instead of two directed edges, we will
include one undirected edge. Thus, the Cayley graph for the group in Example 4
will actually be viewed as the graph Γ2 in Figure 1, with directed and undirected
edges.

Finally, we remark that the vertices of a Cayley graph correspond to elements of
the group, hence equivalence classes of words. As a result, it can be very difficult
to tell when two words represent the same element. So, constructing the Cayley
graph is not as straightforward as one might expect. However, the description above
enables us to understand a local picture of the Cayley graph at any vertex.

Exercise 1. Show that the relations ∼ and ∼R on the set WA described above
generate equivalence relations.

Exercise 2. Show that concatenation is well-defined on equivalence classes. Then,
show that FA is a group, with identity element 1. (For a given u ∈ WA, what is
[u]−1?) In general, is FA abelian?

Exercise 3. Let A = {a, b}, R = {aba−1b−1}. Show that ab ∼R ba.

Exercise 4. Construct the Cayley diagram for the following presented groups.

(a) 〈a | 〉
(b) 〈a, b | 〉
(c)

〈
a, b | aba−1b−1

〉

(d)
〈
a, b | aba−1b

〉

(e)
〈
a, b | b2

〉
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(f)
〈
a, b | a2b−2

〉

(g)
〈
a, b | a4, b2

〉

(h)
〈
a, b | a2b−3

〉

(i)
〈
a, b, c, d | aba−1b−1, cdc−1d−1

〉

Challenge Problem 1. A very strong connection between group theory and topol-
ogy is now at hand. Indeed, given a group G = 〈A | R〉 with Cayley graph Γ (with
single edges for generators of order 2), Γ can be given the “path-metric” by making
each edge isometric to the unit interval. Define then the distance d between two
points to be the minimum path length (or infimum) over all paths connecting the
two points. Show that this defines a metric on Γ . Notice that for vertices which
correspond to u, v ∈ G, d(u, v) ∈ Z. Show that in this case, d(u, v) is the minimum
length of words w in the alphabet A ∪ A−1 representing the element u−1v. The
restriction of the metric to G ⊆ Γ is the so called “word-length metric.”

Challenge Problem 2. A free group has a more ‘universal’ definition: Let G be a
group and let A ⊆ G. We say that G is free on A, denoted GA, if for every group H,
and any function f : A → H, then there exists a unique homomorphism h : G → H
s.t. h|A = f .

For a given set A, show that

(a) If G is free on A, then A generates G. (That is, every element of G is a product
of elements of A and their inverses.)

(b) If G is free on A, then A contains no elements of finite order.
(c) The group FA (defined above) is free on A. (That is, for any group H and function

f : A → H, we must verify that f extends uniquely to a homomorphism.)
(d) Let GA be a group that is free on A, then FA

∼= GA. (That is, the definitions are
equivalent!)

3 Coxeter Groups

In this section, we’ll explore a special type of finitely presented group called a
Coxeter group. Put succinctly, Coxeter groups are groups that are generated by
elements of order 2, often viewed as reflections in some geometric space. As
you may recall from an undergraduate geometry course, or can find in a standard
geometry text such as [15, Chapter 10], isometries of geometric spaces can be
understood as compositions of reflections. Therefore, one can see the importance of
groups generated by reflections, and their natural connection to geometry. It should
also be noted that the study of such finite groups, generated by reflections acting on
R

2, are essential in classifying Lie groups and Lie algebras, and the classification of
regular polytopes. Coxeter groups are generalizations of this idea, where the order 2
generators are not necessarily viewed as reflections on R

n, but will almost certainly
be viewed as some sort of homeomorphism of a topological space.
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As we’ll see, the review of some basic graph theory in Section 2.2 will be useful,
since the presentations of Coxeter groups can be encoded as finite, simple, labeled
graphs; and because the topological spaces on which we will have these groups act
are intimately related to their Cayley graphs.

3.1 The Presentation of a Coxeter Group

Let Γ = (S,E) be a finite simple graph with vertex set S and with edges labeled by
integers ≥ 2. Denote by mst the label on the edge {s, t}. Γ encodes the data for a
presentation of a Coxeter group WΓ

WΓ =
〈
S | s2 = 1 for each s ∈ S and (st)mst = 1, for each edge {s, t} of Γ

〉
.
(1)

The pair (WΓ , S) (or simply (W, S) when the graph Γ is clear) is called a Coxeter
system. We call such a labeled graph Γ a Coxeter graph. Throughout this chapter,
we will take such a graph as the defining data for our Coxeter groups, noting that
the vertices of the graph correspond to the generators of the group. This is standard
convention: To simultaneously view each s ∈ S as a generator of the group, an
element of the group, and a vertex of the defining Coxeter graph. See [4, 9] for
further reference on Coxeter groups and Coxeter systems. See [14] for further
treatment on the defining Coxeter graphs.

Observe that the Coxeter graph Γ is not the Cayley graph associated to the group.
Rather, it is an efficient way to encode the presentation of the group. There are other
ways of defining Coxeter groups; for example Coxeter matrices or Dynkin diagrams.
But, any such effort is just encoding the above type of presentation in another way.
Our focus will be on the so-called Coxeter graphs.

