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Preface

The importance of compact heat exchangers (CHEs) has been recognized in aerospace,
automobile, process plants and other industries for 60 years or more. This importance is
further demanded in the aerospace sector, with its requirements such as weight optimi-
zation, high compactness and high performance leading to the demand for cost-effective
design and manufacturing techniques. While several books dealing mainly with heat
exchangers have been published worldwide in English, no complete source of design data
can be found on themany important aspects of CHE design, which an engineer can use as
a comprehensive source of generalized design data for the most widely used fin surfaces.
One of the first comprehensive books on the design of CHEs using primarily air or gases
as working fluid was first published by Kays and London in 1967 with the SI unit edition
appearing in 1984. This book is still widely used worldwide, with most design data refer-
enced from 1967, for fin data experimentally generated. Because manufacturing technol-
ogy has progressed significantly since the beginning of 21st century, many new and
sophisticated forms of heat transfer surfaces have been used in CHEs. The design data
for these surfaces is limited in the open literature and most of the aerospace industry
CHE manufacturers keep their design data proprietary.
This book is an attempt to bring new concepts of design data generation numerically,

which is cost-effective and more generic design data, which can be used more effectively
by design and practising engineers. It is hoped that researchers and designers will find it
of value, as well as academics and graduate students. The specialty of this book is numer-
ical design data based on FEM and CFD. Numerical methods and techniques are intro-
duced for estimation of performance deterioration such as flow non-uniformity,
temperature non-uniformity and longitudinal heat conduction effects using FEM for
CHE unit level and Colburn j factor and Fanning friction f factor data generation meth-
ods for various types of CHE fins using CFD at fin level. In addition, worked examples for
single- and two-phase flow CHEs are provided, and the complete qualification tests are
given for CHEs used in aerospace applications, typically, which are unavailable in open
literature, as these are provided only in some standards. In order to keep the book to a
reasonable size, some topics of relevance to CHE applications, which are available in
other accessible books, such as Compact Heat Exchangers by Kays and London, 3rd edi-
tion, McGraw–Hill Book Company, New York [1984], Compact Heat Exchangers by J.E
Hesselgreaves, Pergamon [2001] and Plate-fin Heat Exchangers Guide to their Specifica-
tion and Use byM.A. Taylor, HTFS, UK, [1987] have been omitted, in particular those of
transients (for regenerators), the effect of temperature dependent fluid properties and
analytical solutions for flow in tubes.

xiii



The first three chapters of the book deal with the fundamentals of heat transfer, heat
exchangers and numerical techniques of FEM and CFD. The application of FEM to
compact heat exchangers is presented in Chapter 4, where heat conduction effects using
FEM on evaporator tubes in pool boiling is also provided. Chapter 5 gives the complete
information about CFD analysis of various fins of CHEs for generation of Colburn j and
Fanning friction f factor correlations. In addition, the endurance life estimation of a
typical CHE is also provided, based on FEM and CFD techniques. The basic concepts
of sizing and design methodologies are provided for CHEs in Chapter 6 along with sev-
eral worked examples for direct transfer type heat exchangers, boiling and condenser
heat exchangers. Finally, in Chapter 7, the construction details and several qualifications
tests are presented for qualification of CHEs especially for aerospace applications.
Many people have helped either directly or indirectly throughout the preparation of

