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Preface

Shell theory is one of the most important fields of modern mechanics. It develops
methods for calculating thin-walled structures which are widely used in modern
plants and machinery. Requirements of strength, lightness and efficiency of a
modern design make thin shells indispensable constructional elements. However,
calculation of shells (calculation of stress-strained state of shells) on the basis of
three-dimensional equations of elasticity theory involves considerable mathematical
difficulties. That is why we have to resort to various approximate methods sim-
plifying the calculation of shells. Here, a fundamental geometrical assumption, i.e.
the smallness of the thickness of the shell to its remaining two dimensions, is taken
into account. Namely, the problem of reduction of a three-dimensional problem of
elasticity theory to a two-dimensional problem is the main content of shell theory.
Obviously, there are many possible ways of transforming the problems of elasticity
theory to the problems of shell theory for thin-walled structures such as shells. The
main relevant results concerning mostly static problems of shell theory are con-
secrated in Vorovich’s (1966, 1975), Goldenveyzer’s (1969, 1975), Koiter and
Simmonds (1973), Sayir and Mitropoulos (1980), Petraszkievicz (1992) reviews.
The problem of reduction of a three-dimensional dynamic problem of elasticity
theory to a two-dimensional problem of shell theory is described in particular in the
works of Aynola and Nigul (1965) and Grigolyuk and Selezov (1973), Achenbach
(1969), Berdichevskii and Khan’Chau (1980), Goldenveizer et al. (1993). Here, we
also note the monographs by Kilchevsky’s (1963), Berdichevskii (1983), Kaplunov
et al. (1998), Le (2012), Aghalovyan (2015) where these issues are rather thor-
oughly discussed and where a bibliography on the discussed topics can also be
found. As it is hardly possible to find a detailed literature survey on the topics
mentioned above, it is both practically impossible and there is no need to give an
overview of the results on shell theory carried out at different times by means of
different methods.

Many of the major achievements in the field of plates and shells are obtained by
scientists from the CIS (the Commonwealth of Independent States, or former USSR).
The most significant contributions to the development of the foundations of the
classical shell theory were made by S. A. Ambartsumyan, V. V. Bolotin, I. N. Vekua,
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V. Z. Vlasov, I. I. Vorovich, B. G. Galerkin, K. Z. Galimov, A. L. Goldenveyzer,
E. I. Grigolyuk, N. A. Kilchevsky, A. I. Lure, H. M. Mushtari, V. V. Novozhilov,
P. M. Ogibalov, Yu. N. Rabotnov, V. V. Sokolovsky, S. P. Timoshenko,
K. F. Chernyh, P. M. Nahdi, E. Reissner and others.

It is clear from the ongoing discussion that the modern theory is a
well-developed branch of solid mechanics. However, the process of the develop-
ment of the theory of shells cannot be regarded as a complete one. First of all, there
constantly appear new technology designs the calculation of which is impossible in
the framework of the existing versions of the theory of shells.

Therefore, the emergence of new variants of the theory of shells is inevitable.
One can surmise that the number of such nontraditional structures will increase. It is
connected with the modern technology achievement of an extremely high level of
exploitational parameters.

On the other hand, the theory of shells as a theory must be internally consistent.
As is known, the classical theory of shells is not deprived of contradictions.

Therefore, the major problem of the theory of shells is the formulation of dif-
ferent variants of boundary value problems and evaluation of their applicability
scale. The problem, of course, is not only of theoretical interest but of great
practical importance. Over many years of development in this particular field of
elasticity theory, a considerable amount of material accumulated both on formu-
lation of different variants of applied theories together with the development of
solution (calculation) methods. At various stages of its development, the state of the
theory of shells was subjected to some critical analysis. A closer look at the current
state of the theory reveals a need for additional research on the comparative analysis
of various applied theories established in the domain of their applicability.

Below we will consider the ways of bringing the two-dimensional problems to the
three-dimensional ones using the smallness of shell thickness in their constructions
compared to its other dimensions. Among these methods, the asymptotic method
takes a special place. Asymptotic approach, probably for the first time, was applied to
the problems of shell theory by Shterman (1924) and later—by Krauss (1929).
Asymptotic integration of the equations of two-dimensional theory of shells under-
gone a great development in the works of A. L. Goldenveyzer (since 1939). The
combination of complex transformation of equations of V. V. Novozhilov’s shell
theorywith the asymptoticmethods is represented in Chernykh’s works (1962, 1964).

