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Why This Book?

Our understanding of the Earth during the Precambrian has changed dramatically during the
last decades. Discussions concerning the onset of plate tectonics, the supercontinent cycle and
crustal growth processes have also diversified, with deep implications for Precambrian geo-
dynamics. For this reason, this volume presents an updated synthesis of the state of the art
of the Precambrian geology of Southwest Gondwana, including the main controversies and
discussions concerning the tectonic and geodynamic evolution of this region during the
Precambrian. Major tectonometamorphic, magmatic and sedimentary processes and paleo-
geographic implications during the late Neoproterozoic are evaluated in detail, as this period
represents a key step in the Earth’s evolution linked to the assembly of Gondwana.

Gondwana, in Retrospect

After publication of the first world atlas, Theatrum Orbis Terrarum (Ortelius 1570), the
geographer Abraham Ortelius was the first to recognize the match of the South American and
African Atlantic margins (Ortelius 1596). Later, these geometrical similarities constituted one
of the main pieces of evidence to support plate tectonics (e.g., Wegener 1915; Bullard et al.
1965). However, geological similarities between both continents were first reported in the
nineteenth century.

The term ‘Gondwana’, coined in the geological literature to refer to a plant-bearing series in
India and afterwards extended to the Gondwana system (Feistmantel 1876; Medlicott and
Blanford 1879), had previously been used in ethnographic works (Craig Robertson pers.
comm.). Remarkably, the Austrian geologist Eduard Suess (1831-1914) was the first to
establish regional correlations by the end of the nineteenth century, indicating the existence of
a ‘larger continent’ (Suess 1885). This definition, probably the oldest precursor of the
supercontinent concept, was stated by Suess as ‘Versucht man dhnliche Vergleichungen auf
die vereinigte Masse von Asien, Afrika und Europa anzuwenden, so zeigt sich sofort, dass hier
verschiedenartige Gebiete zu einem grossen Continente aneinander geschweisst sind [...] Wir
nennen es Gondwana-Land nach der gemeinsamen alten Gondwéna-Flora’, and which can be
roughly translated to ‘if comparisons are made between Asia, Africa and Europe, it is clear that
different areas in these regions were juxtaposed as part of a large continent [...] We name it
Gondwana-Land, after the shared Gondwana flora.’

Already in his first edition of Die Entstehung der Kontinente und Ozeane, Alfred Wegener
considered South America, Africa, India and Australia as the main parts of Gondwana
(Wegener 1915). Key contributions concerning South America and Africa correlations were
first presented by Hans Keidel (1914, 1916) and Alexander du Toit (1927, 1928) and con-
stituted one of the main lines of evidence considered by Alfred Wegener to support continental
drift theory (Wegener 1929). Keidel described Upper Paleozoic glacial deposits in the Sierras
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Australes de Buenos Aires in Argentina and correlated them with comparable deposits in the
Cape Fold Belt (Keidel 1914, 1916, 1938). Motivated by Keidel’s contributions, du Toit
visited South America and provided further correlations across the South Atlantic (du Toit
1927, 1928, 1937).

First attempts to correlate the Precambrian rocks of South America and Africa were also
established during the first half of the twentieth century. Based on the work of Brouwer
(1921), Wegener (1929) recognized similarities in the ‘old granites’ of Brazil and southern
Africa. On the other hand, du Toit (1927) stated:

Prominent are the various belts of pre-Devonian strata in the lengthy stretch between the Rio de la Plata
and Pernambuco, of which some are probably of Ordovician age, while others may be older. They,
however, have a general lithological resemblance to the folded Nama succession on the eastern side
of the Atlantic, between Cape Town and Liideritz, and also possess a strike that is more or less parallel
to the coast. This likeness is highlighted by the fact that in certain localities the granite by which these
belts are flanked are intrusive, just as in the Nama beds between Cape Town and Namaqualand.