this book. Primarily, the authors are greatly indebted to their family members Lakshmi
and Puji Krimmel (Dr C. Ranganayakulu) and Uma, Anil, Vani and Samartha Shastry
(Prof. K.N. Seetharamu) for their unfailing support and patience during the development
of this book. In particular, the authors wish to thank Aeronautical Development Agency
and PES University, Bangalore for allowing us to work on this book. Dr C Ranganayakulu
acknowledges his colleagues Mr R. Swaminathan, Mr A. Panigrahi and Mr Shahbaz
Ulum for their support; in particular, Prof. Stephan Kabelac, Prof. Dieter Gorenflo,
Prof. P. Nithiarasu and Prof. V. Vasudeva Rao for their guidance and encouragement;
as well as Dr Saik L. Ismail, Dr A.C. Bhaskar, Dr R. Balasundar Rao, Dr M. Amaranatha
Raju and Mr K.V. Ramana Murthy for their PhD works and Mr M.H. Prasad,
Mr B. Mahesh andMr C. Deepak Varma for book documentary works. Prof. Seetharamu
also acknowledges Dr H.W. Lee, Dr Anvar Mydin, Dr G.A. Quadir, Dr Z.A. Zainal and in
particular Dr T.R. Seetharam, Dr V. Krishna and Dr K.N.B. Murthy for their encourage-
ment to write this book. Finally, the authors would like to thank the staff of JohnWiley &
Sons Ltd, UK, in particular Ms Anita Yadav andMr Paul Beverley, for their constant sup-
port and encouragement during the preparation of the book.

C. Ranganayakulu
K.N. Seetharamu
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1

Basic Heat Transfer

1.1 Importance of Heat Transfer

The subject of heat transfer is of fundamental importance inmanybranches of engineering.
A mechanical engineer may be interested in knowing the mechanisms of heat transfer
involved in theoperationofequipment, suchasboilers, condensers, airpreheatersandecon-
omizers, and in thermal power plants, in order to improve performance. Refrigeration and
air-conditioning systems also involve heat-exchanging devices, which need careful design.
Electrical engineers are keen to avoid material damage due to hot spots, developed by
improperheat transfer design inelectricmotors, generators and transformers.An electronic
engineer is interested in knowing the most efficient methods of heat dissipation from chips
and other semiconductor devices so that they can operate within safe operating tempera-
tures. A computer hardware engineer wants to know the cooling requirements of circuit
boards, as the miniaturization of computing devices is advancing rapidly. Chemical
engineers are interested in heat transfer processes in various chemical reactions.
Ametallurgical engineermayneed to know the rate of heat transfer required for a particular
heat treatmentprocess, such as the rate of cooling ina castingprocess, as thishas aprofound
influence on the quality of the final product. Aeronautical engineers are interested in
knowing the heat transfer rate in electronic equipment that uses compact heat exchangers
for minimizing weight, in rocket nozzles and in heat shields used in re-entry vehicles. An
agricultural engineer would be interested in the drying of food grains, food processing
and preservation. Civil engineers need to be aware of the thermal stresses developed in
quick-setting concrete, and the effect of heat and mass transfer on buildings and building
materials. Finally, an environmental engineer is concernedwith the effect of heat on the dis-
persionofpollutants inair, diffusionofpollutants in soils, thermalpollution in lakes andseas
and their impact on life (Incropera et al. [1]).
The study of heat transfer can offer economical and efficient solutions to critical pro-

blems encountered inmany branches of engineering. For example, we could consider the
development of heat pipes that can transport heat at a much greater rate than copper or
even silver rods of the same dimensions, even at almost isothermal conditions. The
development of modern gas turbine blades, in which the gas temperature exceeds the
melting point of the material of the blade, is possible by providing efficient cooling sys-
tems, and this is another example of the success of heat transfer design methods. The
design of computer chips, which encounter heat fluxes of the same order those occurring
in re-entry vehicles, especially when the surface temperature of the chips is limited to less
than 100 C, is another success story for heat transfer analysis.

1
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Although there are many successful heat transfer designs, further developments are
still necessary in order to increase the lifespan and efficiency of the many devices dis-
cussed above, which can lead to many more inventions. Also, if we are to protect our
environment, it is essential to understand the many heat transfer processes involved
and to take appropriate action, where necessary.