In summary, a Coxeter group is generated by a set of elements that have order
2, and the only other relators are of the form (st)mst , where s 
= t, where mst is the
order of the element (st). Also, since the generators each have order two, they are
their own inverses and we refer to them as reflections or involutions. That is to say,
a Coxeter group is a group that is generated by reflections.

As noted in Section 2.1, the relators of the type r2 and (st)mst amount to
equating these words to the identity element of the corresponding Coxeter group.
See Exercises 5, 6, 7, and 8 to explore the implications of these relators, and the
ensuing structure of the Coxeter group. Further, the reader should note that if two
vertices s and t are not connected by an edge in Γ , then they do not define a relator
and themselves generate an infinite subgroup, as Example 5 illustrates.

Example 5. Let Γ be a graph with two vertices, and no edges. Then

W =
〈
r, s | r2, s2

〉
,

and its elements can be algorithmically listed: 1, r, s, rs, sr, rsr, srs, rsrs, srsr, . . .. Is
it clear why the generators alternate within each word in this list? This group is
called the infinite dihedral group, and denoted D∞. Is it clear why the group is
infinite?
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Example 6. Let D4 denote the dihedral group of order 8, that is, D4 is the group of
isometries of a square, and let W =

〈
r, s | r2, s2, (rs)4

〉
. We will show W ∼= D4. To

do this, recall the definition of a group defined by a presentation in Definition 2,
and let F{r,s} denote the free group on generators r and s, and N the normal
subgroup generated by the relators {r2, s2, (rs)2}. That is, N is the smallest normal
subgroup of F{r,s} containing the relators. Define a map f : F{r,s} → D4 by
mapping r to a reflection across a diagonal of a square, s to a reflection across
an adjacent side bisector, and extending f to the rest of F{r,s} by requiring that f
be a homomorphism. That is, a word in the alphabet {r, s, r−1, s−1} is mapped to
the corresponding composition of the reflections on the square described above. In
particular, the student can verify that f is surjective and that all the relators are all
in ker f . From these observations, we can conclude two things: (1) Since ker f is
a normal subgroup of F{r,s} containing the relators, we must have that N ≤ ker f ;
and (2) By the universal property of quotient groups, [10, 5.6], f descends to a map
f̄ : F{r,s}/N = W → D4. We have two commuting diagrams:

F{r,s} D4 F{r,s} D4

F{r,s}/N =W F{r,s}/ker f

f f

f̄ ∼=

The diagram on the right being the classical ‘first’ or ‘fundamental’ isomorphism
theorem. It gives us that

[
F{r,s} : ker f

]
= 8. Since N ≤ ker f , and we have that[

F{r,s} : N
]
=

[
F{r,s} : ker f

]
· [ker f : N], we know that

|W| =
[
F{r,s} : N

]
≤ 8.

But, by simply observing words in the alphabet {r, s, r−1, s−1} subject to the
relators, it is clear that any element of the group has as a representative a
word of length at most 4. Indeed, since (rs)4 = 1, we know rsrsrsrs = 1,
rsrsrsr = s, rsrsrs = sr, rsrsr = srs, rsrs = srsr, and so on. This means
that {1, r, s, rs, sr, rsr, srs, rsrs = srsr} exhausts the set of words that represent
the distinct elements of W, and so |W| ≤ 8. Thus, |W| = 8, which means that
[ker f : N] = 1, and there is actually only one diagram. In particular, we have that
f̄ : W → D4 is an isomorphism.

Example 7. One can show, using an argument similar to that in Example 6, that the
Coxeter group W =

〈
r, s | r2, s2, (rs)n

〉
is isomorphic to Dn, the dihedral group of

order 2n.

Example 8. Let W =
〈
r, s, t | r2, s2, t2, (rs)2, (st)2, (rt)2

〉
. It is a Coxeter group and

in a similar manner to that above, one can show that W is isomorphic to Z2⊕Z2⊕Z2

(See Figure 3).
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Fig. 3 Coxeter graphs for
Examples 7 and 8
respectively.

r sn
r

s

t

2

2

2

Example 9. Consider the group

W =
〈
r, s, t, u, v | r2, s2, t2, u2, v2, (rs)2, (st)2, (tu)2, (uv)2, (rv)2

〉
.

Verify that W has corresponding Coxeter graph Γ where Γ is a pentagon with each
edge labeled 2. Note that W is infinite, as it contains copies of D∞ as subgroups.

3.2 Coxeter Groups and Geometry

To set up a discussion of the relationship between geometry and Coxeter groups,
we recall the following facts, often covered in an undergraduate transformational
geometry course.

Fact 1 Let P be a (2-dimensional) geometric space meeting the axioms of so-called
“Neutral geometry.” Given a line l ⊂ P, the reflection over the line l, denoted rl is an
isometry of the space. That is, the distance between two points p and q is the same
as the distance between their reflected images p′ and q′.

Fact 2 With P as above, if γ : P → P is an isometry, then γ can be understood as a
composition of 1, 2, or 3 reflections over a line.