These rocks were characterized by ‘a general north-northeasterly trend’, and du Toit (1927)
attributed them both African and South American margins to the ‘Brazilian system’ defined by
Alcide d’Orbigny in Brazil (Beaumont 1844), arguably corresponding to the oldest correlation
of Brasiliano—Pan-African belts (Fig. 1).

After these first correlations, similarities in the Precambrian record of South America and
Africa were tightened up significantly. Porada (1979) was one of the first to correlate the
Damara and Gariep belts of southern Africa with the Ribeira Belt of South America, and to
interpret their evolution in terms of continent collision. These correlations were strongly
strengthened by the massive explosion in the application of first geochronological methods

Fig. 1 Schematic reconstruction presented by Wegener (1915), including similarities between the Sierras
Australes de Buenos Aires and the Cape Fold Belt (black lines). Handwritten notes made by Alfred
Wegener on a copy of Wegener’s (1915) work are schematically included in colour (after Wegener 2005):
structural trends of basement rocks along both margins of the South Atlantic (orange lines) and northern
boundary of marine deposits (1: Lower Cambrian, 2: Lower Devonian, 3: Upper Carboniferous, 4: Upper
Triassic, 5: Upper Jurassic)
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Fig. 2 Geochronological database presented by Hurley et al. (1967) showing similarities in the Precambrian record of South America and
Africa (reconstruction after Bullard et al. 1965). Bold dashed line indicates the boundary between domains showing Paleoproterozoic and
Neoproterozoic ages

(Torquato and Cordani 1981 and references therein). Correlations of Precambrian rocks of
northeastern South America and western Africa, including similarities in structural and
metamorphic characteristics, were presented by Pflug (1963), Almeida and Black (1968), and
Allard and Hurst (1969). Along with this geological evidence, Hurley et al. (1967) provided a
large database of K—Ar and Rb-Sr data, emphasizing similarities in the Paleoproterozoic and
Neoproterozoic geological record (Fig. 2). Once again, these correlations constituted a central
proof during renewed discussions about the validity of continental drift theory (Hurley 1968).

Likewise, several contributions focused particularly on the southwestern Gondwanan
correlations across the Atlantic. Similarities in terms of collisional events and oceanic realms
recorded in Brasiliano—Pan-African belts were presented by Almeida et al. (1973), Porada
(1979, 1989), Torquato and Cordani (1981), and Hartnady et al. (1985). Based on paleo-
magnetic data, McWilliams (1981) provided the first apparent polar wander path for Western
Gondwana (Fig. 3). The first geochronological data of the Precambrian basement of southern
Brazil, Uruguay and Argentina were reported by Hart (1966), Halpern et al. (1970), Halpern
and Linares (1970), and Umpierre and Halpern (1971), discussing their possible connection
with African counterparts.
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Fig. 3 First apparent polar wander path of Western Gondwana for the late Ediacaran-Ordovician after
McWilliams (1981). Equal area projection, reconstruction after Smith and Hallam (1970) with fixed Africa.
AD—Adma diorite; NR—Ntonya ring structure; KL—Klipheuvel Formation; NQ—Nosib Group; DM—Ilower
Mulden Group; N2—upper Nama Group; DP—Doornpoort Formation; PM—Purmamarca sediments; AC—
Abra de Cajas; P3—Plateau series; SIR—Sijarira Group; NR—Ntonya ring structure; NP—Nama Group—
overprint-; SJ—Salta-Jujuy redbeds; HK—Hook intrusives; JR—Jordan redbeds; TM—Table Mountain
series; NX—Blaubeker Formation; ST—S. Tilcara; NT—N. Tilcara; HM—Hasi-Mesaud sediments; TS—Tassili
sediments; C1—Groupe de la Falaise d’Atar; MS—Mirnyy charnockites; JF—Jinduckin Formation; SR—Sor
Rondane intrusives; TS—Tumblagooda sandstone; SS—Stairway sandstone. See McWilliams (1981) for
further references

During the last two decades, however, Southwest Gondwana connections were significantly
tightened up, particularly as a result of large-scale geological mapping programmes and the
massive application of analytical techniques such as SHRIMP and LA-ICP-MS zircon
geochronology (e.g. Siegesmund et al. 2011). The aim of this volume is thus to present an
up-to-date overview of the Precambrian geology of Southwest Gondwana, emphasizing the
role of the main Archean to Paleoproterozoic crustal blocks and the late Neoproterozoic
orogenic belts related to the Brasiliano—Pan-African orogeny.