Thus, the asymptotic method developed by A. L. Goldenveyzer, I. I. Vorovich
and their students made a significant contribution to the development of the theory
of plates and shells. This method proved to be very effective in the study of problem
of the limiting transition from three-dimensional elasticity problems into
two-dimensional ones. Due to works of authors mentioned above, it became pos-
sible to solve such important issues as the establishment of the range of applica-
bility of the applied theories of plates and shells, in particular the classical
Kirchhoff–Love’s theory. Further development of this method allowed to create
effective methods for calculating the three-dimensional stress state and to solve
practically important problems of stress concentration at the holes in plates and
shells of constant thickness in the static case.
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However, the question of the relationship between two-dimensional theories and
the corresponding three-dimensional problems of elasticity theory for plates and
shells of variable thickness has not practically been studied.

The problem of passage to the limit in dynamic problems of elasticity theory is
particularly critical. Since there are now a number of dynamic applied theories of
shells based on various hypotheses, lack of data on the comparative analysis raises
the question of establishing the range of applicability of each of them on the basis
of three-dimensional dynamic theory of elasticity. Here, the most important point is
the question of determining the natural frequencies and the forms of vibrations of
shells from the position of three-dimensional theory of elasticity.

Many of the difficulties associated with the study of these problems are caused
by the presence of several parameters in the original problems. For example, the
interplay of such parameters as relative thickness, curvature, oscillation frequency,
curvature of the holes even for sufficiently smooth external loads can generate a
fairly complex stress–strain state which is impossible to calculate correctly not only
within the classical theory but also in such approved revised theories as the theory
of S. P. Timoshenko, V. Z. Vlasov and others.

In addition, the asymptotic method enables to effectively solve boundary value
problems for such elastic bodies that cannot be attributed to shells (e.g. thick
cylindrical or conical rings) and for which at the same time the spatial theory is
powerless because of the proximity of the parameters describing the boundary
surfaces.

This monograph is devoted to these range of questions.
The book consists of four chapters. In the first chapter, an axisymmetric dynamic

problem of elasticity theory for a hollow cylinder is investigated by the method of
homogeneous solutions. Homogeneous solutions depending on the roots of the
dispersion equation are constructed. The classification of the roots of the dispersion
equation is presented.

The basis of the classification procedure is at the order of a root with respect to a
small parameter e characterizing the thinness of the shell depending on the fre-
quency of the driving forces. It is shown that in the high-frequency domain (in
terms of spatial problems) in the first term of the asymptotic behaviour, the dis-
persion equation coincides with the well-known Rayleigh–Lamb equation for an
elastic strip.

The classification of homogeneous solutions has been conducted and it is shown
that each group of roots of the dispersion equation corresponds to its type of
homogeneous solutions. Asymptotic expansions of the homogeneous solutions,
allowing the calculation of the stress–strain state at different values of the frequency
of the driving forces, are obtained.

A generalized condition of orthogonality of homogeneous solutions for a hollow
cylinder which allows the accurate solution of the problem of forced vibrations of a
hollow cylinder for certain end boundary conditions is proved. In the general case
of the end loading, the original boundary value problem is reduced to the solution
of infinite system of linear algebraic equations by means of the Lagrange variational
principle.
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Also presented is a method for constructing applied theories intended to relieve
stresses from cylindrical boundaries of a shell. Together with homogeneous solu-
tions, they permit the solution of the inhomogeneous problem.

The importance of the evaluation of boundary conditions in the formation of the
spectrum and vibration shapes of a shell is of great interest in dynamic problems of
elasticity theory. Therefore, practically all boundary conditions which can be stated
in three-dimensional theory of elasticity are studied. In particular, some solutions
of the problem of forced vibrations of a hollow cylinder with a clamped side surface
are presented. It is shown that the solution of this problem in the first term of its
asymptotic expansion coincides with the known solution for the elasticity theory for
an elastic strip. We also discuss the problem of torsional vibrations and the
vibrations under mixed boundary conditions on the side surface of a cylinder. These
problems appeared to be very simple both from a physical and a mathematical point
of view. In fact, these problems, in mathematical terms, are reduced to solving
boundary value problems for Helmholtz equation.