Fact 3 The composition of reflections over lines whose (acute) angle between them
is α is a rotation through an angle of 2α.

(The student is encouraged to recall the construction of a reflection in neutral,
plane geometry and to verify that the composition of a reflection with itself is the
identity isometry on the geometric plane. In other words, a reflection defined in this
way has order 2. For reference, see [15, Chapter 10].)

The first two facts provide great motivation for the study of Coxeter groups
and their inherent connection to geometry. Indeed, they give us that the group of
isometries of a geometric plane is generated by elements of order 2. The third fact
gives context for the other relators present in the presentation of a Coxeter group.

In later chapters, and in the suggested project 2, we give a Coxeter group as our
given data, and from it try to determine an appropriate geometric model. Here and
in Challenge problem 5, we turn this around. Namely, we present some geometric
models and reflections, and ask the reader to determine the associated group.
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3.2.1 Euclidean Space and Reflections
View R

2 as the set of 2-dimensional vectors over R equipped with the usual dot
product

〈u,v〉 = u1v1 + u2v2

where u = (u1, u2) and v = (v1, v2) are vectors in R
2. A line l in R

2 through xo

in the direction of v has parametric equation x = x0 + vt, where t ∈ R. Any such
line defines a reflection rl with formula

rl(x) = x− 2 〈u,x− x0〉u, (2)

for any x ∈ R
2 and where u is a unit vector orthogonal to v.

3.2.2 Spherical Geometry and Reflections
Denote by S

2 the subset of R3 of points (x1, x2, x3) for which x21 + x22 + x23 = 1 and
call it the “2-sphere.” With the usual dot product defined above extended to R

3, we
see that S2 can be viewed as the set of vectors x for which 〈x,x〉 = 1.

A line l in S
2 is defined as the intersection of S2 with a plane through the origin

in R
3. Any such line defines a reflection rl of S2 in a similar way to that above.

Indeed, for any x ∈ S
2, we have

rl(x) = x− 2 〈u,x〉u, (3)

where u ∈ R
3 is unit vector orthogonal to the plane defining the line l.

3.2.3 Hyperbolic Geometry and Reflections
Define a modified inner product on R

3 by

〈x,y〉M = x1y1 + x2y2 − x3y3.

(The “M” stands for Minkowski, and the student should note that this formula does
not technically define an “inner product,” as it’s not the case that 〈x,x〉M ≥ 0 for
all vectors x.) Let H2 denote the subset of R3 for which 〈x,x〉M = −1 and x3 > 0.
This is just the upper sheet of the two-sheeted hyperboloid in R

3 defined by equation
x2 + y2 − z2 = −1, and called the hyperboloid model for hyperbolic space.

A line l in H
2 is defined as the intersection of H2 with a plane through the origin

in R
3, and, as above, any such line defines a reflection in H

2. In particular, let u ∈
R

3 denote a unit vector orthogonal to plane defining l, with respect to the modified
inner product 〈 , 〉M . (This means that 〈u,v〉M = 0 for any vector v in the plane
defining l.) For any x ∈ H

2, the reflection rl is defined by

rl(x) = x− 2 〈u,x〉M u. (4)
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3.2.4 The Poincaré Disk Model for Hyperbolic Space
There is another model we’ll consider for hyperbolic space called the “Poincaré disk
model,” denoted by H

2
P. In terms of its points, H2

P consists of (x, y) ∈ R
2 for which

x2+y2 < 1, the interior of the unit disk in R
2. However, distance in H

2
P is calculated

in such a way that the distance from the origin to the boundary of the disk is infinite.
As a result, lines come in two forms:

1. The portion of lines through the origin in R
2 contained in the interior of the unit

disk, or
2. The portion of circles in R

2 orthogonal to the boundary circle x2 + y2 = 1
contained in the interior of the unit disk.

Since lines come in two forms, the corresponding reflections come in two forms.

1. If l is a line of type (1) above, then rl is a restriction to the interior of the unit disk
of the standard Euclidean reflection defined in Equation 2 with x0 = (0, 0).

2. If l is a line of type (2), then rl is the inversion in the circle orthogonal to the
boundary circle, applied to the points in the interior of the unit disk.

The student may recall that the inversion x′ of a point x in a circle of radius k with
center x0 is given by

x′ = x0 +
(x− x0)

〈x− x0,x− x0〉
. (5)

From the above formulas, one can easily see the how the hyperboloid model is
completely analogous to the Euclidean and spherical model. An advantage of the
Poincaré model over the hyperboloid model is that it is conformal. That is, angles
between lines in H

2
P are equal to the angles between the corresponding lines or

circles in R
2.

Exercise 5. Let r ∈ A and suppose rr = r2 ∈ R. Show that r ∼R r−1.

Exercise 6. Let r, s ∈ A and suppose r2, s2, (rs)2 ∈ R. Show that rs ∼R sr.

Exercise 7. Let r, s ∈ A and suppose (rs)3 = rsrsrs, r2, s2 ∈ R. Show that rsr ∼R

srs.