Content

This volume contains 24 chapters written by 54 authors. In Part I, regional overviews based on
paleomagnetic and geophysical data are presented, together with a synthesis of the Adamastor
Ocean evolution. The evolution of the main crustal blocks—the Rio de la Plata, Congo and
Kalahari cratons—is summarized in the chapters of Part II. Smaller continental fragments such
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as the Nico Pérez Terrane, the Luis Alves and Curitiba microplates, and the Angolan Shield
are also presented here, whereas the southwestern Brasiliano—Pan-African orogenic belts are
described in the chapters in Part III. In Part IV a series of special chapters address key topics
regarding the evolution of Southwest Gondwana: ore deposits, BIFs, Brasiliano—Pan-African
shear zones, Neoproterozoic glaciations, Late Neoproterozoic-Early Paleozoic sedimentary
basins, Ediacaran fauna and the impact crater record.

Rapalini presents an overview of available paleomagnetic data for Western Gondwana
blocks and compares them with paleomagnetic constraints of Laurentia and Eastern Gond-
wana, discussing implications for the Ediacaran-Cambrian paleogeography. Data indicate that,
by the early Ediacaran, the Amazonian and West Africa Cratons were probably still attached to
Laurentia. On the other hand, the Rio de la Plata and Congo-Sdo Francisco cratons were
already amalgamated by c. 575 Ma, whereas the Arabian-Nubian Shield was probably
attached prior to c¢. 570 Ma. Paleomagnetic data from Australia constrain the apparent polar
wander path for Eastern Gondwana, pointing to a late Ediacaran-Cambrian assembly with
Western Gondwana. Interestingly, the author also outlines the absence of reliable paleo-
magnetic constraints for the Kalahari Craton.

Corner and Durrheim provide an integrated geophysical and geological framework for
the lithospheric structure of southern Africa. A large database comprising geological, bore-
hole, aeromagnetic, gravimetric, magnetotelluric, seismic reflection and refraction, and tele-
seismic data is carefully evaluated in order to provide insights not only into the Precambrian
geology of areas covered by Phanerozoic sequences but also into major terrane boundaries,
crustal lineaments and the lower crust-upper mantle structure. As a result, correlations between
the main tectonostratigraphic domains and structures of the region are presented, together with
implications for the thermal state of the main cratonic domains.

Basei et al. revise the Neoproterozoic history of opening and closure of the Adamastor
Ocean between African and South American domains. The authors emphasize in particular the
role of magmatic arc petrotectonic assemblages and associated major crustal-scale shear zones.
Tonian-Cryogenian crustal extension gave rise to the opening of the Adamastor, succeeded by
subduction starting at c. 640 Ma. Subduction led to magmatic arc development and, finally, to
continental collision of South American and African cratons at c. 600 Ma, thus triggering
crustal thickening in the Brasiliano—Pan-African belts.

Oyhantcabal et al. review geological, geochronological, isotopic and geophysical data
of the Rio de la Plata Craton of Argentina and Uruguay. Neoarchean to Paleoproterozoic
crustal growth is indicated by Sm-Nd and Lu-Hf data. Widespread granitic-gneissic domains
record accretional tectonics at c¢. 2.2-2.1 Ga and were intruded by late- to post-orogenic
undeformed granitoids, gabbros and dolerites with a calcalkaline signature at c. 2.07 Ma.
Subsequent exhumation, cooling and cratonization occurred at c¢. 2050—-1800 Ma, succeeded
by tholeiitic dyke intrusions at c¢. 1.8 and 1.6 Ga in Uruguay and Argentina, respectively.
Despite being involved in the Brasiliano orogeny, the Rio de la Plata Craton does not show
significant reworking, revealing the presence of a thick and strong lithospheric mantle when it
was amalgamated with the rest of Gondwana.