1.2 Heat Transfer Modes

Heat transfer is the exchange of thermal energy between physical systems. The rate of
heat transfer is dependent on the temperatures of the systems and the properties of
the intervening medium through which the heat is transferred. The three fundamental
modes of heat transfer are conduction, convection and radiation. Heat transfer, the flow
of energy in the form of heat, is a process by which a system changes its internal energy,
hence it is of vital use in applications of the first law of thermodynamics. Conduction is
also known as diffusion, not to be confused with diffusion related to the mixing of con-
stituents of a fluid.
The direction of heat transfer is from a region of high temperature to another region of

lower temperature, and is governed by the second law of thermodynamics. Heat transfer
changes the internal energy of the systems from which and to which the energy is trans-
ferred. Heat transfer will occur in a direction that increases the entropy of the collection
of systems. Heat transfer is that section of engineering science that studies the energy
transport between material bodies due to a temperature difference (Bejan [2], Holman
[3], Incropera and Dewitt [4], Sukhatme [5]). The three modes of heat transfer are

• Conduction

• Convection

• Radiation.

The conductionmode of heat transport occurs either because of an exchange of energy
from one molecule to another, without the actual motion of the molecules, or because of
the motion of any free electrons that are present. Therefore, this form of heat transport
depends heavily on the properties of the medium and takes place in solids, liquids and
gases if a difference in temperature exists.
Molecules present in liquids and gases have freedom of motion, and by moving from a

hot to a cold region, they carry energy with them. The transfer of heat from one region to
another, due to such macroscopic motion in a liquid or gas, added to the energy transfer
by conduction within the fluid, is called heat transfer by convection. Convection may be
free, forced or mixed.When fluid motion occurs because of a density variation caused by
temperature differences, the situation is said to be a free or natural convection.When the
fluid motion is caused by an external force, such as pumping or blowing, the state is
defined as being one of forced convection. Amixed convection state is one in which both
natural and forced convections are present. Convection heat transfer also occurs in boil-
ing and condensation processes.
All bodies emit thermal radiation at all temperatures. This is the only mode that does

not require a material medium for heat transfer to occur. The nature of thermal radiation
is such that a propagation of energy, carried by electromagnetic waves, is emitted from
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the surface of the body. When these electromagnetic waves strike other body surfaces, a
part is reflected, a part is transmitted and the remaining part is absorbed. All modes of
heat transfer are generally present in varying degrees in a real physical problem. The
important aspects in solving heat transfer problems are identifying the significant modes
and deciding whether the heat transferred by other modes can be neglected.

1.3 Laws of Heat Transfer

It is important to quantify the amount of energy being transferred per unit time, and this
requires the use of rate equations. For heat conduction, the rate equation is known as
Fourier’s law, which is expressed for one dimension as

qx = −k
dT
dx

1 1

where qx is the heat flux in the x direction (W/m2); k is the thermal conductivity
(W/m K), a property of material, and dT/dx is the temperature gradient (K/m).
For convective heat transfer, the rate equation is given by Newton’s law of cooling as

q = h Tw−Ta 1 2

where q is the convective heat flux; (W/m2); (Tw − Ta) is the temperature difference
between the wall and the fluid and h is the convection heat transfer coefficient,
(W/m2K).
The convection heat transfer coefficient frequently appears as a boundary condition in

the solution of heat conduction through solids. We assume h to be known in many such
problems. In the analysis of thermal systems, we can again assume an appropriate h if not
available (e.g. heat exchangers, combustion chambers). However, if required, h can be
determined via suitable experiments, although this is a difficult option.
Themaximum flux that can be emitted by radiation from a black surface is given by the

Stefan–Boltzmann law:

q = σ T 4
w 1 3

where q is the radiative heat flux, (W/m2); σ is the Stefan–Boltzmann constant
(5.669 × 10−8) in W/m2K4; and Tw is the surface temperature (K).
The heat flux emitted by a real surface is less than that of a black surface and is given by

q = ε σ T 4
w 1 4

where ε is the radiative property of the surface and is referred to as the emissivity. The net
radiant energy exchange between any two surfaces, 1 and 2, is given by