Exercise 8. Let r, s ∈ A and suppose r2, s2, (rs)n ∈ R, for some n ∈ Z, n ≥ 2.
Then (sr)n = 1. (That is, if you have the relator (rs)n. You also have the relation
(sr)n.)

Exercise 9. Write the presentation of a Coxeter group for each of the three Coxeter
graphs shown in Figure 4.
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Fig. 4 The Coxeter graphs
for Exercise 9.
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Exercise 10. Sketch the Coxeter graph that defines the following presentations.

(a)
〈
r, s | r2, s2

〉

(b)
〈
r, s, t | r2, s2, t2, (rs)2, (st)3, (rt)6

〉

(c)
〈
r, s, t | r2, s2, t2, (rs)2, (st)4, (rt)4

〉

(d)
〈
r, s, t | r2, s2, t2, (rs)4, (st)4, (rt)4

〉

(e)
〈
r, s, t, u, v | r2, s2, t2, u2, v2, (rs)2, (st)2, (tu)4, (uv)2, (rv)4

〉

Exercise 11. Cayley graphs for Coxeter groups: Recall the construction of
Cayley graphs described in Section 2.2. Note that the generators of a Coxeter group
always have order 2, so at each vertex of the Cayley graph of a Coxeter group,
the incoming and outgoing edges are identified to reflect the idea that for a given
generator r, r = r−1. Construct the Cayley graph for the groups in Examples 7,8,
and 9. Do the same for the groups presented in Exercises 9 and 10.

Exercise 12. By using an argument similar to that in Example 6, identify each of
the presented groups with a familiar group. Namely the student should attempt to
find a map from an appropriate free group to a familiar group, then show that this
map descends to an isomorphism of the given presented group to the familiar group.

(a)
〈
r, s | r2, s2, (rs)3

〉

(b)
〈
r, s | r2, s2, (rs)n

〉
(See Example 7)

(c)
〈
r, s, t | r2, s2, t2, (rs)2, (st)2, (rt)2

〉
(See Example 8)

(e)
〈
r, s, t | r2, s2, t2, (rs)3, (st)3, (rt)2

〉
(Hint: This finite Coxeter group is quite

famous. Make an educated guess at its order and try to think of a group with
the same order.)
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Challenge Problem 3. Given a Coxeter graph Γ = (V,E), show that an automor-
phism of Γ which preserves edge labels (that is, if m is the label on {r, s}, then m is
the label on the edge defined by the images of r and s) induces an automorphism of
the corresponding Coxeter group.

Challenge Problem 4. Consider the formulas for reflections in Euclidean, spheri-
cal, and hyperbolic space given in equations 2, 3, 4, and 5. Let rl generically denote
one of these reflections. Show that

(a) rl is appropriately defined for the non-Euclidean models. (Specifically, show that
it sends points on the sphere to points on the sphere, points on the hyperboloid
to points on the hyperboloid, and points in the interior of the unit disk, to points
in the interior of the unit disk.)

(b) For all the models, verify that rl ◦ rl = the identity map on the space.

Challenge Problem 5. Consider again the 2-dimensional geometric models dis-
cussed above.

(a) Find a presentation for the group generated by a reflection over the x-axis, and
the line y =

√
3x in Euclidean space.

(b) Find a presentation for the group generated by reflections over the lines formed
by the planes z = 0, y = 0 and y = x in S

2.
(c) Find a presentation for the group generated by reflections over the lines formed

by the planes y = 0 and y = x in H
2.

(d) Find a presentation for the group generated by reflections over the x-axis, the
line y = x, and the hyperbolic line connecting the points

(√
cos3 π

4

cos π
8

, 0

)

and

(√
cos5 π

4

cos π
8

,

√
cos5 π

4

cos π
8

)

in H
2
P.

For each of these, besides considering the angle between the given reflections as
a clue to appropriate group element orders, the student is also encouraged to use
a computer algebra system to calculate the order of the composition of reflections
directly.

4 Group Actions on Complexes

In Geometric Group Theory, the idea is to study the interplay between a finitely
presented group G, and a corresponding topological, or geometric, space X. In
particular, we view the elements of a group G as homeomorphisms of the space X.
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That is, each element of the group corresponds to a continuous, bijective function
X → X. For example, if G = D3, the dihedral group of order 6, then each element of
the group can be viewed as a function that maps a regular 3-gon X to itself. Perhaps,
the element reflects the triangle over an altitude, or rotates the triangle by 120◦. In
any case, each element of D3 is viewed as a function of the triangle to itself.

The language we use to encompass this sort of relationship between a group
G and a topological space X is to say that the group G acts on X. Group actions
are one of the richest areas of mathematics, for if the action is appropriate, many
of the properties of the group (orders of elements, subgroups, cosets, etc.) manifest
themselves in the topological space; and properties of the topological space (e.g. any
geometric structure) manifest themselves in the group. In this chapter, the approach
we take is to focus on finitely presented groups, mostly Coxeter groups, acting
on a special type of topological space called a CW-complex. For an overview of
Geometric Group Theory, see [2]. For more references on topological spaces, see
[12], and for references on CW-complexes, see [8] or [7].