Thiéblemont et al. present an up-to-date geological overview of Precambrian domains in
Western Central Africa, including the Congo Craton and adjacent blocks. Archean to Neo-
proterozoic lithostratigraphical domains are described in detail, along with novel geological
maps and a summary of geochronological and Sm-Nd data. As a corollary, the Precambrian
tectonic evolution of Western Central Africa is revised, emphasizing the role of crustal growth
vs. crustal recycling processes.

Oriolo and Becker summarize the main tectonostratigraphic units of the Kalahari Craton.
Geological, geochronological and isotopic data are presented, including a large compilation of
U-Pb and Lu-Hf zircon data. The data show episodic crustal growth and accretion of minor
crustal blocks during the Archean, also implying reworking of Hadean crustal remnants. The
subsequent addition of juvenile Paleoproterozoic crust took place along the western margin
of the proto-Kalahari margin, whereas Mesoproterozoic subduction zones were present all



around the Archean-Paleoproterozoic proto-Kalahari Craton. The latter gave rise to the
accretion of several microcontinents and island arcs along the southern margin during the
Namaqua-Natal orogeny. Afterwards, Cryogenian intraplate magmatism was succeeded by the
incorporation of the Kalahari Craton into Gondwana during the protracted Pan-African
orogeny.

Oyhantcabal et al. integrate geological, geochronological, isotopic and geochemical data
of the Nico Pérez Terrane in Brazil and Uruguay in order to constrain its regional extension
and Precambrian tectonic evolution. Archean crustal growth was succeeded by major Paleo-
proterozoic crustal reworking related to multistage magmatism and high-grade metamorphism.
The Mesoproterozoic record is restricted to intraplate magmatism and related sedimentary
sequences, whereas significant Neoproterozoic crustal reworking during the Brasiliano—
Pan-African orogeny is attested by cooling ages, shear zones and granitic intrusions. In
addition, the authors emphasize the African origin of the Nico Pérez Terrane, linked to the
Congo Craton, and present novel correlations between the southern Brazilian and Uruguayan
sectors.

Passarelli et al. revise geological, geochronological, isotopic and geochemical data of the
Luis Alves and Curitiba terranes of southern Brazil, establishing the main characteristics
of these two Paleoproterozoic crustal blocks. The Luis Alves Craton is composed of a TTG
suite, mafic-ultramafic intrusions and scarce paragneisses, whereas the Curitiba terrane com-
prises migmatites and amphibole-gneissic rocks. On the other hand, Sm-Nd data indicate
dominantly Neoarchean to Paleoproterozoic crustal growth for the Luis Alves Craton, and
older Meso- to Neoarchean crustal growth for the Curitiba terrane. Both blocks were amal-
gamated during the Ediacaran along the Pien Suture Zone, triggering significant deformation
and migmatization in the Curitiba terrane.

Jelsma et al. summarize new and available geological, geochronological and geochemical
data of the Angolan Shield. Three main crustal domains are recognized: the Central Shield
Zone in the east, and the Central Eburnean Zone and Lubango Zone in the west. Magmatism
recorded in these domains is attributed to continental arcs developed along the active western
and southern margins of the Congo Craton, with peak magmatic events at c. 2.0-1.96 Ga
(Eburnean Event), 1.88-1.83 Ga (Kamanjab-Bangweulu Event) and 1.80-1.77 Ga (Epupa
Event).