Q= F FG σA1 T 4
1 −T

4
2 1 5

where Fє is a factor that takes into account the nature of the two radiating surfaces; FG is a
factor that takes into account the geometric orientation of the two radiating surfaces and
A1 is the area of surface 1. When a heat transfer surface, at temperature T1, is completely
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enclosed by a much larger surface at temperature T2, the net radiant exchange can be
calculated by

Q= qA1 = 1 σA1 T 4
1 −T

4
2 1 6

With respect to the laws of thermodynamics, only the first law is of interest in heat
transfer problems. The increase of energy in a system is equal to the difference between
the energy transfer by heat to the system and the energy transfer by work done on the
surroundings by the system, that is,

dE = dQ−dW 1 7

where Q is the total heat entering the system and W is the work done on the surround-
ings. Since we are interested in the rate of energy transfer in heat transfer processes, we
can restate the first law of thermodynamics as follows:
The rate of increase of the energy of the system is equal to the difference between the

rate at which energy enters the system and the rate at which the system does work on the
surroundings, that is,

dE
dt

=
dQ
dt

−
dW
dt

1 8

where t is the time.
The important fluid properties associated with conduction phenomena are presented

in Appendixes A2–A8.

1.4 Steady-State Heat Conduction

Heat conduction is the transfer of heat (internal energy) by microscopic collisions of
particles and movement of electrons within a body. The microscopically colliding
objects, which include molecules, atoms and electrons, transfer disorganized micro-
scopic kinetic and potential energy, jointly known as internal energy. Conduction takes
place in all phases of matter: solids, liquids, gases and plasmas. The rate at which energy
is conducted as heat between two bodies is a function of the temperature difference
(temperature gradient) between the two bodies and the properties of the conductive
medium through which the heat is transferred. Thermal conduction is originally called
diffusion.
Steady-state conduction is the form of conduction that happens when the temperature

difference(s) driving the conduction are constant, so that (after an equilibration time),
the spatial distribution of temperatures (temperature field) in the conducting object does
not change any further. In steady-state conduction, the amount of heat entering any
region of an object is equal to the amount of heat coming out (if this are not so, the
temperature would be rising or falling, as thermal energy is tapped from or trapped
in a region).
For example, a bar may be cold at one end and hot at the other, but after a state of

steady-state conduction is reached, the spatial gradient of temperatures along the bar
does not change any further, as time proceeds. Instead, the temperature at any given
section of the rod remains constant, and this temperature varies linearly in space, along
the direction of heat transfer.
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1.4.1 One-Dimensional Heat Conduction

A one-dimensional approximation of the heat conduction equation is feasible for many
physical problems, such as plane walls and fins (Bejan [2], Holman [3], Incropera and
Dewitt [4], Ozisik [6]). In these problems, any major temperature variation is in one
direction only and the variation in all other directions can be ignored. Other examples
of one-dimensional heat transfer occur in cylindrical and spherical solids in which the
temperature variation occurs only in the radial direction. In this section, such one-
dimensional problems are considered for steady-state conditions, in which the temper-
ature does not depend on time. Time-dependent and multidimensional problems will be
discussed in later sections.
The steady-state heat conduction equation for a plane wall, shown in Figure 1.1, is

kA
d2T
dx2

= 0 1 9

where k is the thermal conductivity andA is the cross-sectional area perpendicular to the
direction of heat flow. The problem is complete with the following description of the
boundary conditions.

At x = 0, T = T1; and at x = L, T = T2

The exact solution to Equation 1.9 is

kAT =C1x+C2 1 10

On applying the appropriate boundary conditions to Equation 1.10, we obtain

C2 = kAT1 1 11

And

C1 = −
kA T1−T2

L
1 12

Therefore, substituting constants C1 and C2 into Equation 1.10 results in

T = −
T1−T2 x

L
+T1 1 13

T1   T2

x = L x = 0

k

L

Figure 1.1 Heat conduction through a homogeneous wall.
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The above equation indicates that the temperature distribution within the wall is
linear. The heat flow, Q, can be written as

Q= −kA
dT
dx

=
kA T1−T2

L
1 14

Example 1.1 The wall of an industrial furnace is constructed from 0.3 m thick fireclay
brick having a thermal conductivity 1.7W/m K. Measurements made during steady-
state operation reveal temperatures of 1400 and 1150 K at the inner and outer surfaces,
respectively, as shown in Figure 1.2. What is the rate of heat loss through a wall that is
0.5 m by 1.2 m on a side?