4.1 CW-Complexes

CW-complexes are topological spaces whose construction can be done in a step-by-
step manner, using very simple topological spaces as building blocks. The blocks are
referred to as n-balls, and the steps in the process correspond to dimension. The idea
is to build a space out of points, then edges, then disks/squares/triangles/5-gons/etc.,
then tetrahedron/cubes/prisms/etc.,. . . and so on. Let us get a bit more specific.

Let Dn denote a topological n-ball, with boundary ∂Dn = Sn−1. In particular,

• D0 is just a point, S−1 is the empty set.
• D1 is just a line segment, S0 is the two endpoints of the edge.
• D2 is a disk, S1 is the circle bounding the disk.
• D3 is a (filled) ball, S2 is the surface of the ball.

...

In general, Dn can be viewed as the set {(x1, x2, x3, . . . , xn) ∈ R
n | x21 + x22 + x23 +

. . .+x2n ≤ 1}, with boundary Sn−1 viewed as the set of points {(x1, x2, x3, . . . , xn) ∈
R

n | x21+x22+x23+. . .+x2n = 1}. It is important to note, however, that these balls and
their boundaries are thought to be completely independent of any sort of Cartesian
space. They are considered to be their own spaces. This isn’t difficult to picture in
low dimensions, for it is easy to think of collections of points, segments, disks, and
balls as independent of any sort of coordinate axes. Though harder to picture (or
even impossible?), the same applies in higher dimensions. But for the sake of this
chapter, picturing things in dimensions ≤ 3 will suffice.

We should also note that the n-balls used as building blocks do not have to
be round. For example, D2 could be a traditional disk, or it could be a square,
or a pentagon, or a very strange non-convex shape. See Figure 5. These are all
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Fig. 5 Homeomorphic examples of a 2-ball.

topological 2-balls because any one of them can be stretched, bent, squashed,
etc. . . , but not torn; in a such a way as to match any of the others. This is the
idea of a homeomorphism. The study of homeomorphisms in topology is as central
as the study of isomorphisms in group theory, or even as central as the study
of differentiable functions in Calculus I. For a nice introductory reference on the
centrality of homeomorphisms to the study of topology, see [11].

The idea of a CW-complex, then, is to take n-balls of various dimensions, and
use them as the building blocks to construct a topological space. It’s almost as if
we are playing LEGOs R©, and the n-balls are our pieces. Within the context of the
larger space, we refer to the individual n-balls as n-cells. Now, just as a LEGO R©
construction can be given in steps, the construction of a CW-complex X, can be
described in steps, corresponding to dimension:

0. Start with a (discrete) set of 0-cells. Denote this set X0, called the 0-skeleton.
1. To X0, attach a set of 1-cells along their boundaries; forming X1 called the 1-

skeleton. (At this stage, your complex looks like a graph.)
2. To X1, attach a set of 2-cells along their boundaries; forming X2 called the 2-

skeleton.
3. To X2, attach a set of 3-cells along their boundaries; forming X3 called the 3-

skeleton.
...

The “attaching” described above should be described a bit more formally.
Inductively, for n ≥ 1, we form the n-skeleton Xn from the (n − 1)-skeleton Xn−1

by attaching n-balls via functions f : ∂Dn = Sn−1 → Xn−1 (called attaching
maps), one function for each of the attached n-balls mapping its boundary to the
lower dimensional skeleton. If {Dn} is the collection of n-balls attached at step
n, then the n-skeleton Xn is understood as the disjoint union Xn−1 ∪ {Dn} under
some identifications. In particular, for each attached n-ball Dn, each point x in the
boundary is identified with its image under f . In other words, new cells are “glued”
along their boundaries to the existing space. More formally, we have

Xn :=
(
Xn−1 ∪ {Dn}

)
/ ∼,

where x ∼ f (x) for each attached n-ball Dn, each x in ∂Dn, and corresponding
attaching map f . Precisely, Xn is defined as a quotient space. Set X = ∪nXn, the
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union of all n-skeleta. It is a CW-complex. The “CW” stands for “Closure-Weak” in
reference to the topology of such a space. We will not get specific with the topology
of these spaces, only noting that each cell carries its own topology homeomorphic
to the unit ball in R

n.
If the process described above stops at some dimension n (that is, if there are no

m-balls attached for m > n), than we say X is finite dimensional. In particular, if the
process stops after X1, that is X = X1 and there are no m-balls for m > 1, then X is
a graph with vertices the 0-cells, and edges the 1-cells of X. (It may help to think of
CW-complexes as graphs generalized to higher dimensions.)

If X contains finitely many cells, we say X is finite. Note, however, that in any
given step, there may be infinitely many cells, or there could be no cells to attach.
While we will look at some constructions in Examples 10 and 11, we often are given
the total space X, and understand the above process to have taken place, and refer to
the resulting cellulation of X.