The second chapter deals with a three-dimensional dynamic problem of elasticity
theory for a spherical layer. Homogeneous solutions are derived for the case of
axisymmetric vibrations. In the case of axisymmetric vibrations, homogeneous
solutions are constructed. One way of constructing of the heterogeneous solutions is
pointed out. An asymptotic analysis of homogeneous solutions for a spherical shell
corresponding to different groups of roots of the dispersion equation is performed.

It is shown that in contrast to a cylindrical shell, ultra-low frequency vibrations
for a spherical shell are not available. A generalized condition of orthogonality of
systems of homogeneous solutions is proved. One class of boundary conditions on
the side surface, admitting an exact solution of the problem of forced vibrations of a
spherical shell is identified. In the case of a general loading by Hamilton’s varia-
tional principle, the boundary value problem is reduced to solving an infinite system
of linear algebraic equations. Matrices of such systems are known for a spherical
shell in the static case, and for an elastic strip in the dynamic elasticity problems.
The problem of torsional vibrations of a spherical shell is solved analytically. The
need for a detailed discussion of this problem is revealed when considering
non-axisymmetric elasticity problems.

Non-axisymmetric dynamic problem of elasticity theory for a spherical layer is
considered. Due to spherical symmetry, the general boundary value problem is
divided into two problems one of which coincides with the boundary value problem
for axisymmetric vibrations of a hollow sphere, and the second one describes the
vortex motion of a hollow sphere and coincides with the boundary value problem
for purely torsional vibrations of a hollow sphere.

The third chapter provides an asymptotic process for finding the frequencies of
free axisymmetric vibrations of an isotropic hollow cylinder and a closed hollow
sphere based on the dynamic equations of elasticity theory. An asymptotic process
is thoroughly built for a cylinder with free side surfaces and with simply supported
at the ends and for a closed hollow sphere with free facial surfaces. These problems
are considered to be a model, since the study of the asymptotic processes for other
boundary conditions has no fundamental difficulties.
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A comparison of the results obtained in Kirchhoff–Love theory with the results
obtained by the three-dimensional elasticity theory is given. For a cylinder and a
sphere, there are obtained two frequencies in the first term of the asymptotic
expansions, coinciding with the frequencies determined by the application of shell
theory, and a countable set of frequencies which are not available in the applied
theory of shells. The frequencies of the thickness vibrations of cylindrical and
spherical shells are determined.

The fourth chapter is dedicated to the development of the asymptotic method of
integrating three-dimensional equations of elasticity theory for a conical shell and a
plate of variable thickness and the analysis of three-dimensional stress–strain state
on the basis of this method.

In the first part of the fourth chapter, the solution of the problem of elasticity
theory for a truncated hollow cone of variable thickness is obtained by the method
of homogeneous solutions.

An asymptotic analysis of the characteristic equation establishes the existence
of three groups of zeros with the following asymptotic properties: k ¼ O 1ð Þ,
k ¼ O e�1=2

� �
k ¼ O e�1ð Þ (e is a parameter of thin-walledness) each of which

corresponds to its type of stress–strain state.
The first group of zeros corresponds to a penetrating solution coinciding with the

known Mitchell-Neuber’s solution. The stress state, defined by this solution, is
equivalent to the resultant vector of forces applied to one end of the shell.

The second group of zeros corresponds to the solution of end-effect type similar
to the end effect of the applied theory of shells. The first terms of the asymptotic
expansions of the stress state obtained through this solution are equivalent to the
bending moment and shearing forces.

The third group of zeros corresponds to the solution of boundary layer type
which in the first term of the asymptotic expansion coincides with Saint-Venant’s
end effect in the theory of thick plates. Using the principle of Lagrange virtual
displacements, the boundary value problem is reduced to solving an infinite system
of linear algebraic equations. Matrices of these systems are known in the theory of
thick plates of constant thickness. Their inversion can be achieved by using the
reduction method. A method for constructing applied theories intended to relieve
stresses from conical shell boundaries is shown.