Solution

Known: Steady-state conditions with prescribed wall thickness, area, thermal conductiv-
ity and surface temperatures.
Find: Wall heat loss.
Schematic: Figure 1.2
Assumptions:

Steady-state conditions
One-dimensional conduction through the wall
Constant thermal conductivity

Analysis: Since heat transfer through the wall is by conduction, the heat flux be deter-
mined from Fourier’s law. Using Equation 1.1 gives

qx = k
ΔT
L

= 1 7
W
m

K ×
250K
0 15m

=2833W m2

T1 = 1400 k

L = 0.15 m

k = 1.7 W/m•K

T2 = 1150 K

x
x

qx̋

qx

L

|

W = 1.2 m

H = 0.5 m

Wall area, A 

Figure 1.2 One-dimensional heat conduction slab.
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The heat flux represents the rate of heat transfer through a section of unit area, and it is
uniform (invariant) across the surface of the wall. The heat loss through the wall of area,
A =H ×W is then

HW qx = 0 5m× 1 2m 2833W m2 = 1700W

Comments: Note the direction of heat flow and the distinction between heat flux and
heat rate.

1.4.2 Three-Dimensional Heat Conduction Equation

The determination of temperature distribution in a medium (solid, liquid, gas or a
combination of phases) is the main objective of a conduction analysis, that is, to know
the temperature in the medium as a function of space at steady state and as a function
of time during the transient state. Once this temperature distribution is known, the
heat flux at any point within the medium, or on its surface, may be computed from
Fourier’s law, Equation 1.1. The knowledge of the temperature distribution within a
solid can be used to determine the structural integrity via a determination of the ther-
mal stresses and distortion. The optimization of the thickness of an insulating material
and the compatibility of any special coatings or adhesives used on the material can be
studied by knowing the temperature distribution and the appropriate heat transfer
characteristics.
We shall now derive the conduction equation in Cartesian coordinates, as per Cars-

law and Jaeger [7], by applying the energy conservation law to a differential control
volume, as shown in Figure 1.3. The solution of the resulting differential equation,
with prescribed boundary conditions, gives the temperature distribution in the
medium.

Δy

Qx

Δz

Δx y z

x

Qz
Qy

Qy+Δy
Qz+Δz

Qx+Δx

Figure 1.3 A differential control volume for
heat conduction analysis.
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A Taylor series expansion results in

Qx+dx =Qx +
∂Qx

∂x
Δx

Qy+ dy =Qy +
∂Qy

∂y
Δy

Qz +dz =Qz +
∂Qz

∂z
Δz

1 15

Note that the second- and higher-order terms are neglected in the above equation. The
heat generated in the control volume is G Δx Δy Δz and the rate of change in energy
storage is given as

ρΔxΔyΔz cp
∂T
∂t

1 16

Now, with reference to Figure 1.3, we can write the energy balance as inlet energy +
energy generated = energy stored + exit energy that is,

GΔxΔyΔz + Qx +Qy +Qz = ρΔxΔyΔz
∂T
∂x

+Qx+dx +Qy+ dy +Qz +dz 1 17

Substituting Equation 1.15 into the above equation, and rearranging, results in

−
∂Qx

∂x
Δx−

∂Qy

∂y
Δy −

∂Qz

∂z
Δz + GΔxΔyΔz = ρΔxΔyΔz cp

∂T
∂t

1 18

The total heat transfer Q in each direction can be expressed as

Qx = ΔyΔz qx = −kxΔyΔz
∂T
∂x

Qy = ΔxΔz qy = −kyΔxΔz
∂T
∂x

Qz = ΔxΔy qz = −kzΔxΔy
∂T
∂z

1 19

Substituting Equation 1.19 into Equation 1.18 and dividing by the volume, Δx Δy Δz,
we get