Phillip et al. evaluate the tectonic evolution of the Sdo Gabriel Terrane in southern Brazil,
linked to the evolution of the Charrua Ocean. A large database of geological and isotopic data
are presented. Based on these data, the authors provide a three-stage tectonic evolution for the
Sao Gabriel Terrane, which can be divided into the Passinho (c. 0.89-0.85 Ga), Sao Gabriel
(c. 0.77-0.68 Ga) and Dom Feliciano (c. 0.65-0.54 Ma) orogenic events.

Hueck et al. compile geological, geochronological and structural data of the Dom Feliciano
Belt in Brazil and Uruguay, discussing models and controversies related to the tectonic
evolution of this major transpressional belt. The first phase is recorded in the Sdo Gabriel
Terrane, associated with juvenile magmatism and accretional tectonics at c. §70-680 Ma.
Subsequent high-grade metamorphism, shear zone nucleation and deformation of metavol-
canosedimentary units were related to a collision at ¢. 650-600 Ma, succeeded by strike-slip
deformation and voluminous post-collisional magmatism at c. 600-550 Ma. The final stage
corresponds to the development of foreland basins, probably associated with transtension
occurring up to the Early Paleozoic.

Goscombe et al. provide a detailed tectonic evolution of the Kaoko-Damara Belt system,
evaluating geological, structural, metamorphic and geochronological constraints. The collision
of the Rio de la Plata and Congo cratons resulted in obduction of the Coastal Terrane over the
latter at c. 590 Ma and it was succeeded by collision of the Kalahari with the Congo Craton
along the Damara Belt at c. 555-550 Ma, giving rise to northwest—southeast shortening
between c¢. 550 and 530 Ma and consequent transpression with the development of strike-slip
shear zones. At c. 530-525 Ma, shear zones of the Kaoko Belt underwent transtension,
whereas peak metamorphism and deformation associated with north-northwest-south-
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southeast crustal shortening is recorded in the Damara Belt, succeeded by northeast-southwest
shortening by c. 512-508 Ma. A switch to east—west shortening and north—south extension is
evident in the Damara Belt at c. 508 Ma, probably resulting from far-field effects of tectonic
processes along the southern margin of Southwest Gondwana. This north—south extension
triggers both decompression melts at c. 508-504 Ma and gravitational collapse and extension
of the thermally weakened Damara Orogen core at c. 505-500 Ma.

Frimmel reviews the tectonostratigraphy of the Gariep Belt and provides an integrated
evolution of Neoproterozoic tectonic processes, including interesting insights into contem-
poraneous sedimentary and paleoclimatic processes. The author indicates the existence of
Tonian alkaline magmatism related to crustal thinning and associated late Tonian continental
sedimentation that record a progressive transition to shallow marine conditions. At c. 750 Ma,
the first glaciations of the Gariep Belt are recorded. After a hiatus of c. 100 Myr, oceanic
magmatism is recorded by the Marmora Terrane, which is interpreted as a late
Cryogenian-Ediacaran back-arc basin. Closure of the Marmora Basin took place at c. 550-545
Ma, contemporaneously with climatic recovery after the Numees glaciation. Transpressive
deformation led to exhumation and erosion, providing detritus for the Nama basin, and was
succeeded by post-orogenic Cambrian alkaline magmatism.

Kisters and Belcher present an overview of the stratigraphy, structure, magmatism and
tectonic evolution of the Saldania Belt, interpreted as a forearc crustal section that evolved
between the late Ediacaran and the Cambrian along the Kalahari Craton margin. The struc-
turally lower Swartland Complex resulted from tectonic underplating during
southeast-directed subduction below the Kalahari Craton and is unconformably overlain by
low-grade metasediments and minor metavolcanic rocks of the Malmesbury Group that rep-
resent the late Neoproterozoic to Cambrian forearc basin fill. Regional deformation of the
forearc is characterized by partitioned sinistral transpression related to oblique convergence
and was probably associated with slab break-off, thus accounting for voluminous, syn- to
late-tectonic magmatism of the Cape Granite Suite.