The second part of the fourth chapter investigates the asymptotic behaviour
of the axisymmetric stress–strain state of the plate, the thickness of which is h ¼ e r,
where r is the distance from the centre of the plate, and e is still a small parameter.
Here, we are not talking about an arbitrary plate but the particular form of the
conical shell discussed in the first part of the fourth chapter which it takes during the
degeneration of its midsurface into a flat one. Since this is a special case of
degeneration, all the arguments of the previous chapters have to be repeated.

When constructing refined applied theories for the plates of variable thickness,
instead of the traditional linear-independent solutions Pm cos hð Þ, Qm cos hð Þ of
Legendre’s equation, we introduce, for convenience, another set of linearly inde-
pendent solutions of Legendre equation Tm hð Þ ¼ Pm cos hð ÞþPm � cos hð Þ and
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Fm hð Þ ¼ Pm cos hð Þ � Pm � cos hð Þ which are respectively odd and even functions
with respect to the midplane of the plate. The chosen form of solutions makes it
possible to divide the general problem into two independent ones: the problem
of the tension–compression of a plate and the plate bending problem. Such a
division greatly simplifies the process of building refined applied theories for plates
of variable thickness.

Also considered are the problems of equilibrium of an elastic hollow cone with a
fixed side surface and with mixed boundary conditions on the side surface.

It is shown that in the case of fixed side surface, the solution of this problem in
the first term of the asymptotic expansion coincides with the known solution for the
elasticity theory for an elastic strip. A generalized orthogonality condition for a
hollow cone is proved.

Proceeding from Papkovich–Neuber’s general solution, a stress–strain state of a
plate with variable thickness subject to the action of non-axisymmetric loads is studied.

The behaviour of the solution as the parameter of thin-walledness tends to zero is
investigated. It is shown that the stress–strain state of a plate consists of the stress–
strain state penetrating deep into the plate and the end effect similar to Saint-Venant’s
end effect. Kirsch’s problem for plates of variable thickness is solved.

In the last section of the fourth chapter, torsional vibrations of a conical shell and
a plate of variable thickness are discussed. At first, the problem is solved exactly.
Then an asymptotic analysis of the problem of harmonic torsional waves spreading
in a conical shell and plate of variable thickness is given. Depending on the fre-
quency of the driving forces, a form of wave formation is studied. Asymptotic
formulas determining the frequency of torsional vibrations of a conical shell and a
plate of variable thickness are obtained.

The derived homogeneous and inhomogeneous solutions not only reveal the qual-
itative features of three-dimensional solutions in shell theory but they can serve as an
effective device of solving specific boundary value problems, as well as a basis for the
assessment of simplified theories. As in the general case of loading, the solutions of
dynamic and static elasticity problems are reduced to solving infinite systems of linear
algebraic equations. So, in the appendix, a solution of the axisymmetric problem on
stress concentration around a circular hole in the plate whose boundary is loaded with
normal forces of the form rr ¼ v gp � kpg

� �
is presented. Here v is a constant, kp is a

parameter that has been selected so that the load is self-balanced, g is a transverse
coordinate. Numerical results for the solution of the problem is presented. This
problem can be regarded as a model for the corresponding problems in the theory of
shells; it is relatively simple and at the same time contains all the characteristic
features of problems in three-dimensional elasticity theory. The exact solution of the
problem of axisymmetric vibrations of a cylindrical shell under given mixed
boundary conditions at the ends is derived by means of homogeneous solutions.
Numerical analysis is carried out for the parabolic distribution of normal stress on the
end surface and zero end radial displacement. Some numerical analysis of the problem
of dynamic torsion of a spherical layer by forces distributed on the surface of a tapered
cut is conducted.
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Summarizing the results, we note that the following results of the author are
obtained in the monograph:

1. The forced vibrations of a cylinder and spherical layers are investigated by the
method of homogeneous solutions. A possible form of wave formation is
studied depending on the frequency of the driving forces. A complete asymp-
totic analysis of solutions of three-dimensional dynamic problems of elasticity
theory is conducted as the parameter of thin-walledness tends to zero.
A comparison of the asymptotic solution with the solutions obtained by the
applied theories of shells is given. A generalized orthogonality condition of
homogeneous solutions which allows accurate solutions to the problem of
forced vibrations of a hollow cylinder and a spherical layer under specific
conditions of shell end bearings are derived. In the general case of loading, the
boundary value problem is reduced to solving an infinite system of linear
algebraic equations employing Lagrange and Hamilton variational principles.