∂

∂x
kx
∂T
∂x

+
∂

∂y
ky
∂T
∂y

+
∂

∂z
kz
∂T
∂z

+ G = ρcp
∂T
∂t

1 20

Equation 1.20 is the transient heat conduction equation for a stationary system
expressed in Cartesian coordinates. The thermal conductivity, k, in the above equation
is a vector. In its most general form, the thermal conductivity can be expressed as a
tensor, that is,

k =

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

1 21
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Equations 1.20 and 1.21 are valid for solving heat conduction problems in anisotropic
materials with a directional variation in the thermal conductivities. In many situations,
however, the thermal conductivity can be taken as a non-directional property, that is, it is
isotropic. In such materials, the heat conduction equation is written as (constant thermal
conductivity)

∂2T
∂x2

+
∂2T
∂y2

+
∂2T
∂z2

+
G
k
=
1
α

∂T
∂t

1 22

where α = k/ρcp is the thermal diffusivity, which is an important parameter in transient
heat conduction analysis.
If the analysis is restricted only to steady-state heat conduction with no heat genera-

tion, the equation is reduced to

∂2T
∂x2

+
∂2T
∂y2

+
∂2T
∂z2

= 0 1 23

For a one-dimensional case, the steady-state heat conduction equation is further
reduced to

d
dx

k
dT
dx

= 0 1 24

The heat conduction equation for a cylindrical coordinate system is given by

1
r

∂

∂r
krr

∂T
∂r

+
1
r2

∂

∂
k
∂T
∂

+
∂

∂z
kz
∂T
∂z

+ G = ρcp
∂T
∂t

1 25

where the heat fluxes can be expressed as

qr = −kr
∂T
∂r

q = −
k
r
∂T
∂

qz = −kz
∂T
∂z

1 26

The heat conduction equation for a spherical coordinate system is given by

1
r2

∂

∂r
krr

2 ∂T
∂r

+
1

r2sin2θ
∂

∂
k
∂T
∂

+
1

r2 sinθ
∂

∂θ
kθ sinθ

∂T
∂θ

+ G = ρcp
∂T
∂t

1 27

where the heat fluxes can be expressed as

qr = −kr
∂T
∂r

q = −
k

r sinθ
∂T
∂

qθ = −
kθ
r
∂T
∂θ

1 28
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It should be noted that for both cylindrical and spherical coordinate systems,
Equations 1.25 and 1.27 can be derived in a similar fashion as for Cartesian coordinates
by considering the appropriate differential control volumes.

1.4.3 Boundary and Initial Conditions

The heat conduction equations discussed above will be complete for any problem only if
the appropriate boundary and initial conditions are stated. With the necessary boundary
and initial conditions, a solution to the heat conduction equations is possible. The
boundary conditions for the conduction equation can be of two types or a combination
of these two – the Dirichlet condition, in which the temperature on the boundaries is
known and/or the Neumann condition, in which the heat flux is imposed (see
Figure 1.4) as per Lewis et al. [8]:
Dirichlet condition

T = T0 on ΓT 1 29

Neumann condition

q = −k
∂T
∂n

=C on Γqf 1 30

In Equations 1.29 and 1.30,T0 is the prescribed temperature; Γ is the boundary surface;
n is the outward direction normal to the surface; and C is the constant flux given. The
insulated, or adiabatic, condition can be obtained by substituting C = 0. The convective
heat transfer boundary condition also falls into the Neumann category, and can be
expressed as

−k
∂T
∂n

= h Tw−Ta on Γqc 1 31

It should be observed that the heat conduction equation has second-order terms and
hence requires two boundary conditions. Since time appears as a first-order term, only
one initial value (i.e. at some instant of time all temperatures must be known) needs to be
specified for the entire body, that is,

T = T0 all over the domainΩ at t = t0 1 32

where t0 is a reference time.
The constant or variable temperature, conditions are generally easy to implement as

temperature is a scalar. However, the implementation of surface fluxes is not as
straightforward.