Schmitt et al. evaluate Cambrian Brasiliano—Pan-African tectonic events in the context
of the assembly of Southwest Gondwana, based on the geological database of the new geo-
logical map of Gondwana. Not only collisional events but also extensional processes leading
to the development of oceanic and back-arc basins are evaluated. Based on this synthesis, the
authors establish correlations between Ediacaran-Cambrian orogens of Eastern and Western
Gondwana, highlighting potential causal relationships between them.

Loépez de Luchi et al. compile isotopic and geochemical data of the Eastern Sierras
Pampeanas and provide a revised tectonic evolution for this key area of the proto-Pacific
margin of Gondwana. The authors characterize the metamorphism, magmatism, deformation
and tectonic implications of three main events: the Ediacaran to Early Cambrian (580-530
Ma) Pampean, the Late Cambrian-Ordovician (500460 Ma) Famatinian and the
Devonian-Carboniferous (400-350 Ma) Achalian orogenies, which resulted from the complex
alternation of subduction-related and collisional processes.

Smith summarizes the main geological, stratigraphic and geochemical characteristics of
iron formations of southern Africa. Additionally, he presents an overview of depositional
models and the economic significance of these iron formations.

Rosiére et al. provide a summary of iron formations of the South American Platform,
separating them based on their age and location. Based on the main geological, stratigraphic,
mineralogical and geochemical characteristics, implications for the genesis and ore deposit
significance are evaluated.

Poiré et al. revise the Neoproterozoic glacial record of South America. They provide
stratigraphic, isotopic and geobiological insights into the genesis of these deposits, exposed in
Brazil, Paraguay, Bolivia, Uruguay and Argentina. As a corollary, sedimentary successions are
divided into “Snowball Earth” and “Phantom Glacial” deposits in order to separate glaciogenic
from non-glaciogenic deposits that were, however, influenced by global glaciation processes.
Neoproterozoic major climatic and sea level fluctuations are also discussed.
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Gaucher reviews the Ediacaran to Early Cambrian fossil record of Southwest Gondwana.
Details of the characteristics and occurrence of acritarchs, soft-bodied biota, skeletonized
metazoans and protists, and trace fossils are described, discussing the biostratigraphic and
paleographic implications.

Zimmermann presents an up-to-date synthesis of provenance data of major Neoprotero-
zoic to Lower Paleozoic sedimentary basins in southern South America and Africa, including
key lithostratigraphic features as well as age and provenance constraints. The author provides
a thorough discussion of the limitations of the available data and its implications for regional
geodynamic and tectonic models. Based on the missing links of the current database, future
lines of research are also presented.

Oriolo et al. review geometrical, structural, kinematic, microstructural and geochrono-
logical data of crustal-scale shear zones of the Brasiliano—Pan-African belts and discuss the
role of these shear zones in the construction of Western Gondwana. Likewise, insights into
Phanerozoic shear zone reactivation are also presented, particularly during the Cretaceous
opening of the South Atlantic Ocean.

Borg and Gauert describe ore deposits of southern Africa, including some world-class
deposits such as the Central African Copperbelt, and evaluate their age, genetic processes and
tectonic setting. They emphasize the enormous potential of this region in terms of base (Cu,
Pb, Zn, Co, Ni), precious (Au, Ag) and strategic metals (U, W, Sn, Li, Ta, REE). VHMS and
SHMS deposits are related to extensional settings, mostly Mesoproterozoic in age, though
sediment-hosted stratabound Cu-Ag deposits are also recorded in other volcanosedimentary
basins. On the other hand, mantle-derived mafic melts allowed the formation of ore deposits of
Cu, Co and Ni, whereas highly fractionated intrusions related to collisional orogens host a
range of highly incompatible elements. As a result, the authors emphasize the role of the
complex tectonic and geodynamic evolution of Southwest Gondwana, identifying alternating
episodes of crustal shortening and extension as one of the main triggers of the wide diversity
and availability of ore deposits.