2. A qualitative study of some applied theories is considered; the limits of their
applicability are determined. In particular, it is shown that all existing applied
theories of shells inadequately describe the stress–strain state in the vicinity of
concentrates and are not suited for the study of high-frequency vibrations of thin
and thick shells.
The detailed study of the properties of homogeneous solutions, in fact, of
independent wave motion types, which may be realized in the considered elastic
bodies, provides the basis for stating the correct methodological problem of
constructing refined theories for thin-walled elements. In this connection,
refined applied theories, more accurately describing the processes occurring in
thin shells rather than the classical two-dimensional theory of shells, are con-
structed and these allow obtaining the solutions of inhomogeneous problems to
a given degree of accuracy.

3. An asymptotic process for finding the frequencies of free axisymmetric vibra-
tions of a hollow cylinder and a closed hollow sphere is derived. As is well
known, even in relatively simple cases the analysis of the frequency equations is
quite challenging. It is, therefore, essential to determine all the frequencies in a
certain frequency range.
The author’s approaches allow to create algorithms that are able to capture all
natural frequencies in a given interval, and this undoubtedly represents a sci-
entific and practical value.
Comparisons of the results obtained by Kirchhoff–Love and Timoshenko’s
theories with the results obtained by the three-dimensional elasticity theory are
presented. It is shown that in the problems on free vibrations, the applied theory
of shells approximately approximates only the lowest part of the frequency
spectrum, but is unable to describe the phenomenon of end resonance.

4. An asymptotic method of integrating three-dimensional equations of elasticity
theory for a conical shell and plates of variable thickness is developed.
Homogeneous and inhomogeneous solutions are established and a generalized
orthogonality condition for a cone is proved. Asymptotic analysis of the
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problems of harmonic torsional waves spreading in a conical shell and in a plate
of variable thickness is conducted through which asymptotic formulas are
obtained that allow the determination of the frequencies of the mentioned
bodies.

5. It is proved that the derived homogeneous and inhomogeneous solutions not
only reveal the qualitative features of the three-dimensional solutions in the
theory of shells, but can serve as an effective technique of solving specific
boundary value problems, as well as a basis for assessing simplified theories.

Baku, Azerbaijan Magomed F. Mekhtiev
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About the Book

The book is inspired by justification and refinement of highly diverse approximate
dynamic models for engineering structures arising in modern technology, including
high-tech domains dealing with nano and metamaterials. The dynamic equations of
3D elasticity are applied to the analysis of harmonic vibrations of hollow bodies of
canonical shapes. New exact homogeneous and inhomogeneous solutions are
derived for cylinders, spheres, cones, including spherical and conical layers, as well
as for plates of variable thicknesses. Associated dispersion relations are subject to
detailed asymptotic treatment in case of a small thickness. A classification for
vibration spectra is suggested over a broad frequency domain. The range of validity
of various existing 2D theories for thin-walled shells is evaluated by comparison
with 3D benchmark solutions. A number of numerical examples are presented.
Refined versions of 2D dynamic formulations are developed. Boundary value
problems for hollow bodies are also considered.
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Chapter 1
Asymptotic Analysis of Dynamic Elasticity
Problems for a Hollow Cylinder
of Finite Length

Abstract In this chapter, we investigate forced vibrations of an isotropic hollow
cylinder under the action of axisymmetric loads by the method of homogeneous
solutions. Depending on the frequency of the driving forces a possible form of wave
formation in a hollow cylinder is explored. The asymptotic behaviour of the
solutions of three-dimensional dynamic problems of elasticity theory is studied as
the wall-thickness parameter tends to zero hence corresponding to a thin walled
structure. The comparison of the asymptotic solutions with the solutions obtained
by the applied theories is given. A generalized orthogonality condition of homo-
geneous solutions is proved which allows an accurate solution of the problem of
forced vibrations of a hollow cylinder with mixed end conditions. In the general
case of loading of a cylinder by means of the Lagrange variational principle the
boundary value problem is reduced to the solution of a system of linear algebraic
equations. A method of constructing applied theories designed for stress relief from
cylindrical boundaries of the shell is suggested. Together with the construction of
the homogeneous solutions the solution of the inhomogeneous problem follows.
The problems of torsional vibrations of a hollow cylinder with mixed boundary
conditions on the side surface are solved exactly. The vibrations of a cylinder with a
fixed side surface are considered as well. It is shown that in the first term of the
asymptotic expansion the solution of this problem coincides with the solution of a
similar problem in the theory of elasticity for an elastic strip.