Example 10. We can view a 2-sphere S2 as a CW-complex in many ways. One way
is with one 0-cell, no 1-cells, and one 2-cell attached to the 0-cell by identifying
all of its boundary to the 0-cell – like pulling a draw string on a bag to tighten the
opening. The attaching map is indicated with a solid arrow in Figure 6. Here we
see that since there are no 1-cells, X0 = X1. In general, it can be the case in a
CW-complex that the i-skeleton can equal the i + 1-skeleton.

Example 11. Figure 7 depicts a cellulation of a torus by one 0-cell, two 1-cells, and
one 2-cell. The attaching maps are indicated with solid arrows in the figure, resulting
skeleta indicated with dashed arrows. Two 1-cells are attached to the indicated
0-cell. One 2-cell, viewed as a rectangle, is attached to the 1-skeleton where the
corners are all identified with the 0-cell, and the edges are identified to the 1-cells
with orientations as shown. (Though it is not shaded, the rectangle shown represents
a 2-cell.)

Fig. 6 A cellulation of a
2-sphere.

X0

X2
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X0 2-cell

X1 X = X2

Fig. 7 The cellular decomposition of the torus.

The Euler Characteristic To a finite CW-complex X we can attach a number
called the Euler characteristic of X, denoted χ(X), where

χ(X) =
∑

cells σ

(−1)dimσ. (6)

That is, χ(X) is the alternating sum of the number of cells in each dimension. It is
an interesting result of Algebraic Topology that the Euler characteristic of a space
X does not depend on the specific cellulation one uses, rather only on the homotopy
class of the space. In particular, homeomorphic spaces (regardless of cellulation)
will have the same Euler characteristic. See [8] for reference. For example, using
the cellulation of the sphere in Example 10, we get χ(S2) = 2. But it is the case that
no matter the cellulation of S2, we still get χ(S2) = 2. In fact, it is a fundamental
result of algebraic topology that the Euler characteristic classifies surfaces, both
orientable and non-orientable. The interested student should refer to Project Idea 3
that further investigates the Euler characteristic.

4.2 Group Actions on CW-Complexes

As discussed in the introductory comments of Section 4, an important aspect of
group theory (and in fact all of mathematics) is the study of group actions. In
an undergraduate abstract algebra course, you may have studied group actions on
generic sets, or in the context of the Sylow Theorems. The automorphism groups of
graphs are commonly studied in this environment, as group elements can be viewed
as bijections of the vertex set or edge set of an associated graph. Some students may
have even studied how a group can “act” on its own Cayley graph. But as we noted
above, graphs are just 1-dimensional CW-complexes, and hence topological spaces.
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So a group “acting” on a graph is really an example of the more general sort of
group action we study here. That is, a group acting on a topological space.

Definition 3. An action of a group G on a topological space X is a homomorphism
φ : G → Homeo(X). Where Homeo(X) is the set of homeomorphisms X → X,
under composition.

Once again, this is very similar to the definition of group action you may see
in an abstract algebra text like [6], however, instead of each element of the group
corresponding to simply a bijection of a set X, we carry a topological requirement
that each element g ∈ G corresponds to a homeomorphism φg : X → X. For g ∈ G,
we write g · x for φg(x). That is, we think of g itself as sending x ∈ X to some other
point of the space. Similarly, for a subset Y ⊆ X, g ·Y stands for “the points to which
g sends all of the points of the set Y .”

Since the topological spaces we consider in this chapter are CW-complexes, we
require our actions be cellular. That is, we consider the action on the level of cells
and require that, for g ∈ G, and for any n-cell σ in X, g · σ is another n-cell of X. So
a cellular action is one that sends n-cells to n-cells, and all adjacency relationships
are maintained. In other words, if two cells are adjacent before being acted upon,
then they are adjacent after being acted upon. In this context, the familiar definitions
of orbit and stabilizer take on this cellular theme.

Definition 4. For an n-cell σ, the stabilizer of σ is

StabG(σ) = {g ∈ G | g · σ = σ}

and the G-orbit of σ is the set of n-cells γ for which τ = g · σ for some g ∈ G.

In the examples we consider, the actions are also be proper and co-compact.

Definition 5. An action of a group G on a complex X is proper if |StabG(σ)| < ∞
for each cell σ of X.

The next term we would like to define, “co-compact”, requires some set-up. For
a cellular action of a group G on a complex X, we define the quotient space X/G
to be a CW-complex where each cell σ of X is identified with its orbit. There are
some topological issues that we are bypassing, but for reference, the space X/G is
the endowed with the quotient topology. (See [12] or [8].) Put simply, X/G is a
CW-complex comprised of an n-cell representing each G-orbit of n-cells (for each
n), and containment relationships from the parent space X are maintained: If two n-
cells are in the same orbit, then they will identify as a single cell in X/G. If an n-cell
σ contains an m-cell τ in X, then they will have corresponding n- and m-cells in the
same containment relationship in X/G. We are now ready to define a co-compact
action.

Definition 6. An action of a group G on a complex X is co-compact if the quotient
space X/G is a finite complex.
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Fig. 8 Z acts via
translations, R/Z is shown. · · ·· · ·

Z acts ↔

R/Z ∼= S1

Before exploring some examples, we have one last, closely related, term to define
for the action of a group G on a complex X.