Reimold et al. provide an overview of impact craters of Gondwanan regions. Though the
African and South American record is emphasized, Eastern Gondwana craters occurring in
Australia and India are also mentioned. A detailed list of impact crater location, size and age,
among others, are provided. Finally, the authors emphasize the potential of the region in terms
of possibly hidden impact craters, which might be discovered by future studies.
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Abstract

In the last two decades some consensus has been reached
with regard to the assembly of Gondwana being a long
and complex process. Reliable paleomagnetic data are
essential to determine the paleogeographic and kinematic
evolution of each Gondwana-forming block during its
assembly as well as to place chronological constraints on
such a process. A review of paleomagnetic data from
Western Gondwana blocks indicates that the available
Ediacaran to Cambrian database is still scarce and uneven
for different cratons, despite clear improvement in the
quantity and quality of paleomagnetic information in
recent decades. The main constraints placed by the
available information are as follows:

e The Rio de la Plata and Congo—Sao Francisco cratons
were likely already attached by mid-Ediacaran times
(c. 575 Ma) and not part of Rodinia.

e The Arabian-Nubian Shield was part of proto-Gondwana
by 550 Ma and probably even earlier.

e Paleomagnetic constraints are virtually absent for the
Kalahari craton.

e Amazonia and West Africa were probably still part of
Rodinia and attached to eastern Laurentia by the Early
Ediacaran (c. 615 Ma), suggesting that a large Ediacaran
Clymene Ocean existed between Amazonia and the
Congo—Sao Francisco—Rio de la Plata block.

e The age of Amazonia amalgamation is poorly con-
strained by paleomagnetic data as > 525 Ma.

e The accretion of Eastern Gondwana blocks probably
occurred in the latest Ediacaran-Cambrian times as sug-
gested by the apparent polar wander path of Australia.
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1.1 Introduction

The assembly of Gondwana in Ediacaran-Cambrian times
(e.g., Meert and Lieberman 2008) was a long and complex
process that may have lasted well over 50 million years and
involved several different ‘orogenies’. Since this process was
coetaneous with the major biotic changes occurring during
the Earth’s history (i.e., the Cambrian radiation; for detailed
references, see Meert and Lieberman 2008), as well as large
climatic and environmental changes (Hoffman 1999; Evans
2000; Xiao 2004; Canfield et al. 2007; Meert 2007 and
references therein), unravelling the role that these dramatic
paleogeographic configuration changes, produced by the
assembly of such a continent, had in these events is of
paramount importance.

Detailed kinematic and paleogeographic reconstruction of
Gondwana assembly is a huge task that must involve several
independent disciplines (i.e., geochronology, structural
geology, biogeography, biostratigraphy, sedimentology and
basin analysis, petrology, geophysics, tectonics etc.). Pale-
omagnetism is an essential tool for these purposes since it is
the only known methodology that provides quantitative
determination of paleolatitude and orientation of any conti-
nental block at different times (e.g., Butler 1992; Van der
Voo 1993). Paleomagnetism is not without caveats and
ambiguities, and it only provides a broad paleogeographic
picture of distribution of continents along the Earth’s history
because its precision will be at its best in a few hundred
kilometers. However, it is irreplaceable in producing
first-order paleogeographic sketches as well as indepen-
dently testing many opposing tectonic models. It is also a
powerful tool to test whether actualistic climatic and geo-
dynamic processes are valid in Precambrian and Early
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Paleozoic times (e.g., Kirschvink 1992; Williams 2008;
Mitchell et al. 2010).