1.1 Construction of Homogeneous Solutions

Consider the axisymmetric problem of elasticity theory for a hollow cylinder. The
position of the points on the cylinder in space is defined by the cylindrical coor-
dinates r; u; z varying within (Fig. 1.1).

R1 � r�R2; 0�u� 2p; �l� z� l ð1:1:1Þ

It is assumed that the lateral surface of the cylinder is free from stresses, i.e.
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rr ¼ 0; srz ¼ 0

at

r ¼ Rn; �l� z� l; n ¼ 1; 2ð Þ ð1:1:2Þ

while the rest of the boundary conditions are given as follows

rz ¼ Q� rð Þeixt; srz ¼ T� rð Þeixt

at

z ¼ �l k ¼ 1; 2ð Þ: ð1:1:3Þ

The equations of motion in terms of displacements in a cylindrical coordinate
system have the form:

1
1� 2m

@x
@q

þDUq � 1
q2

Uq ¼ 2g 1þ mð ÞR2
0

E
@2Uq

@t2

1
1�2m

@x
@n

þDUn ¼ 2g 1þ mð ÞR2
0

E
@2Un

@t2

x ¼ @Uq

@q
þ Uq

q
þ @Un

@n
:

ð1:1:4Þ

Here q ¼ R�1
0 r, n ¼ R�1

0 z are dimensionless coordinates, R0 ¼ 1=2 R1 þR2ð Þ is
the radius of the mid-surface of the shell, E is Young’s modulus, m is Poisson’s
ratio, g is the density of the shell material, D is Laplace operator, and Uq ¼ R�1

0 Uz,
Un ¼ R�1

0 Uz are the nondimensional displacements.

1r

x

y
l2

Z

1R
2R

Fig. 1.1 Hollow cylinder
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Stress tensor components are expressed by means of the displacements as
follows:

rr ¼ 2G
@Uq

@q
þ m

1þ 2m
x

� �
; ru ¼ 2G

Uq

q
þ m

1� 2m
x

� �

rz ¼ 2G
@Un

@n
þ m

1� 2m
x

� �
; srz ¼ 2G

@Un

@q
þ @Uq

@n

� � ð1:1:5Þ

where G is the shear modulus.
The solutions of (1.1.4) will be sought in the form:

Uq ¼ U qð Þ dm
dn

eixt; Un ¼ W qð Þm nð Þ eixt ð1:1:6Þ

where the function m nð Þ is subject to the condition

d2m

dn2
� l2m nð Þ ¼ 0 ð1:1:7Þ

for which the parameter l is determined through the fulfilment of the boundary
conditions on the surface.

Substituting (1.1.6) into (1.1.4) and separating variables relative to a pair of
functions U;Wð Þ we obtain the following system of ordinary differential equations:

L1 l; kð Þ U;Wð Þ ¼ U00 þ 1
qU

0

þ a2 � 1
q2

� �
Uþ 1

2 1�mð Þ W 0 � l2Uð Þ ¼ 0

L2 l; kð Þ U;Wð Þ ¼ 1
1�2m l

2 U0 þ U
q þW

� �
þW 00 þ 1

qW
0 þ c2W ¼ 0

ð1:1:8Þ

k2 ¼ 2g 1þ mð ÞR2
0x

2

E
; a2 ¼ l2 þ 1� 2m

2 1� mð Þ k
2; c2 ¼ l2 þ k2:

here primes denote derivatives with respect to q and k is a frequency parameter.
Taking into account (1.1.6), the formulas (1.1.5) take the form:

rr ¼ 2G U0 þ m
1� 2m

U0 þ U
q
þW

� �� �
dm
dn

eixt

ru ¼ 2G
U
q
þ m

1� 2m
U0 þ U

q
þW

� �� �
dm
dn

eixt

rz ¼ 2G W þ m
1� 2m

U0 þ U
q
þW

� �� �
dm
dn

eixt

srz ¼ G l2UþW 0� 	
m nð Þeixt:

ð1:1:9Þ
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Substituting (1.1.9) into (1.1.2) we obtain the following homogeneous boundary
conditions for the functions U q; l; kð Þ, and W q; l; kð Þ:

M1 l; kð Þ U;Wð Þjq¼qn

¼ U0 þ m
1�2m U0 þ U

q þW
� �h i

q¼qn
¼ 0;

M2 l; kð Þ U;Wð Þjq¼qn
¼ W 0 þ W 0 þ l2U

� 	
 �
q¼qn

¼ 0: ð1:1:10Þ

Thus, the system of Eq. (1.1.8) together with boundary conditions (1.1.10)
generates a spectral problem for a pair of functions U; Wð Þ. Let us undertake the
analysis of the suggested spectral problem. Without going into details, we give the
final solution of Eq. (1.1.8) in the following form:

U q; l; kð Þ ¼ �az1 aqð Þ � z1 cqð Þ
W q; l; kð Þ ¼ l2z0 aqð Þþ cz0 cqð Þ: ð1:1:11Þ

Here zk xð Þ ¼ C1kJk xð ÞþC2kYk xð Þ, J0 xð Þ, J1 xð Þ, Y0 xð Þ are Bessel functions of
the first and second kind respectively; Ci i ¼ 1; 2; 3; 4ð Þ are arbitrary constants.

On satisfying homogeneous boundary conditions (1.1.10) we obtain a linear
system of algebraic equations in the unknowns Ci:

a
q Z1 aqð Þ � d2Z0 aqð Þþ 1

q Z1 cqð Þ � cZ0 cqð Þ
h i

q¼qn
¼ 0

2l2aZ1 aqð Þþ 2l2 þ k2
� 	

Z1 cqð Þ
 �
q¼qn

¼ 0
ð1:1:12Þ

d2 ¼ l2 þ 1=2k2

The condition for the existence of nontrivial solutions of system (1.1.12) leads to
the following dispersion equation:

D l; kð Þ ¼ 8p�2q�1
1 q�1

2 l2 2l2 þ k2
� 	2�k4a2q�1

1 q�1
2

� L11 að ÞL11 cð Þþ 2�1ak2 2l2 þ k2
� 	2

q�1
2 L01 að ÞL11 cð Þ

þ 2�1ak2 2l2 þ k2
� 	2

q�1
1 L10 að ÞL11 cð Þ � 2k2cl2a2

� q�1
1 L10 cð ÞL11 að Þ � 2k2cl2a2q�1

2 L01 cð ÞL11 að Þ
� 4�1 2l2 þ k2

� 	4
L00 að ÞL11 cð Þ � 4l4a2c2

� L00 cð ÞL11 að Þþ acl2 2l2 þ k2
� 	2

� L01 cð ÞL10 að Þþ L01 að ÞL10 cð Þ½ � ¼ 0

Lii xð Þ ¼ Ji xq1ð ÞYi xq2ð Þ � Ji xq2ð ÞYi xq1ð Þ
Lij xð Þ ¼ Ji xq1ð ÞYi xq2ð Þ � Jj xq2ð ÞYi xq1ð Þ

i; j ¼ 0; 1

ð1:1:13Þ
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The transcendental Eq. (1.1.13) defines a countable set of roots lk and the
corresponding constants C1lk, C2lk, C3lk , C4lk are proportional to the cofactors of
the elements of any row of the determinant of the system. If the matrix of the linear
system (1.1.13) is expanded in terms of cofactors in the first row we obtain:

C1lk ¼ Ck 4p�1q�1
2 akl

2
k 2l2k þ k2
� 	

Y1 akq1ð Þ

� akk

2 2l2k þ k2
� 	

q�1
2 Y1 akq2ð ÞL11 ckð Þþ 2�1 2l2k þ k2

� 	3
� Y0 akq2ð ÞL11 ckð Þ � 2akckl

2
k 2l2k þ k2
� 	

Y1 akq2ð ÞL10 ckð Þ�
C2lk ¼ Ck 4p�1q�1

2 akl
2
k 2l2k þ k2
� 	

J1 akq1ð Þ

� akk

2 2l2k þ k2
� 	

q�1
2 J1 akq2ð ÞL11 ckð Þþ 2�1 2l2k þ k2

� 	3
� J0 akq2ð ÞL11 ckð Þ � 2akckl

2
k 2l2k þ k2
� 	

J1 akq2ð ÞL10 ckð Þ�
C3lk ¼ Ck 2p�1q�1

2 l2k 2l2k þ k2
� 	

Y1 ckq1ð Þ

þ 2q�1

2 k2l2kakY1 ckq2ð ÞL11 akð Þþ 4ckl
4
ka

2
kY0 ckq2ð ÞL11 akð Þ

� akl
2
k 2l2k þ k2
� 	2

Y1 ckq2ð ÞL10 akð Þ�
C4lk ¼ Ck 2p�1q�1

2 l2k 2l2k þ k2
� 	

J1 ckq1ð Þ

þ 2q�1

2 k2l2kakJ1 ckq2ð ÞL11 akð Þþ 4ckl
4
ka

2
kJ0 ckq2ð ÞL11 akð Þ

� akl
2
k 2l2k þ k2
� 	2

J1 ckq2ð ÞL10 akð Þ�

ð1:1:14Þ

Substituting (1.1.14) into (1.1.11), summing through all roots and taking into
account formulas (1.1.6) and (1.1.9) we obtain the homogeneous solutions in the
following form:

Uq ¼
X1
k¼1

CkUk qð Þ dmk

dn
eixt

Un ¼
X1
k¼1

CkWk qð Þmk nð Þeixt

rr ¼ 2G
X1
k¼1

CkQrk qð Þ dmk

dn
eixt

ru ¼ 2G
X1
k¼1

CkQ/k qð Þ dmk

dn
eixt

rz ¼ 2G
X1
k¼1

CkQzk qð Þ dmk

dn
eixt

srz ¼ G
X1
k¼1

Cksk qð Þmk nð Þeixt

ð1:1:15Þ
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Here Ck are arbitrary constants.

Uk qð Þ ¼ akZ1 akqð Þ � Z1 ckqð Þ;
Wk qð Þ ¼ l2kZ0 akqð Þ � ckZ0 ckqð Þ;
Qrk qð Þ ¼ ak

q
Z1 akqð Þ � d2kZ0 akqð Þþ 1

q
Z1 ckqð Þ � ckZ0 ckqð Þ;

Quk qð Þ ¼ � ak
q
Z1 akqð Þ � m

2 1� mð Þ k
2Z0 akqð Þ � 1

q
Z1 ckqð Þ;

Qzk qð Þ ¼ l2k �
m

2 1� mð Þ k
2

� �
Z0 akqð Þþ ckZ0 ckqð Þ;

sk qð Þ ¼ �2l2kakZ1 akqð Þ � 2l2k þ k2
� 	

Z1 ckqð Þ:

ð1:1:16Þ

1.2 Analysis of the Roots of the Dispersion Equation

Let us undertake the analysis of the roots of the dispersion Eq. (1.1.13). As it is
clearly seen from formula (1.1.12), the dispersion equation has a very complicated
structure. For an effective study of the location of the roots of (1.1.12) we make
some assumptions on the geometric parameters of the cylinder. Suppose:

q1 ¼ 1� e; q2 ¼ 1þ e; 2e ¼ R2 � R1

R0
¼ 2h

R0
: ð1:2:1Þ

Let us suggest that e is a small parameter. Substituting (1.2.1) into (1.1.13), we
obtain

D l; k; eð Þ ¼ D l; k; q1; q2ð Þ ¼ 0 ð1:2:2Þ

One can show that D l; k; eð Þ is an even function of its arguments.
The case k20 ¼ gR2

0x
2=E ¼ 1, k20 ¼ 1

1�m2 and l ¼ 0 is a particular case and is
treated separately.

The following statement can be formulated with respect to the zeros of the
function D l; k; eð Þ: the function D l; k; eð Þ has three groups of zeros for finite
k k ¼ 0 1ð Þ as e ! 0½ �:
(a) The first group consists of two zeros lk ¼ O 1ð Þ k ¼ 1; 2ð Þ;
(b) The second group consists of four zeros at the order O e�1=2

� 	
;

(c) The third group contains a countable set of zeros which are of the order O e�1ð Þ.
Let us prove this assertion. To do this we expand D l; k; eð Þ into a series in

powers of e. On doing so we obtain:
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