Definition 7. Let G act on the CW-complex X. A closed subset C of X is a
fundamental domain for the action if G · C, the union of all orbits of cells in C,
contains X. A fundamental domain C of X is a strict fundamental domain if the
G-orbit of each cell intersects C in exactly one cell.

Example 12. The real line R can be thought of as a CW-complex, where each
integer point on the line corresponds to a 0-cell, and each resulting interval
corresponds to a 1-cell attached at two endpoints. The group (Z,+) acts on R by
translation. For example, if we take 5 ∈ Z, and x ∈ R, 5·x = 5+x. That is, the action
of 5 on R slides every point on the line 5 units right. −3 ∈ Z slides each point 3
units left. This action is cellular, with (non-strict) fundamental domain any interval;
it is proper, the only cell-stabilizer is the identity 0 ∈ Z; and it is co-compact. There
is one orbit of 0-cells and one orbit of 1-cells. Thus, the space R/Z should consist
of exactly two cells: one 0-cell, and one 1-cell. And, since each 1-cell is connected
to 0-cells on both ends, in the quotient space, the one 1-cell must be connected to
the one 0-cell at both ends. Thus, R/Z is a circle as shown in Figure 8.

The idea of a strict fundamental domain of an action is that it is a subset of
the space whose orbit covers the whole space, but does so efficiently. For example,
the interval [0, 1] is a fundamental domain for the action of Z on R described in
example 12, but it is not strict, since the endpoints of the interval are in the same
orbit. A similar situation occurs in the next example.

Example 13. The real plane R × R can be thought of as a CW-complex, where
each integer grid point corresponds to a 0-cell, horizontal and vertical segments
connecting the grid points correspond to 1-cells, and 2-cells correspond to the
resulting squares. Z × Z acts on R × R by horizontal and vertical translation. For
example, for (3,−2) ∈ Z×Z and (x, y) ∈ R×R, (3,−2) · (x, y) = (3+ x,−2+ y).
This action is cellular, proper, and co-compact. To see the quotient space, realize
that the square of the form [0, 1]× [0, 1] can be translated to cover the whole plane.
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Fig. 9 R/(Z× Z) ∼= a torus.

· · ·· · ·
r s

Fig. 10 D∞ acting on R by reflections. R/D∞ is shown.

That is, this square is a fundamental domain of the action, but it is not strict. There is
one orbit of 2-cells, and thus one 2-cell in the quotient space. Within this one square,
the top and bottom edges are identified, as they are within the same orbit, and the
left and right edges are identified, as they are within the same orbit. However, the
horizontal edges are not translated to the vertical edges under this action. So there
are two orbits of 1-cells and thus two 1-cells in the quotient space. Finally, the four
corners are identified as a single point, as there is one orbit of 0-cells, and so the
quotient space has one 0-cell. (R × R)/(Z × Z) is the torus, the identifications
shown in Figure 9. Note that this is a slightly different perspective on the cellulation
of the torus described in Example 11.

Example 14. The infinite dihedral group D∞ =
〈
r, s | r2, s2

〉
acts on R where we

take r to correspond to a reflection about 0 ∈ R, and s to be a reflection about
1 ∈ R. See Figure 10. This action is cellular, proper (the stabilizers of the 0-cells
have order 2), and co-compact. There are two orbits of 0-cells, one orbit of 1-cells.
The quotient space then is a closed interval. Note that it can be identified with a
strict fundamental domain of the action.

Orbihedral Euler Characteristic If a group G acts properly and co-compactly on
a complex X, then the orbihedral Euler characteristic of X/G is the rational number
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χorb(X/G) =
∑

σ

(−1)dimσ

| StabG(σ)|
, (7)

where the sum is over the cells of X/G. (See [4] or [14] for reference on the
orbihedral Euler characteristic.) Note that (1) The orbihedral Euler characteristic
is the usual Euler characteristic in the case all cell stabilizers are trivial and (2) The
orbihedral Euler characteristic is multiplicative. That is, if H ≤ G of index m, then

χorb(X/H) = mχorb(X/G). (8)

(See Exercise 15 below.)
In Example 14 with R/D∞, we have a 1-cell stabilized by the trivial subgroup,

and two 0-cells stabilized by order two subgroups. So

χorb(R/D∞) = 1/2 + 1/2
︸ ︷︷ ︸
0−cells

− 1︸︷︷︸
1−cell

= 0.

Exercise 13. Calculate χ(X) in the case X is

(a) An empty tetrahedron.
(b) An empty octahedron.
(c) An empty cube.
(d) The torus described in Example 11.

The cube, octahedron, and tetrahedron are “regular” cellulations of S
2. Can you

think of any others? Calculate the corresponding Euler characteristic. Sketch an
non-regular cellulation of S2 and calculate χ.

Exercise 14. Calculate χorb(X/G) for each of the quotient spaces in Exam-
ples 12, 13, and 14.

Exercise 15. Prove Equation 8 above: If H ≤ G of index m, then χorb(X/H) =

mχorb(X/G).