Many different paleogeographic models for the assembly
of Gondwana, based on paleomagnetic data, have been
published (e.g., Meert 2003; Collins and Pisarevsky 2005;
Meert and Lieberman 2008; Li et al. 2013). Original pro-
posals of a single episode of continental collision (McWil-
liams 1981) between East Gondwana (East Antarctica,
Australia, India and Madagascar) and West Gondwana
(South American and African cratons) along the Eastern
African orogen have been replaced by models that prescribe
a protracted process of collision of several independent
crustal blocks (e.g., Powell and Pisarevsky 2002). Although
some common ground has been reached among most mod-
els, like the complex nature of the amalgamation process that
involved more than a dozen different crustal blocks with
independent kinematic history, major controversies and
uncertainties remain (compare, e.g., Murphy et al. 2013;
Johansson 2014). On the basis of these shortcomings are the
scarce reliable paleomagnetic data available, despite impor-
tant progress achieved in the last two decades (e.g., Meert
et al. 2001; Séanchez Bettucci and Rapalini 2002; Trindade
et al. 2006; Rapalini 2006; Moloto-A-Kenguemba et al.
2009; Gregory et al. 2009; Schmidt et al. 2009; Mitchell
et al. 2010; Rapalini et al. 2013, 2015; Schmidt 2014).

In this chapter a brief review of the available paleomag-
netic constraints on the Gondwana assembly process, with a
main focus on Western Gondwana, is presented.

1.2 Main Cratons and Paleomagnetic
Database

Figure 1.1 presents a sketch of the main crustal blocks that
constitute Western Gondwana. This is composed of five
major Archean to Paleoproterozoic cratons—that is, Ama-
zonia, West Africa, Congo—Sao Francisco, Kalahari and Rio
de la Plata, and many, generally smaller, crustal blocks with
Archean to Mesoproterozoic basements but extensively
reworked during the Pan-African and Brasiliano orogenies
that led to the final assembly of Gondwana. The blocks
represented in Fig. 1.1 are not exhaustive because several
minor ones have been omitted for clarity of the sketch [e.g.,
Punta del Este/Cuchilla Dionisio terrane in eastern Uruguay
(Bossi and Gaucher 2004) or the Sao Gabriel block in
southern Brazil (Saalmann et al. 2006)], as well as long
Neoproterozoic thrust and fold belts (e.g., Dom Feliciano,
Araguaia, Paraguay, Brasilia, Namara and Gariep) that most
probably developed along the margins of some of the larger
crustal blocks (e.g., Prave 1996; Brito Neves et al. 2000;
Gray et al. 2008; Santos et al. 2008; Oyhantcabal et al. 2009;
Pimentel et al. 2011; McGee et al. 2012).

A. E. Rapalini
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PT

[ Archean to Mesoproterozoic cratons
D Remobilized or Neoproterozoic blocks

m Consumed oceanic crust

Fig. 1.1 Sketch of main crustal blocks of Western Gondwana in the
Neoproterozoic. A Amazonia; AN Antofalla; AQ Arequipa; AR Central
Arabia; BB Borborema, CH Chilenia; C-SF Congo—-Sao Francisco; GO
Goias; H-T Hoggar-Tibesti; K Kalahari; LA Luis Alves; MB Moroccan
block; NP Nico Perez, PA Pampia; PC Cuyania; PT
Patagonian/Malvinas block; RA Rio Apa; RP Rio de la Plata; SB
Senegalese block; WA West Africa; WN West Nile. Modified from
Sanchez-Bettucci and Rapalini (2002)

Unravelling the kinematic and paleogeographic evolution
of the major cratons in Neoproterozoic-Early Paleozoic
times to constrain how the amalgamation of West Gondwana
occurred is a major endeavour, let alone if the smaller crustal
fragments are considered.

Table 1.1 presents a selection of moderately to highly
reliable available paleomagnetic poles for West Gondwana
forming pieces for the Ediacaran-Cambrian. Their implica-
tions in the models of the continent assembly are discussed
below.

1.2.1 The Rio de la Plata Craton and Luis Alves

Block

Table 1.1 and Fig. 1.2a show that several paleomagnetic
poles are available for the Rio de la Plata craton for the interval
¢.600-500 Ma. Although some of them should be considered
virtual geomagnetic poles (VGPs) because the small number
of samples involved in their computation do not guarantee full
average of paleosecular variation (McElhinny and McFadden
2000), and the age of most is loosely bracketed by stratigraphic