𝛤qf

ΓT

Ω

Γqc

Figure 1.4 Boundary condition.
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Equation 1.30 can be rewritten with the direction cosines of the outward normal as

kx
∂T
∂x

ι+ ky
∂T
∂y

m+ kz
∂T
∂z

n=C onΓqf 1 33

Similarly, Equation 1.31 can be rewritten as

kx
∂T
∂x

ι+ ky
∂T
∂y

m+ kz
∂T
∂z

n= h T − Ta onΓqc 1 34

where, ι, m and ñ are the direction cosines of the appropriate outward surface normals.
The general energy equation for heat conduction, taking into account the spatial

motion of the body is given by

∂

∂x
kx
∂T
∂x

+
∂

∂y
ky
∂T
∂y

+
∂

∂z
kz
∂T
∂z

+ G = ρcp
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+w
∂T
∂z

1 35

where u, v and w are the components of the velocity in the three directions, x, y and z
respectively.

1.5 Transient Heat Conduction Analysis

In the above, we have discussed steady-state heat conduction, in which the temperature
in a solid body is assumed to be invariant with respect to time. However, many practical
heat transfer applications are unsteady (transient) in nature and in such problems the
temperature varies with respect to time. For instance, in many industrial plant compo-
nents, such as boilers or refrigeration and air-conditioning equipment, the heat transfer
process is transient during the initial stages of operation, so the analysis of transient heat
conduction is very important.

1.5.1 Lumped Heat Capacity System

In this section, we consider the transient analysis of a body in which the temperature is
assumed to be constant at any point within and on the surface of the body at any given
instant of time. It is also assumed that the temperature of the whole body changes uni-
formly with time. Such an analysis is called a lumped heat capacitymethod and is a sim-
ple and approximate procedure in which no spatial variation in temperature is allowed.
The change in temperature in such systems varies only with respect to time. It is there-
fore obvious that the lumped heat capacity analysis is limited to small-sized bodies and/
or high thermal conductivity materials. Consider a body at an initial temperature
T0, immersed in a liquid maintained at a constant temperature Ta, as shown in
Figure 1.5. At any instant in time, the convection heat loss from the surface of the body
is at the expense of the internal energy of the body. Therefore, the internal energy of the
body at any time will be equal to the heat convected to the surrounding medium, that is,

−ρcpV
dT
dt

= hA T t −Ta 1 36
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where ρ is the density, cp is the specific heat and V is the volume of the hot metal body;
A is the surface area of the body; h is the heat transfer coefficient between the body
surface and the surrounding medium; t is the time; and T(t) is the instantaneous
temperature of the body.
Equation 1.36 is a first-order differential equation in time, which requires an initial

condition to obtain a solution. As mentioned previously, the initial temperature
of the body at time t = 0, is T0. Applying the variable separation concept to
Equation 1.36, we get

dT
T t −Ta

= −
hA
ρcpV

dt 1 37

Integrating between temperatures T0 and T(t), we obtain

T t

T0

dT
T t −Ta

= −
t

0

hA
ρcpV

dt 1 38

Note that the temperature changes from T0 to T(t) as the time changes from 0 to t.
Integration of the above equation results in a transient temperature distribution as

follows:

ln
T −Ta

T0−Ta
=
−hAt
ρcpV

1 39

or

T −Ta

T0−Ta
= e

− hA
ρcpV

t
1 40

The quantity ρcpV/hA is referred to as the time constant of the system because it has
the dimensions of time. When t = ρcpV/hA, it can be observed that the temperature dif-
ference (T(t) − Ta) has a value of 36.78% of the initial temperature difference (T0 − Ta).

Tt  > T0

Hot metal body    

T (t) 
Liquid,

Ta < T0

Figure 1.5 Lumped heat capacity system: A hot metal
body is immersed in a liquid maintained at a constant
temperature.
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