Exercise 16. Using the idea of Example 13, describe an action of D∞ × D∞ on
R× R. Sketch the quotient space R× R/(D∞ × D∞) and calculate

χorb ((R× R)/(D∞× D∞)) .

Exercise 17. A group G = 〈A | R〉 acts on its Cayley graph Γ in the following way:
For g ∈ G, v a vertex (which is also an element of the group), we have g · v = gv.
This is a generalization of the (left) action of a group on itself. Verify that this defines
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a cellular action on the Cayley graph. (That is, edges are sent to edges). Consider
the following examples.

(a) Describe the action of Fa,b = 〈a, b | 〉 on its Cayley graph Γ . Sketch Γ/Fa,b.
(b) Describe the action of G =

〈
a, b | aba−1b−1

〉
on its Cayley graph Γ . Sketch

Γ/G. (Compare with Example 13).
(c) Describe the action of W =

〈
r, s | r2, s2, (rs)3

〉
on its Cayley graph Γ . Sketch

Γ/W.
(d) Describe the action of W =

〈
r, s, t | r2, s2, t2, (rs)2, (st)2, (rt)2

〉
on its Cayley

graph Γ . Sketch Γ/W.
(e) Describe the action of

W =
〈
r, s, t, u, v | r2, s2, t2, u2, v2, (rs)2, (st)2, (tu)2, (uv)2, (rv)2

〉

on its Cayley graph Γ . Sketch Γ/W.

Exercise 18. Look up a cellular decomposition of a two-holed torus X (sometimes
called a genus 2 surface). It can be understood as an “identification space” similar to
the torus in Example 13, though beginning with an octagon rather than a rectangle.
Calculate χ(X). Do the same with a “Klein bottle” and any “genus g-surface.”

Challenge Problem 6. Consider the element rs ∈ D∞ and the subgroup generated
by it, 〈rs〉 ≤ D∞.

(a) What is the order of 〈rs〉?
(b) What is the index of 〈rs〉 in D∞.
(c) Under the action of D∞ on R described in example 10, describe the action of

the element rs on R. That is, for x ∈ R, what is (rs) · x? What is (rs)−1 · x?
Deduce the action of (rs)n on R.

(d) Sketch the quotient space R/ 〈rs〉 and verify equation 8.

The group 〈rs〉 is called a finite index torsion free subgroup of D∞. This means that
it contains no elements of finite order, besides the identity. Project idea 3 asks the
student to consider such subgroups and similar questions in the context of different
Coxeter groups.

Challenge Problem 7. Repeat Problem 6 for D∞ × D∞ acting on R× R. That is,
find a finite index subgroup in D∞ ×D∞ acting on R×R, and answer the included
questions.
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5 The Cellular Actions of Coxeter Groups: The Davis Complex

In several papers (e.g., [3], [4], and [5]), M. Davis describes a construction which
associates to any Coxeter system (W, S), a complex Σ(W, S), or simply Σ when
the Coxeter system is clear, on which W acts properly and co-compactly. This is the
Davis complex. We describe the construction here.

5.1 Spherical Subsets and the Strict Fundamental Domain

Let (W, S) be a Coxeter system with defining graph Γ . For a subset of generators
U, denote by WU the subgroup of W generated by the elements of U. Of interest
are subsets of generators (vertices of the graph) that generate finite groups. We call
these spherical subsets. These spherical subsets will be the key to defining an action
of the corresponding Coxeter group on a complex.

5.1.1 Spherical Subsets
Finite Coxeter groups are completely classified, codified by the so-called “Dynkin
diagrams;” and in general, one can detect if a given subset of generators of a Coxeter
group defines a finite subgroup. But for us to work through our low-dimensional
examples (dimension ≤ 3), we need only detect spherical subsets with three or
fewer elements, and we can do that in a way that doesn’t directly rely on knowing
Dynkin diagrams.

Let (W, S) be a Coxeter system with corresponding Coxeter graph Γ . First note
that every vertex of Γ corresponds to an order 2 generator, so every vertex defines a
spherical subset of order 1. Next, recall that any two vertices connected by an edge
generate a finite group, so all edges define a spherical subset of order 2. Furthermore,
these are the only spherical subsets of order 2, since any two vertices not connected
by an edge generate D∞. Also, from this we deduce that the vertices of any
spherical subset must be pairwise connected. Finally, we present the following fact
for spherical subsets of order 3: For pairwise connected vertices r, s, and t of Γ with
edge labels mrs, mst, and mrt, the subgroup {r, s, t} is finite if and only if

1

mrs
+

1

mst
+

1

mrt
> 1.

The reader is invited to check this fact against the Coxeter group examples and
exercises worked at the end of Section 3, and investigate the geometric implications
of such an inequality.

5.1.2 The Strict Fundamental Domain
With (W, S) a Coxeter system with Coxeter graph Γ , we define a finite complex K
that will be the strict fundamental domain of the action of W on the Davis complex.
The perspective we take is in some ways the inverse of the process laid out in
Section 4.2, where given a group acting on a space X, we calculated the quotient
space X/G. Here, we will construct the strict fundamental domain first and use it


